# TensorFlow-Book **Repository Path**: mirrors_lepy/TensorFlow-Book ## Basic Information - **Project Name**: TensorFlow-Book - **Description**: Accompanying source code for Machine Learning with TensorFlow. Refer to the book for step-by-step explanations. - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-09-25 - **Last Updated**: 2025-07-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # [Machine Learning with TensorFlow](http://www.tensorflowbook.com/) [This](https://github.com/BinRoot/TensorFlow-Book) is the official code repository for [Machine Learning with TensorFlow](http://www.tensorflowbook.com/). :warning: **Warning**: The book will be released in a month or two, so this repo is a **pre-release** of the entire code. I will be heavily updating this repo in the coming weeks. Stay tuned, and follow along! :) Get started with machine learning using TensorFlow, Google's latest and greatest machine learning library. # Summary ## [Chapter 2](https://github.com/BinRoot/TensorFlow-Book/tree/master/ch02_basics) - TensorFlow Basics - **Concept 1**: Defining tensors - **Concept 2**: Evaluating ops - **Concept 3**: Interactive session - **Concept 4**: Session loggings - **Concept 5**: Variables - **Concept 6**: Saving variables - **Concept 7**: Loading variables - **Concept 8**: TensorBoard ## [Chapter 3](https://github.com/BinRoot/TensorFlow-Book/tree/master/ch03_regression) - Regression - **Concept 1**: Linear regression - **Concept 2**: Polynomial regression - **Concept 3**: Regularization ## [Chapter 4](https://github.com/BinRoot/TensorFlow-Book/tree/master/ch04_classification) - Classification - **Concept 1**: Linear regression for classification - **Concept 2**: Logistic regression - **Concept 3**: 2D Logistic regression - **Concept 4**: Softmax classification ## [Chapter 5](https://github.com/BinRoot/TensorFlow-Book/tree/master/ch05_clustering) - Clustering - **Concept 1**: Clustering - **Concept 2**: Segmentation - **Concept 3**: Self-organizing map ## [Chapter 6](https://github.com/BinRoot/TensorFlow-Book/tree/master/ch06_hmm) - Hidden markov models - **Concept 1**: Forward algorithm - **Concept 2**: Viterbi decode ## [Chapter 7](https://github.com/BinRoot/TensorFlow-Book/tree/master/ch07_autoencoder) - Autoencoders - **Concept 1**: Autoencoder - **Concept 2**: Applying an autoencoder to images - **Concept 3**: Denoising autoencoder ## [Chapter 8](https://github.com/BinRoot/TensorFlow-Book/tree/master/ch08_rl) - Reinforcement learning - **Concept 1**: Reinforcement learning ## [Chapter 9](https://github.com/BinRoot/TensorFlow-Book/tree/master/ch09_cnn) - Convolutional Neural Networks - **Concept 1**: Using CIFAR-10 dataset - **Concept 2**: Convolutions - **Concept 3**: Convolutional neural network ## [Chapter 10](https://github.com/BinRoot/TensorFlow-Book/tree/master/ch10_rnn) - Recurrent Neural Network - **Concept 1**: Loading timeseries data - **Concept 2**: Recurrent neural networks - **Concept 3**: Applying RNN to real-world data for timeseries prediction