# hydra-torch **Repository Path**: mirrors_pytorch/hydra-torch ## Basic Information - **Project Name**: hydra-torch - **Description**: Configuration classes enabling type-safe PyTorch configuration for Hydra apps - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-10-15 - **Last Updated**: 2025-10-04 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # hydra-torch Configuration classes enabling type-safe PyTorch configuration for Hydra apps. **This repo is work in progress.** The config dataclasses are generated using [configen](https://github.com/facebookresearch/hydra/tree/main/tools/configen), check it out if you want to generate config dataclasses for your own project. ### Install: ``` # For now, please obtain through github. Soon, versioned (per-project) dists will be on PyPI. pip install git+https://github.com/pytorch/hydra-torch ``` ### Example config: Here is one of many configs available. Notice it uses the defaults defined in the torch function signatures: ```python @dataclass class TripletMarginLossConf: _target_: str = "torch.nn.modules.loss.TripletMarginLoss" margin: float = 1.0 p: float = 2.0 eps: float = 1e-06 swap: bool = False size_average: Any = None reduce: Any = None reduction: str = "mean" ``` ### Importing Convention: ```python from hydra_configs..path.to.module import Conf ``` where `` is the package being configured and `path.to.module` is the path in the original package. Inferring where the package is located is as simple as prepending `hydra_configs.` and postpending `Conf` to the original class import: e.g. ```python #module to be configured from torch.optim.adam import Adam #config for the module from hydra_configs.torch.optim.adam import AdamConf ``` ### Getting Started: Take a look at our tutorial series: 1. [Basic Tutorial](examples/mnist_00.md) 2. Intermediate Tutorial (coming soon) 3. Advanced Tutorial (coming soon) ### Other Config Projects: A list of projects following the `hydra_configs` convention (please notify us if you have one!): [Pytorch Lightning](https://github.com/romesco/hydra-lightning) ### License hydra-torch is licensed under [MIT License](LICENSE).