# openevolve
**Repository Path**: mirrors_trending/openevolve
## Basic Information
- **Project Name**: openevolve
- **Description**: Open-source implementation of AlphaEvolve
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 1
- **Created**: 2025-05-25
- **Last Updated**: 2026-01-31
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# OpenEvolve
---
## Why OpenEvolve?
|
### **Autonomous Discovery**
LLMs don't just optimizeβthey **discover** entirely new algorithms. No human guidance needed.
|
### **Proven Results**
**2-3x speedups** on real hardware. **State-of-the-art** circle packing. **Breakthrough** optimizations.
|
### **Research Grade**
Full reproducibility, extensive evaluation pipelines, and scientific rigor built-in.
|
**OpenEvolve vs Manual Optimization:**
| Aspect | Manual Optimization | OpenEvolve |
|--------|-------------------|------------|
| **Time to Solution** | Days to weeks | Hours |
| **Exploration Breadth** | Limited by human creativity | Unlimited LLM creativity |
| **Reproducibility** | Hard to replicate | Fully deterministic |
| **Multi-objective** | Complex tradeoffs | Automatic Pareto optimization |
| **Scaling** | Doesn't scale | Parallel evolution across islands |
## Proven Achievements
| **Domain** | **Achievement** | **Example** |
|---------------|-------------------|----------------|
| **GPU Optimization** | Hardware-optimized kernel discovery | [MLX Metal Kernels](examples/mlx_metal_kernel_opt/) |
| **Mathematical** | State-of-the-art circle packing (n=26) | [Circle Packing](examples/circle_packing/) |
| **Algorithm Design** | Adaptive sorting algorithms | [Rust Adaptive Sort](examples/rust_adaptive_sort/) |
| **Scientific Computing** | Automated filter design | [Signal Processing](examples/signal_processing/) |
| **Multi-Language** | Python, Rust, R, Metal shaders | [All Examples](examples/) |
## π Quick Start
Get from zero to evolving code in **30 seconds**:
```bash
# Install OpenEvolve
pip install openevolve
# The example uses Google Gemini by default (free tier available)
# Get your API key from: https://aistudio.google.com/apikey
export OPENAI_API_KEY="your-gemini-api-key" # Yes, use OPENAI_API_KEY env var
# Run your first evolution!
python openevolve-run.py examples/function_minimization/initial_program.py \
examples/function_minimization/evaluator.py \
--config examples/function_minimization/config.yaml \
--iterations 50
```
**Note:** The example config uses Gemini by default, but you can use any OpenAI-compatible provider by modifying the `config.yaml`. See the [configs](configs/) for full configuration options.
### **Library Usage**
OpenEvolve can be used as a library without any external files:
```python
from openevolve import run_evolution, evolve_function
# Evolution with inline code (no files needed!)
result = run_evolution(
initial_program='''
def fibonacci(n):
if n <= 1: return n
return fibonacci(n-1) + fibonacci(n-2)
''',
evaluator=lambda path: {"score": benchmark_fib(path)},
iterations=100
)
# Evolve Python functions directly
def bubble_sort(arr):
for i in range(len(arr)):
for j in range(len(arr)-1):
if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[j]
return arr
result = evolve_function(
bubble_sort,
test_cases=[([3,1,2], [1,2,3]), ([5,2,8], [2,5,8])],
iterations=50
)
print(f"Evolved sorting algorithm: {result.best_code}")
