# CDAN **Repository Path**: mirrors_thuml/CDAN ## Basic Information - **Project Name**: CDAN - **Description**: Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-01-11 - **Last Updated**: 2025-09-28 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # CDAN Code release for ["Conditional Adversarial Domain Adaptation"](https://papers.nips.cc/paper/7436-conditional-adversarial-domain-adaptation) (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library ## Dataset ### Digits Processed SVHN_dataset is [here](https://drive.google.com/open?id=1Y0wT_ElbDcnFxtu25MB74npURwwijEdT). We change the original mat into images. Other transformed images are in `data/svhn2mnist` and `data/usps2mnist`. Dataset_train.txt are lists for source and target domains and Dataset_test.txt are lists for test. ### Office-31 Office-31 dataset can be found [here](https://people.eecs.berkeley.edu/~jhoffman/domainadapt/). ### Office-Home Office-Home dataset can be found [here](http://hemanthdv.org/OfficeHome-Dataset/). ### VisDA-2017 VisDA 2017 dataset can be found [here](https://github.com/VisionLearningGroup/taskcv-2017-public) in the classification track. ### Image-clef We release the Image-clef dataset we used [here](https://drive.google.com/file/d/0B9kJH0-rJ2uRS3JILThaQXJhQlk/view). ## Training Training instructions for Caffe and PyTorch are in the `README.md` in [caffe](caffe) and [pytorch](pytorch) respectively. Tensorflow version is under developing. ## Citation If you use this code for your research, please consider citing: ``` @inproceedings{long2018conditional, title={Conditional adversarial domain adaptation}, author={Long, Mingsheng and Cao, Zhangjie and Wang, Jianmin and Jordan, Michael I}, booktitle={Advances in Neural Information Processing Systems}, pages={1645--1655}, year={2018} } ``` ## Contact If you have any problem about our code, feel free to contact - caozj@cs.stanford.edu - youkaichao@gmail.com - shuyang5656@gmail.com - longmingsheng@gmail.com or describe your problem in Issues.