# agdebugger **Repository Path**: mirrors_microsoft/agdebugger ## Basic Information - **Project Name**: agdebugger - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-02-16 - **Last Updated**: 2026-01-17 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # AGDebugger AGDebugger is an interactive system to help you debug your agent teams. It offers interactions to: 1. Send and step through agent messages 2. Edit previously sent agent messages and revert to earlier points in a conversation 3. Navigate agent conversations with an interactive visualization ![screenshot of AGDebugger interface](.github/screenshots/agdebugger_sc.png) ## Local Install You can install AGDebugger locally by cloning the repo and installing the python package. ```sh # Install & build frontend cd frontend npm install npm run build # Install & build agdebugger python package cd .. pip install . ``` ## Usage AGDebugger is built on top of [AutoGen](https://microsoft.github.io/autogen/stable/). To use AGDebugger, you provide a python file that exposes a function that creates an [AutoGen AgentChat](https://microsoft.github.io/autogen/stable/user-guide/agentchat-user-guide/index.html) team for debugging. You can then launch AgDebugger with this agent team. For example, the script below creates a simple agent team with a single WebSurfer agent. ```python # scenario.py from autogen_agentchat.teams import MagenticOneGroupChat from autogen_agentchat.ui import Console from autogen_ext.agents.web_surfer import MultimodalWebSurfer from autogen_ext.models.openai import OpenAIChatCompletionClient async def get_agent_team(): model_client = OpenAIChatCompletionClient(model="gpt-4o") surfer = MultimodalWebSurfer( "WebSurfer", model_client=model_client, ) team = MagenticOneGroupChat([surfer], model_client=model_client) return team ``` We can then launch the interface with: ```sh agdebugger scenario:get_agent_team ``` Once in the interface, you can send a GroupChatStart message to the start the agent conversation and begin debugging! ## Citation See our [CHI 2025 paper](https://arxiv.org/abs/2503.02068) for more details on the design and evaluation of AGDebugger. ```bibtex @inproceedings{epperson25agdebugger, title={Interactive Debugging and Steering of Multi-Agent AI Systems}, author={Will Epperson and Gagan Bansal and Victor Dibia and Adam Fourney and Jack Gerrits and Erkang Zhu and Saleema Amershi}, year={2025}, publisher = {Association for Computing Machinery}, booktitle = {Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems}, series = {CHI '25} } ```