# VLA-Adapter **Repository Path**: mirrors_trending/VLA-Adapter ## Basic Information - **Project Name**: VLA-Adapter - **Description**: VLA-Adapter: An Effective Paradigm for Tiny-Scale Vision-Language-Action Model - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2025-10-09 - **Last Updated**: 2026-01-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
[](https://arxiv.org/pdf/2509.09372) [](https://huggingface.co/VLA-Adapter) [](https://x.com/_akhaliq/status/1966610780838621241) [](https://github.com/OpenHelix-Team/VLA-Adapter/issues/1)
| LIBERO | Methods | Scale | Spatial | Object | Goal | Long | Avg. |
| Large-scale | FlowVLA (Zhong et al., 2025) | 8.5B | 93.2 | 95.0 | 91.6 | 72.6 | 88.1 |
| UnifiedVLA (Wang et al., 2025) | 8.5B | 95.4 | 98.8* | 93.6 | 94.0 | 95.5 | |
| OpenVLA (Kim et al., 2024) | 7B | 84.7 | 88.4 | 79.2 | 53.7 | 76.5 | |
| OpenVLA-OFT (Kim et al., 2025) | 7B | 97.6* | 98.4 | 97.9 | 94.5* | 97.1* | |
| UniVLA (Bu et al., 2025) | 7B | 96.5 | 96.8 | 95.6 | 92.0 | 95.2 | |
| CoT-VLA (Zhao et al., 2025) | 7B | 87.5 | 91.6 | 87.6 | 69.0 | 81.1 | |
| WorldVLA (Cen et al., 2025) | 7B | 87.6 | 96.2 | 83.4 | 60.0 | 81.8 | |
| TraceVLA (Zheng et al., 2025) | 7B | 84.6 | 85.2 | 75.1 | 54.1 | 74.8 | |
| MolmoAct (Lee et al., 2025) | 7B | 87.0 | 95.4 | 87.6 | 77.2 | 86.6 | |
| ThinkAct (Huang et al., 2025) | 7B | 88.3 | 91.4 | 87.1 | 70.9 | 84.4 | |
| Small-scale | 4D-VLA (Zhang et al., 2025) | 4B | 88.9 | 95.2 | 90.9 | 79.1 | 88.6 |
| SpatialVLA (Qu et al., 2025) | 4B | 88.2 | 89.9 | 78.6 | 55.5 | 78.1 | |
| ฯ0 (Black et al., 2024) | 3B | 96.8 | 98.8* | 95.8 | 85.2 | 94.2 | |
| ฯ0-FAST (Pertsch et al., 2025) | 3B | 96.4 | 96.8 | 88.6 | 60.2 | 85.5 | |
| NORA (Hung et al., 2025) | 3B | 92.2 | 95.4 | 89.4 | 74.6 | 87.9 | |
| SmolVLA (Shukor et al., 2025) | 2.2B | 93.0 | 94.0 | 91.0 | 77.0 | 88.8 | |
| GR00T N1 (NVIDIA et al., 2025) | 2B | 94.4 | 97.6 | 93.0 | 90.6 | 93.9 | |
| Tiny-scale | Seer (Tian et al., 2025) | 0.57B | - | - | - | 78.7 | 78.7 |
| VLA-OS (Gao et al., 2025) | 0.5B | 87.0 | 96.5 | 92.7 | 66.0 | 85.6 | |
| Diffusion Policy (Chi et al., 2023) | - | 78.3 | 92.5 | 68.3 | 50.5 | 72.4 | |
| VLA-Adapter (Ours) | 0.5B | 97.8 | 99.2 | 97.2* | 95.0 | 97.3 | |
| VLA-Adapter-Pro (Ours) | 0.5B | 99.6 | 99.6 | 98.2 | 96.4 | 98.5 |
| CALVIN | Methods | Scale | 1 | 2 | 3 | 4 | 5 | Avg. len |
| Large-scale | UniVLA (Bu et al., 2025) | 7B | 95.5 | 85.8 | 75.4 | 66.9 | 56.5 | 3.80 |
| OpenVLA (Kim et al., 2024) | 7B | 91.3 | 77.8 | 62.0 | 52.1 | 43.5 | 3.27 | |
| OpenVLA-OFT (Kim et al., 2025) | 7B | 96.3 | 89.1 | 82.4 | 75.8 | 66.5 | 4.10 | |
| VLAS (Zhao et al., 2025b) | 7B | 87.2 | 64.2 | 40.9 | 28.1 | 19.6 | 2.40 | |
| LCB (Shentu et al., 2024) | 7B | 73.6 | 50.2 | 28.5 | 16.0 | 9.9 | 1.78 | |
| RoboDual (Bu et al., 2024a) | 7B | 94.4 | 82.7 | 72.1 | 62.4 | 54.4 | 3.66 | |
| OpenHelix (Cui et al., 2025) | 7B | 97.1* | 91.4 | 82.8 | 72.6 | 64.1 | 4.08 | |
| ReconVLA (Song et al., 2025c) | 7B | 95.6 | 87.6 | 76.9 | 69.3 | 64.1 | 3.95 | |
| Small-scale | DeeR (Yue et al., 2024) | 3B | 86.2 | 70.1 | 51.8 | 41.5 | 30.4 | 2.82 |
| RoboFlamingo (Li et al., 2024b) | 3B | 82.4 | 61.9 | 46.6 | 33.1 | 23.5 | 2.48 | |
| VPP (Hu et al., 2025) | 1.5B | 95.7 | 91.2 | 86.3* | 81.0* | 75.0* | 4.33* | |
| SuSIE (Black et al., 2024) | 1.3B | 87.0 | 69.0 | 49.0 | 38.0 | 26.0 | 2.69 | |
| Tiny-scale | Seer-Large (Tian et al., 2025) | 0.57B | 96.3 | 91.6* | 86.1 | 80.3 | 74.0 | 4.28 |
| MoDE (Reuss et al., 2025) | 0.44B | 96.2 | 88.9 | 81.1 | 71.8 | 63.5 | 4.01 | |
| Seer (Tian et al., 2025) | 0.32B | 94.4 | 87.2 | 79.9 | 72.2 | 64.3 | 3.98 | |
| VLA-Adapter (Ours) | 0.5B | 99.1 | 94.6 | 88.8 | 82.8 | 76.5 | 4.42 | |
| VLA-Adapter-Pro (Ours) | 0.5B | 98.5 | 95.0 | 90.5 | 85.3 | 80.0 | 4.50 |