# stanford-cs-229-machine-learning **Repository Path**: mirrors_lepy/stanford-cs-229-machine-learning ## Basic Information - **Project Name**: stanford-cs-229-machine-learning - **Description**: VIP cheatsheets for Stanford's CS 229 Machine Learning - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-09-25 - **Last Updated**: 2025-07-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Machine Learning cheatsheets for Stanford's CS 229 ## Goal This repository aims at summing up in the same place all the important notions that are covered in Stanford's CS 229 Machine Learning course, and include: - **Refreshers** in related topics that highlight the key points of the **prerequisites of the course**. - **Cheatsheets for each machine learning field**, as well as another dedicated to tips and tricks to have in mind when training a model. - All elements of the above combined in an **ultimate compilation of concepts**, to have with you at all times! ## Content #### VIP Cheatsheets IllustrationIllustrationIllustrationIllustration          Supervised Learning               Unsupervised Learning                    Deep Learning                           Tips and tricks #### VIP Refreshers IllustrationIllustration                                                                                                              Probabilities and Statistics           Algebra and Calculus #### Super VIP Cheatsheet Illustration                                                                                                                                      All the above gathered in one place ## Website This material is also available on a dedicated [website](https://stanford.edu/~shervine/teaching/cs-229.html), so that you can enjoy reading it from any device. ## Authors [Afshine Amidi](https://twitter.com/afshinea) (Ecole Centrale Paris, MIT) and [Shervine Amidi](https://twitter.com/shervinea) (Ecole Centrale Paris, Stanford University)