```
**Prefer Docker?** See the [Installation & Setup](#installation--setup) section for Docker options.
## See It In Action
Circle Packing: From Random to State-of-the-Art
**Watch OpenEvolve discover optimal circle packing in real-time:**
| Generation 1 | Generation 190 | Generation 460 (Final) |
|--------------|----------------|----------------------|
|  |  |  |
| Random placement | Learning structure | **State-of-the-art result** |
**Result**: Matches published benchmarks for n=26 circle packing problem.
GPU Kernel Evolution
**Before (Baseline)**:
```metal
// Standard attention implementation
kernel void attention_baseline(/* ... */) {
// Generic matrix multiplication
float sum = 0.0;
for (int i = 0; i < seq_len; i++) {
sum += query[tid] * key[i];
}
}
```
**After Evolution (2.8x faster)**:
```metal
// OpenEvolve discovered optimization
kernel void attention_evolved(/* ... */) {
// Hardware-aware tiling + unified memory optimization
threadgroup float shared_mem[256];
// ... evolved algorithm exploiting Apple Silicon architecture
}
```
**Performance Impact**: 2.8x speedup on Apple M1 Pro, maintaining numerical accuracy.
## How OpenEvolve Works
OpenEvolve implements a sophisticated **evolutionary coding pipeline** that goes far beyond simple optimization:

### **Core Innovation**: MAP-Elites + LLMs
- **Quality-Diversity Evolution**: Maintains diverse populations across feature dimensions
- **Island-Based Architecture**: Multiple populations prevent premature convergence
- **LLM Ensemble**: Multiple models with intelligent fallback strategies
- **Artifact Side-Channel**: Error feedback improves subsequent generations
### **Advanced Features**
Scientific Reproducibility
- **Comprehensive Seeding**: Every component (LLM, database, evaluation) is seeded
- **Default Seed=42**: Immediate reproducible results out of the box
- **Deterministic Evolution**: Exact reproduction of runs across machines
- **Component Isolation**: Hash-based isolation prevents cross-contamination
Advanced LLM Integration
- **Universal API**: Works with OpenAI, Google, local models, and proxies
- **Intelligent Ensembles**: Weighted combinations with sophisticated fallback
- **Test-Time Compute**: Enhanced reasoning through proxy systems (see [OptiLLM setup](#llm-provider-setup))
- **Plugin Ecosystem**: Support for advanced reasoning plugins
Evolution Algorithm Innovations
- **Double Selection**: Different programs for performance vs inspiration
- **Adaptive Feature Dimensions**: Custom quality-diversity metrics
- **Migration Patterns**: Ring topology with controlled gene flow
- **Multi-Strategy Sampling**: Elite, diverse, and exploratory selection
## Perfect For
| **Use Case** | **Why OpenEvolve Excels** |
|--------------|---------------------------|
| **Performance Optimization** | Discovers hardware-specific optimizations humans miss |
| **Algorithm Discovery** | Finds novel approaches to classic problems |
| **Scientific Computing** | Automates tedious manual tuning processes |
| **Competitive Programming** | Generates multiple solution strategies |
| **Multi-Objective Problems** | Pareto-optimal solutions across dimensions |
## π Installation & Setup
### Requirements
- **Python**: 3.10+
- **LLM Access**: Any OpenAI-compatible API
- **Optional**: Docker for containerized runs
### Installation Options
π¦ PyPI (Recommended)
```bash
pip install openevolve
```
π§ Development Install
```bash
git clone https://github.com/algorithmicsuperintelligence/openevolve.git
cd openevolve
pip install -e ".[dev]"
```
π³ Docker
```bash
# Pull the image
docker pull ghcr.io/algorithmicsuperintelligence/openevolve:latest
# Run an example
docker run --rm -v $(pwd):/app ghcr.io/algorithmicsuperintelligence/openevolve:latest \
examples/function_minimization/initial_program.py \
examples/function_minimization/evaluator.py --iterations 100
```
### Cost Estimation
**Cost depends on your LLM provider and iterations:**
- **o3**: ~$0.15-0.60 per iteration (depending on code size)
- **o3-mini**: ~$0.03-0.12 per iteration (more cost-effective)
- **Gemini-2.5-Pro**: ~$0.08-0.30 per iteration
- **Gemini-2.5-Flash**: ~$0.01-0.05 per iteration (fastest and cheapest)
- **Local models**: Nearly free after setup
- **OptiLLM**: Use cheaper models with test-time compute for better results
**Cost-saving tips:**
- Start with fewer iterations (100-200)
- Use o3-mini, Gemini-2.5-Flash or local models for exploration
- Use cascade evaluation to filter bad programs early
- Configure smaller population sizes initially
### LLM Provider Setup
OpenEvolve works with **any OpenAI-compatible API**:
π₯ OpenAI (Direct)
```bash
export OPENAI_API_KEY="sk-..."
