# lectures-labs **Repository Path**: mirrors_lepy/lectures-labs ## Basic Information - **Project Name**: lectures-labs - **Description**: Slides and Jupyter notebooks for the Deep Learning lectures at M2 Data Science Université Paris Saclay - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-09-25 - **Last Updated**: 2025-07-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Deep Learning course: lecture slides and lab notebooks This course is being taught at as part of [Master Datascience Paris Saclay](http://datascience-x-master-paris-saclay.fr)

## Table of contents The course covers the basics of Deep Learning, with a focus on applications. ### Lecture slides - [Neural Networks and Backpropagation](https://m2dsupsdlclass.github.io/lectures-labs/slides/01_intro_to_deep_learning/index.html) - [Embeddings and Recommender Systems](https://m2dsupsdlclass.github.io/lectures-labs/slides/02_recommender_systems/index.html) - [Convolutional Neural Networks for Image Classification](https://m2dsupsdlclass.github.io/lectures-labs/slides/03_conv_nets/index.html) - [Deep Learning for Object Dection and Image Segmentation](https://m2dsupsdlclass.github.io/lectures-labs/slides/04_conv_nets_2/index.html) - [Recurrent Neural Networks and NLP](https://m2dsupsdlclass.github.io/lectures-labs/slides/05_deep_nlp/index.html) - [Expressivity, Optimization and Generalization](https://m2dsupsdlclass.github.io/lectures-labs/slides/06_expressivity_optimization_generalization/index.html) Note: press "P" to display the presenter's notes that include some comments and additional references. ### Lab and Home Assignment Notebooks The Jupyter notebooks for the labs can be found in the `labs` folder of the [github repository](https://github.com/m2dsupsdlclass/lectures-labs/): git clone https://github.com/m2dsupsdlclass/lectures-labs **WARNING**: these notebooks only work with `tensorflow==0.12.1 keras==1.2.2`. Please follow the [installation\_instructions.md]( https://github.com/m2dsupsdlclass/lectures-labs/blob/master/installation_instructions.md) to get started. Direct links to the rendered notebooks including solutions: #### Lab 1: Neural Networks and Backpropagation - [Intro to MLP with Keras, Numpy and TensorFlow](https://github.com/m2dsupsdlclass/lectures-labs/blob/master/labs/01_backprop/Intro_MLP_keras_numpy_tensorflow_rendered.ipynb) #### Lab 2: Embeddings and Recommender Systems - [Short Intro to Embeddings with Keras](https://github.com/m2dsupsdlclass/lectures-labs/blob/master/labs/02_neural_recsys/Short_Intro_to_Embeddings_with_Keras_rendered.ipynb) - [Neural Recommender Systems with Explicit Feedback](https://github.com/m2dsupsdlclass/lectures-labs/blob/master/labs/02_neural_recsys/Explicit_Feedback_Neural_Recommender_System_rendered.ipynb) - [Neural Recommender Systems with Implicit Feedback and the Triplet Loss](https://github.com/m2dsupsdlclass/lectures-labs/blob/master/labs/02_neural_recsys/Implicit_Feedback_Recsys_with_the_triplet_loss_rendered.ipynb) #### Lab 3: Convolutional Neural Networks for Image Classification - [Convolution and ConvNets with TensorFlow](https://github.com/m2dsupsdlclass/lectures-labs/blob/master/labs/03_conv_nets/ConvNets_with_TensorFlow_rendered.ipynb) - [Pretrained ConvNets with Keras](https://github.com/m2dsupsdlclass/lectures-labs/blob/master/labs/03_conv_nets/Pretrained_ConvNets_with_Keras_rendered.ipynb) - [Fine Tuning a pretrained ConvNet with Keras (GPU required)](https://github.com/m2dsupsdlclass/lectures-labs/blob/master/labs/03_conv_nets/Fine_Tuning_Deep_CNNs_with_GPU_rendered.ipynb) #### Lab 4: Deep Learning for Object Dection and Image Segmentation - [Fully Convolutional Neural Networks](https://github.com/m2dsupsdlclass/lectures-labs/blob/master/labs/04_conv_nets_2/Fully_Convolutional_Neural_Networks_rendered.ipynb) - [ConvNets for Classification and Localization](https://github.com/m2dsupsdlclass/lectures-labs/blob/master/labs/04_conv_nets_2/ConvNets_for_Classification_and_Localization_rendered.ipynb) #### Lab 5: Text Classification, Word Embeddings and Language Models - [Text Classification and Word Vectors](https://github.com/m2dsupsdlclass/lectures-labs/blob/master/labs/05_deep_nlp/NLP_word_vectors_classification_rendered.ipynb) - [Character Level Language Model (GPU required)](https://github.com/m2dsupsdlclass/lectures-labs/blob/master/labs/05_deep_nlp/Character_Level_Language_Model_rendered.ipynb) #### Lab 6: Sequence to Sequence for Machine Translation - [Translation of Numeric Phrases with Seq2Seq](https://github.com/m2dsupsdlclass/lectures-labs/blob/master/labs/06_seq2seq/Translation_of_Numeric_Phrases_with_Seq2Seq_rendered.ipynb) ## Acknowledgments This lecture is built and maintained by Olivier Grisel and Charles Ollion Charles Ollion, head of research at [Heuritech](http://www.heuritech.com) - Olivier Grisel, software engineer at [Inria](https://team.inria.fr/parietal/en) We thank the Orange-Keyrus-Thalès chair for supporting this class. ## License All the code in this repository is made available under the MIT license unless otherwise noted. The slides are published under the terms of the [CC-By 4.0 license](https://creativecommons.org/licenses/by/4.0/).