# mlxtend **Repository Path**: mirrors_lepy/mlxtend ## Basic Information - **Project Name**: mlxtend - **Description**: A library of extension and helper modules for Python's data analysis and machine learning libraries. - **Primary Language**: Unknown - **License**: BSD-3-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-09-25 - **Last Updated**: 2025-07-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README [![Build Status](https://travis-ci.org/rasbt/mlxtend.svg?branch=master)](https://travis-ci.org/rasbt/mlxtend) [![Code Health](https://landscape.io/github/rasbt/mlxtend/master/landscape.svg?style=flat)](https://landscape.io/github/rasbt/mlxtend/master) [![PyPI version](https://badge.fury.io/py/mlxtend.svg)](http://badge.fury.io/py/mlxtend) [![Coverage Status](https://coveralls.io/repos/rasbt/mlxtend/badge.svg?branch=master&service=github)](https://coveralls.io/github/rasbt/mlxtend?branch=master) ![Python 2.7](https://img.shields.io/badge/python-2.7-blue.svg) ![Python 3.5](https://img.shields.io/badge/python-3.5-blue.svg) ![License](https://img.shields.io/badge/license-BSD-blue.svg) ![](./docs/sources/img/logo.png) **A library consisting of useful tools and extensions for the day-to-day data science tasks.** - This open source project is released under a permissive new BSD open source [license](./license) and commercially usable
Sebastian Raschka 2014-2016
## Links - **Documentation:** [http://rasbt.github.io/mlxtend/](http://rasbt.github.io/mlxtend/) - Source code repository: [https://github.com/rasbt/mlxtend](https://github.com/rasbt/mlxtend) - PyPI: [https://pypi.python.org/pypi/mlxtend](https://pypi.python.org/pypi/mlxtend) - Changelog: [http://rasbt.github.io/mlxtend/changelog](http://rasbt.github.io/mlxtend/changelog) - Contributing: [http://rasbt.github.io/mlxtend/contributing](http://rasbt.github.io/mlxtend/contributing) - Questions? Check out the [Google Groups mailing list](https://groups.google.com/forum/#!forum/mlxtend)


## Recent changes - Sequential Feature Selection algorithms: [SFS](http://rasbt.github.io/mlxtend/docs/feature_selection/sequential_forward_selection/), [SFFS](http://rasbt.github.io/mlxtend/docs/feature_selection/sequential_floating_forward_selection/), and [SFBS](http://rasbt.github.io/mlxtend/docs/feature_selection/sequential_floating_backward_selection/) - [Neural Network / Multilayer Perceptron classifier](http://rasbt.github.io/mlxtend/docs/classifier/neuralnet_mlp/) - [Ordinary least square regression](http://rasbt.github.io/mlxtend/docs/regression/linear_regression/) using different solvers (gradient and stochastic gradient descent, and the closed form solution)

## Installing mlxtend To install `mlxtend`, just execute pip install mlxtend The `mlxtend` version on PyPI may always one step behind; you can install the latest development version from this GitHub repository by executing pip install git+git://github.com/rasbt/mlxtend.git#egg=mlxtend Alternatively, you download the package manually from the Python Package Index [https://pypi.python.org/pypi/mlxtend](https://pypi.python.org/pypi/mlxtend), unzip it, navigate into the package, and use the command: python setup.py install

## Examples ```python import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import itertools from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from mlxtend.classifier import EnsembleVoteClassifier from mlxtend.data import iris_data from mlxtend.evaluate import plot_decision_regions # Initializing Classifiers clf1 = LogisticRegression(random_state=0) clf2 = RandomForestClassifier(random_state=0) clf3 = SVC(random_state=0, probability=True) eclf = EnsembleVoteClassifier(clfs=[clf1, clf2, clf3], weights=[2, 1, 1], voting='soft') # Loading some example data X, y = iris_data() X = X[:,[0, 2]] # Plotting Decision Regions gs = gridspec.GridSpec(2, 2) fig = plt.figure(figsize=(10, 8)) for clf, lab, grd in zip([clf1, clf2, clf3, eclf], ['Logistic Regression', 'Random Forest', 'Naive Bayes', 'Ensemble'], itertools.product([0, 1], repeat=2)): clf.fit(X, y) ax = plt.subplot(gs[grd[0], grd[1]]) fig = plot_decision_regions(X=X, y=y, clf=clf, legend=2) plt.title(lab) plt.show() ``` ![](./docs/sources/img/ensemble_decision_regions_2d.png)