# Uses OpenAI endpoints by default
```
π€ Google Gemini
```yaml
# config.yaml
llm:
api_base: "https://generativelanguage.googleapis.com/v1beta/openai/"
model: "gemini-2.5-pro"
```
```bash
export OPENAI_API_KEY="your-gemini-api-key"
```
π Local Models (Ollama/vLLM)
```yaml
# config.yaml
llm:
api_base: "http://localhost:11434/v1" # Ollama
model: "codellama:7b"
```
β‘ OptiLLM (Advanced)
For maximum flexibility with rate limiting, model routing, and test-time compute:
```bash
# Install OptiLLM
pip install optillm
# Start OptiLLM proxy
optillm --port 8000
# Point OpenEvolve to OptiLLM
export OPENAI_API_KEY="your-actual-key"
```
```yaml
llm:
api_base: "http://localhost:8000/v1"
model: "moa&readurls-o3" # Test-time compute + web access
```
## Examples Gallery
### **Showcase Projects**
| Project | Domain | Achievement | Demo |
|---------|--------|-------------|------|
| [**Function Minimization**](examples/function_minimization/) | Optimization | Random β Simulated Annealing | [View Results](examples/function_minimization/openevolve_output/) |
| [**MLX GPU Kernels**](examples/mlx_metal_kernel_opt/) | Hardware | Apple Silicon optimization | [Benchmarks](examples/mlx_metal_kernel_opt/README.md) |
| [**Rust Adaptive Sort**](examples/rust_adaptive_sort/) | Algorithms | Data-aware sorting | [Code Evolution](examples/rust_adaptive_sort/) |
| [**Symbolic Regression**](examples/symbolic_regression/) | Science | Automated equation discovery | [LLM-SRBench](examples/symbolic_regression/) |
| [**Web Scraper + OptiLLM**](examples/web_scraper_optillm/) | AI Integration | Test-time compute optimization | [Smart Scraping](examples/web_scraper_optillm/) |
### **Quick Example**: Function Minimization
**Watch OpenEvolve evolve from random search to sophisticated optimization:**
```python
# Initial Program (Random Search)
def minimize_function(func, bounds, max_evals=1000):
best_x, best_val = None, float('inf')
for _ in range(max_evals):
x = random_point_in_bounds(bounds)
val = func(x)
if val < best_val:
best_x, best_val = x, val
return best_x, best_val
```
**Evolution Process**
```python
# Evolved Program (Simulated Annealing + Adaptive Cooling)
def minimize_function(func, bounds, max_evals=1000):
x = random_point_in_bounds(bounds)
temp = adaptive_initial_temperature(func, bounds)
for i in range(max_evals):
neighbor = generate_neighbor(x, temp, bounds)
delta = func(neighbor) - func(x)
if delta < 0 or random.random() < exp(-delta/temp):
x = neighbor
temp *= adaptive_cooling_rate(i, max_evals) # Dynamic cooling
return x, func(x)
```
**Performance**: 100x improvement in convergence speed!
### **Advanced Examples**
Prompt Evolution
**Evolve prompts instead of code** for better LLM performance. See the [LLM Prompt Optimization example](examples/llm_prompt_optimization/) for a complete case study with HotpotQA achieving +23% accuracy improvement.
