# dataset-metadata **Repository Path**: mirrors_mljs/dataset-metadata ## Basic Information - **Project Name**: dataset-metadata - **Description**: a class to manipulate metadata for statistical analysis - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-10-22 - **Last Updated**: 2026-02-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # dataset-metadata [![NPM version][npm-image]][npm-url] [![build status][travis-image]][travis-url] [![Test coverage][codecov-image]][codecov-url] [![David deps][david-image]][david-url] [![npm download][download-image]][download-url] a class to manipulate metadata for statistical analysis ## Installation `$ npm i dataset-metadata` ## [API Documentation](https://mljs.github.io/dataset-metadata/) ## Examples to import the package use ```js const METADATA = require('dataset-metadata'); ``` or ```js import { METADATA } from 'ml-dataset-metadata'; ``` to create a metadata object use ```js import { getClasses } from 'ml-dataset-iris'; const metadata = getClasses(); let L = new METADATA([metadata], { headers: ['iris'] }); ``` this will create an array with the class of the famous iris dataset and create a METADATA object L. List all the available metadata ```js L.list() ``` returns an array with all the metadata headers. Retrieve information (number of classes, counts for each classes) about a particular metadata using ```js L.get('iris'); ``` Retrieve values of a particular metadata as a Matrix object. This will coerce any string class into a Matrix of number with first class being "0", second being "1", etc. ```js L.get('iris', { format: 'matrix' }).values ``` For supervised method it is usual to sample a class to get a training set and a test set. ```js L.sample('iris') ``` returns an object with four arrays: trainIndex, testIndex, mask (a boolean filter), and classVector (the original class). To append another metadata. ```js let newMetadata = metadata; L.append(NewMetadata, 'column', { header: 'duplicated' }); ``` To remove the duplicated metadata. ```js L.remove('duplicated', 'column'); ``` Import and export METADATA object. ```js let L = new METADATA([metadata], { headers: ['iris'] }); L = JSON.stringify(L.toJSON()); let newL = METADATA.load(JSON.parse(L)); ``` ## License [MIT](./LICENSE) [npm-image]: https://img.shields.io/npm/v/dataset-metadata.svg?style=flat-square [npm-url]: https://www.npmjs.com/package/dataset-metadata [travis-image]: https://img.shields.io/travis/com/mljs/dataset-metadata/master.svg?style=flat-square [travis-url]: https://travis-ci.com/mljs/dataset-metadata [codecov-image]: https://img.shields.io/codecov/c/github/mljs/dataset-metadata.svg?style=flat-square [codecov-url]: https://codecov.io/gh/mljs/dataset-metadata [david-image]: https://img.shields.io/david/mljs/dataset-metadata.svg?style=flat-square [david-url]: https://david-dm.org/mljs/dataset-metadata [download-image]: https://img.shields.io/npm/dm/dataset-metadata.svg?style=flat-square [download-url]: https://www.npmjs.com/package/dataset-metadata