# pydpf-core **Repository Path**: mirrors_lepy/pydpf-core ## Basic Information - **Project Name**: pydpf-core - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-10-22 - **Last Updated**: 2023-08-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # DPF - Ansys Data Processing Framework [![PyPI version](https://badge.fury.io/py/ansys-dpf-core.svg)](https://badge.fury.io/py/ansys-dpf-core) [![Build Status](https://dev.azure.com/pyansys/pyansys/_apis/build/status/pyansys.DPF-Core?branchName=master)](https://dev.azure.com/pyansys/pyansys/_build/latest?definitionId=2&branchName=master) The Data Processing Framework (DPF) is designed to provide numerical simulation users/engineers with a toolbox for accessing and transforming simulation data. DPF can access data from solver result files as well as several neutral formats (csv, hdf5, vtk, etc.). Various operators are available allowing the manipulation and the transformation of this data. DPF is a workflow-based framework which allows simple and/or complex evaluations by chaining operators. The data in DPF is defined based on physics agnostic mathematical quantities described in a self-sufficient entity called field. This allows DPF to be a modular and easy to use tool with a large range of capabilities. It's a product designed to handle large amount of data. The Python ``ansys.dpf.core`` module provides a Python interface to the powerful DPF framework enabling rapid post-processing of a variety of Ansys file formats and physics solutions without ever leaving a Python environment. ## Documentation Visit the [DPF-Core Documentation](https://dpfdocs.pyansys.com) for a detailed description of the library, or see the [Examples Gallery](https://dpfdocs.pyansys.com/examples/index.html) for more detailed examples. ## Installation Install this repository with: ``` pip install ansys-dpf-core ``` You can also clone and install this repository with: ``` git clone https://github.com/pyansys/DPF-Core cd DPF-Core pip install . --user ``` ## Running DPF See the example scripts in the examples folder for some basic example. More will be added later. ### Brief Demo Provided you have ANSYS 2021R1 or higher installed, a DPF server will start automatically once you start using DPF. To open a result file and explore what's inside, do: ```py >>> from ansys.dpf import core as dpf >>> from ansys.dpf.core import examples >>> model = dpf.Model(examples.simple_bar) >>> print(model) DPF Model ------------------------------ DPF Result Info Analysis: static Physics Type: mecanic Unit system: MKS: m, kg, N, s, V, A, degC Available results: U Displacement :nodal displacements ENF Element nodal Forces :element nodal forces ENG_VOL Volume :element volume ENG_SE Energy-stiffness matrix :element energy associated with the stiffness matrix ENG_AHO Hourglass Energy :artificial hourglass energy ENG_TH thermal dissipation energy :thermal dissipation energy ENG_KE Kinetic Energy :kinetic energy ENG_CO co-energy :co-energy (magnetics) ENG_INC incremental energy :incremental energy (magnetics) BFE Temperature :element structural nodal temperatures ------------------------------ DPF Meshed Region: 3751 nodes 3000 elements Unit: m With solid (3D) elements ------------------------------ DPF Time/Freq Support: Number of sets: 1 Cumulative Time (s) LoadStep Substep 1 1.000000 1 1 ``` Read a result with: ```py >>> result = model.results.displacement.eval() ``` Then start connecting operators with: ```py >>> from ansys.dpf.core import operators as ops >>> norm = ops.math.norm(model.results.displacement()) ``` ### Starting the Service The `ansys.dpf.core` automatically starts a local instance of the DPF service in the background and connects to it. If you need to connect to an existing remote or local DPF instance, use the ``connect_to_server`` function: ```py >>> from ansys.dpf import core as dpf >>> dpf.connect_to_server(ip='10.0.0.22', port=50054) ``` Once connected, this connection will remain for the duration of the module until you exit python or connect to a different server.