# neuralforecast **Repository Path**: mirrors_maxpumperla/neuralforecast ## Basic Information - **Project Name**: neuralforecast - **Description**: Time Series Prediction: A Non Linear Approach with Neural Networks - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2020-09-25 - **Last Updated**: 2025-09-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # NeuralForecast The purpose of this library is using neural networks to replicate classical forecast models from the financial industry structurally, like ```AR(p)```, ```MA(q)```, ```ARMA(p, q)```, ```ARCH(q)``` or ```GARCH(p, q)```, all of which are supported by neuralforecast. ## Getting started Install the library and run the ARMA example. ```{python} git clone https://github.com/maxpumperla/neuralforecast cd neuralforecast python setup.py install python examples/arma.py ``` ## Time-series models and their neural network counterparts ### Auto-regressive models (```AR(p)```) ![](https://upload.wikimedia.org/math/f/0/6/f06ba0e2d8668944406852d7f72ac2f1.png)