# arviz **Repository Path**: mirrors_lepy/arviz ## Basic Information - **Project Name**: arviz - **Description**: Exploratory analysis of Bayesian models with Python - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-11-14 - **Last Updated**: 2025-07-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README [![Azure Build Status](https://dev.azure.com/ArviZ/ArviZ/_apis/build/status/arviz-devs.arviz?branchName=master)](https://dev.azure.com/ArviZ/ArviZ/_build/latest?definitionId=1&branchName=master) [![codecov](https://codecov.io/gh/arviz-devs/arviz/branch/master/graph/badge.svg)](https://codecov.io/gh/arviz-devs/arviz) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black) [![Gitter chat](https://badges.gitter.im/gitterHQ/gitter.png)](https://gitter.im/arviz-devs/community) [![DOI](http://joss.theoj.org/papers/10.21105/joss.01143/status.svg)](https://doi.org/10.21105/joss.01143) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.2540945.svg)](https://doi.org/10.5281/zenodo.2540945) [![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)](https://numfocus.org) # ArviZ ArviZ (pronounced "AR-_vees_") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics. ### ArviZ in other languages ArviZ also has a Julia wrapper available [ArviZ.jl](https://arviz-devs.github.io/ArviZ.jl/stable/). ## Documentation The ArviZ documentation can be found in the [official docs](https://arviz-devs.github.io/arviz/index.html). First time users may find the [quickstart](https://arviz-devs.github.io/arviz/getting_started/Introduction.html) to be helpful. Additional guidance can be found in the [usage documentation](https://arviz-devs.github.io/arviz/usage.html). ## Installation ### Stable ArviZ is available for installation from [PyPI](https://pypi.org/project/arviz/). The latest stable version can be installed using pip: ``` pip install arviz ``` ArviZ is also available through [conda-forge](https://anaconda.org/conda-forge/arviz). ``` conda install -c conda-forge arviz ``` ### Development The latest development version can be installed from the master branch using pip: ``` pip install git+git://github.com/arviz-devs/arviz.git ``` Another option is to clone the repository and install using git and setuptools: ``` git clone https://github.com/arviz-devs/arviz.git cd arviz python setup.py install ``` ------------------------------------------------------------------------------- ## [Gallery](https://arviz-devs.github.io/arviz/examples/index.html)

Ridge plot Parallel plot Trace plot Density plot
Posterior plot Joint plot Posterior predictive plot Pair plot
Energy Plot Violin Plot Forest Plot Autocorrelation Plot
## Dependencies ArviZ is tested on Python 3.6, 3.7 and 3.8, and depends on NumPy, SciPy, xarray, and Matplotlib. ## Citation If you use ArviZ and want to cite it please use [![DOI](http://joss.theoj.org/papers/10.21105/joss.01143/status.svg)](https://doi.org/10.21105/joss.01143) Here is the citation in BibTeX format ``` @article{arviz_2019, title = {{ArviZ} a unified library for exploratory analysis of {Bayesian} models in {Python}}, author = {Kumar, Ravin and Colin, Carroll and Hartikainen, Ari and Martin, Osvaldo A.}, journal = {The Journal of Open Source Software}, year = {2019}, doi = {10.21105/joss.01143}, url = {http://joss.theoj.org/papers/10.21105/joss.01143}, } ``` ## Contributions ArviZ is a community project and welcomes contributions. Additional information can be found in the [Contributing Readme](https://github.com/arviz-devs/arviz/blob/master/CONTRIBUTING.md) ## Code of Conduct ArviZ wishes to maintain a positive community. Additional details can be found in the [Code of Conduct](https://github.com/arviz-devs/arviz/blob/master/CODE_OF_CONDUCT.md) ## Donations ArviZ is a non-profit project under NumFOCUS umbrella. If you want to support ArviZ financially, you can donate [here](https://numfocus.salsalabs.org/donate-to-arviz). ## Sponsors [![NumFOCUS](https://i0.wp.com/numfocus.org/wp-content/uploads/2019/06/AffiliatedProject.png)](https://numfocus.org)