# tinygrad **Repository Path**: mirrors_lepy/tinygrad ## Basic Information - **Project Name**: tinygrad - **Description**: You like pytorch? You like micrograd? You love tinygrad! ❤️ - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-11-12 - **Last Updated**: 2025-07-17 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

-------------------------------------------------------------------- ![Unit Tests](https://github.com/geohot/tinygrad/workflows/Unit%20Tests/badge.svg) For something in between a [pytorch](https://github.com/pytorch/pytorch) and a [karpathy/micrograd](https://github.com/karpathy/micrograd) This may not be the best deep learning framework, but it is a deep learning framework. The Tensor class is a wrapper around a numpy array, except it does Tensor things. tinygrad is also a city in Russia. ### Installation ```bash pip3 install tinygrad --upgrade ``` ### Example ```python from tinygrad.tensor import Tensor x = Tensor.eye(3) y = Tensor([[2.0,0,-2.0]]) z = y.matmul(x).sum() z.backward() print(x.grad) # dz/dx print(y.grad) # dz/dy ``` ### Same example in torch ```python import torch x = torch.eye(3, requires_grad=True) y = torch.tensor([[2.0,0,-2.0]], requires_grad=True) z = y.matmul(x).sum() z.backward() print(x.grad) # dz/dx print(y.grad) # dz/dy ``` ### Neural networks? It turns out, a decent autograd tensor library is 90% of what you need for neural networks. Add an optimizer (SGD, RMSprop, and Adam implemented) from tinygrad.optim, write some boilerplate minibatching code, and you have all you need. ### Neural network example (from test/test_mnist.py) ```python from tinygrad.tensor import Tensor import tinygrad.optim as optim from tinygrad.utils import layer_init_uniform class TinyBobNet: def __init__(self): self.l1 = Tensor(layer_init_uniform(784, 128)) self.l2 = Tensor(layer_init_uniform(128, 10)) def forward(self, x): return x.dot(self.l1).relu().dot(self.l2).logsoftmax() model = TinyBobNet() optim = optim.SGD([model.l1, model.l2], lr=0.001) # ... and complete like pytorch, with (x,y) data out = model.forward(x) loss = out.mul(y).mean() loss.backward() optim.step() ``` ### GPU Support?! tinygrad supports GPUs through PyOpenCL. Not all ops are supported yet on the backward pass. ```python from tinygrad.tensor import Tensor (Tensor.ones(4,4).cuda() + Tensor.ones(4,4).cuda()).cpu() ``` ### ImageNet inference Despite being tiny, tinygrad supports the full EfficientNet. Pass in a picture to discover what it is. ```bash python3 examples/efficientnet.py https://upload.wikimedia.org/wikipedia/commons/4/41/Chicken.jpg ``` Or, if you have a webcam and cv2 installed ```bash python3 examples/efficientnet.py webcam ``` PROTIP: Set "GPU=1" environment variable if you want this to go faster. ### The promise of small tinygrad will always be below 1000 lines. If it isn't, we will revert commits until tinygrad becomes smaller. ### Running tests ```bash python -m pytest ``` ### TODO * Train an EfficientNet on ImageNet * Make broadcasting work on the backward pass (simple please) * EfficientNet backward pass * Tensors on GPU (a few more backward) * Add a language model. BERT? * Add a detection model. EfficientDet? * Reduce code * Increase speed * Add features