# docs-notebooks **Repository Path**: mirrors_mongodb/docs-notebooks ## Basic Information - **Project Name**: docs-notebooks - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-11-02 - **Last Updated**: 2025-02-23 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MongoDB Documentation Notebooks This repository contains Jupyter Notebooks that follow tutorials and code examples in MongoDB's official [Atlas Vector Search documentation](https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-overview/). You can run, download, and modify these notebooks as you learn how to use MongoDB Atlas Vector Search for your use case. ## Overview Each notebook corresponds to a page or example in our documentation. Refer to the docs page linked in each notebook for prerequisites, set-up instructions, and detailed explanations of the code. The following table summarizes the contents of the notebooks in each directory: | Directory | Description | |--------------------|--------------------------------------------------| | [/create-embeddings](https://github.com/mongodb/docs-notebooks/tree/main/create-embeddings) | Learn how to generate embeddings for vector search | | [/get-started](https://github.com/mongodb/docs-notebooks/tree/main/get-started) | Complete our quick start tutorial | | [/ai-integrations](https://github.com/mongodb/docs-notebooks/tree/main/ai-integrations) | Implement RAG with popular AI frameworks that integrate with MongoDB | | [/manage-indexes](https://github.com/mongodb/docs-notebooks/tree/main/manage-indexes) | Create, view, edit, and delete vector search indexes | | [/quantization](https://github.com/mongodb/docs-notebooks/tree/main/quantization) | Quantize your vector embeddings for efficient processing | | [/run-queries](https://github.com/mongodb/docs-notebooks/tree/main/run-queries) | Learn how to run vector search queries (ANN and ENN) | | [/use-cases](https://github.com/mongodb/docs-notebooks/tree/main/use-cases) | Implement RAG using a MongoDB-native retrieval system | ## Other Resources - [MongoDB Official Documentation](https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-overview/) - [Generative AI Use Cases Repository](https://github.com/mongodb-developer/GenAI-Showcase/tree/main) ## License This project is licensed under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0). ## Issues To report an issue with any of these notebooks, please leave feedback through the corresponding documentation page linked at the top of the file. Using the `Rate This Page` button, you can add a comment about the issue after leaving a star rating. ## Contributing We are not currently accepting public contributions to this repository at this time.