# noether **Repository Path**: mirrors_spotify/noether ## Basic Information - **Project Name**: noether - **Description**: Scala Aggregators used for ML Model metrics monitoring - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-18 - **Last Updated**: 2025-12-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Noether ======= [![Build Status](https://travis-ci.org/spotify/noether.svg?branch=master)](https://travis-ci.org/spotify/noether) [![codecov.io](https://codecov.io/github/spotify/noether/coverage.svg?branch=master)](https://codecov.io/github/spotify/noether?branch=master) [![GitHub license](https://img.shields.io/github/license/spotify/noether.svg)](./LICENSE) [![Maven Central](https://img.shields.io/maven-central/v/com.spotify/noether-core_2.12.svg)](https://maven-badges.herokuapp.com/maven-central/com.spotify/noether-core_2.12) [![Scaladoc](https://img.shields.io/badge/scaladoc-latest-blue.svg)](https://spotify.github.io/noether/latest/api/com/spotify/noether/index.html) [![Scala Steward badge](https://img.shields.io/badge/Scala_Steward-helping-brightgreen.svg?style=flat&logo=)](https://scala-steward.org) > [Emmy Noether](https://en.wikipedia.org/wiki/Emmy_Noether) was a German mathematician known for her landmark contributions to abstract algebra and theoretical physics. Noether is a collection of Machine Learning tools targeted at the JVM and Scala. It relies heavily on the [Algebird](https://github.com/twitter/algebird) library especially for Aggregators. # Aggregators Aggregators enable creation of reusable and composable aggregation functions. Most Machine Learning loss functions and metrics can be decomposed into a single aggregator. This becomes useful when a model produces a set of predictions and one or more metrics are needed to be computed on this collection. Below is an example for a binary classification task. Algebird's MultiAggregator can be used to combine multiple metrics into a single callable aggregator. ```scala val multiAggregator = MultiAggregator(AUC(ROC), AUC(PR), ClassificationReport(), BinaryConfusionMatrix()) .andThenPresent{case (roc, pr, report, cm) => (roc, pr, report.accuracy, report.recall, report.precision, cm(1, 1), cm(0, 0)) } val predictions = List(Prediction(false, 0.1), Prediction(false, 0.6), Prediction(true, 0.9)) println(multiAggregator(predictions)) ``` ## Prediction Object Most aggregators take a single parameterized class called Prediction as input to the aggregator. However the type of the prediction object differ based on the aggregator. In the above example each binary classifier takes a prediction of type `Prediction[Boolean, Double]` where the first type is the label and the second in the predicted score. Other aggregators will takes slightly different types such as the Error Rate Aggregator which expects `Prediction[Int, List[Double]]` where the types are label and a list of scores. ## Available Aggregators See the docs on each aggregator for a more detailed walk-through on the functionality and the return objects. 1. ConfusionMatrix 1. Includes a special BinaryConfusionMatrix case to make composition easier with the other binary classification metrics. 2. AUC 1. Supports both ROC and PR 3. ClassificationReport 1. Returns a list of summary metrics for a binary classification problem. 4. LogLoss 1. Available for multiclass. Returns the total log loss for the predictions. 5. ErrorRateSummary 1. Available for multiclass. Returns the proportion of misclassified predictions.w # Tensorflow Model Analysis Support Noether supports outputting metrics as TFX `metrics_for_slice` protobufs, which can be used in TFMA methods. This is available in the `noether-tfx` package: ```scala libraryDependencies += "com.spotify" %% "noether-tfx" % noetherVersion ``` ```scala import com.spotify.noether.tfx._ val data = List( (0, 0), (0, 1), (0, 0), (1, 0), (1, 1), (1, 1), (1, 1) ).map { case (s, pred) => Prediction(pred, s) } val tfmaProto = ConfusionMatrix(Seq(0, 1)).asTfmaProto(data) ``` # License Copyright 2016-2018 Spotify AB. Licensed under the Apache License, Version 2.0: http://www.apache.org/licenses/LICENSE-2.0