[Full Example](examples/llm_prompt_optimization/)
π Competitive Programming
**Automatic solution generation** for programming contests:
```python
# Problem: Find maximum subarray sum
# OpenEvolve discovers multiple approaches:
# Evolution Path 1: Brute Force β Kadane's Algorithm
# Evolution Path 2: Divide & Conquer β Optimized Kadane's
# Evolution Path 3: Dynamic Programming β Space-Optimized DP
```
[Online Judge Integration](examples/online_judge_programming/)
## Configuration
OpenEvolve offers extensive configuration for advanced users:
```yaml
# Advanced Configuration Example
max_iterations: 1000
random_seed: 42 # Full reproducibility
llm:
# Ensemble configuration
models:
- name: "gemini-2.5-pro"
weight: 0.6
- name: "gemini-2.5-flash"
weight: 0.4
temperature: 0.7
database:
# MAP-Elites quality-diversity
population_size: 500
num_islands: 5 # Parallel evolution
migration_interval: 20
feature_dimensions: ["complexity", "diversity", "performance"]
evaluator:
enable_artifacts: true # Error feedback to LLM
cascade_evaluation: true # Multi-stage testing
use_llm_feedback: true # AI code quality assessment
prompt:
# Sophisticated inspiration system
num_top_programs: 3 # Best performers
num_diverse_programs: 2 # Creative exploration
include_artifacts: true # Execution feedback
# Custom templates
template_dir: "custom_prompts/"
use_template_stochasticity: true # Randomized prompts
```
π― Feature Engineering
**Control how programs are organized in the quality-diversity grid:**
```yaml
database:
feature_dimensions:
- "complexity" # Built-in: code length
- "diversity" # Built-in: structural diversity
- "performance" # Custom: from your evaluator
- "memory_usage" # Custom: from your evaluator
feature_bins:
complexity: 10 # 10 complexity levels
performance: 20 # 20 performance buckets
memory_usage: 15 # 15 memory usage categories
```
**Important**: Return raw values from evaluator, OpenEvolve handles binning automatically.
π¨ Custom Prompt Templates
**Advanced prompt engineering** with custom templates:
```yaml
prompt:
template_dir: "custom_templates/"
use_template_stochasticity: true
template_variations:
greeting:
- "Let's enhance this code:"
- "Time to optimize:"
- "Improving the algorithm:"
improvement_suggestion:
- "Here's how we could improve this code:"
- "I suggest the following improvements:"
- "We can enhance this code by:"
```
**How it works:** Place `{greeting}` or `{improvement_suggestion}` placeholders in your templates, and OpenEvolve will randomly choose from the variations for each generation, adding diversity to prompts.
See [prompt examples](examples/llm_prompt_optimization/templates/) for complete template customization.
## Crafting Effective System Messages
**System messages are the secret to successful evolution.** They guide the LLM's understanding of your domain, constraints, and optimization goals. A well-crafted system message can be the difference between random mutations and targeted improvements.
### Why System Messages Matter
The system message in your config.yaml is arguably the most important component for evolution success:
- **Domain Expertise**: Provides LLM with specific knowledge about your problem space
- **Constraint Awareness**: Defines what can and cannot be changed during evolution
- **Optimization Focus**: Guides the LLM toward meaningful improvements
- **Error Prevention**: Helps avoid common pitfalls and compilation errors
### The Iterative Creation Process
Based on successful OpenEvolve implementations, system messages are best created through iteration:
π Step-by-Step Process
**Phase 1: Initial Draft**
1. Start with a basic system message describing your goal
2. Run 20-50 evolution iterations to observe behavior
3. Note where the system gets "stuck" or makes poor choices
**Phase 2: Refinement**
4. Add specific guidance based on observed issues
5. Include domain-specific terminology and concepts
6. Define clear constraints and optimization targets
7. Run another batch of iterations
**Phase 3: Specialization**
8. Add detailed examples of good vs bad approaches
9. Include specific library/framework guidance
10. Add error avoidance patterns you've observed
11. Fine-tune based on artifact feedback
**Phase 4: Optimization**
12. Consider using OpenEvolve itself to optimize your prompt
13. Measure improvements using combined score metrics
### Examples by Complexity
#### **Simple: General Optimization**
```yaml
prompt:
system_message: |
You are an expert programmer specializing in optimization algorithms.
Your task is to improve a function minimization algorithm to find the
global minimum reliably, escaping local minima that might trap simple algorithms.
```
#### **Intermediate: Domain-Specific Guidance**
```yaml
prompt:
system_message: |
You are an expert prompt engineer. Your task is to revise prompts for LLMs.
Your improvements should:
* Clarify vague instructions and eliminate ambiguity
* Strengthen alignment between prompt and desired task outcome
* Improve robustness against edge cases
* Include formatting instructions and examples where helpful
* Avoid unnecessary verbosity
Return only the improved prompt text without explanations.
```
#### β‘ **Advanced: Hardware-Specific Optimization**
```yaml
prompt:
system_message: |
You are an expert Metal GPU programmer specializing in custom attention
kernels for Apple Silicon.
# TARGET: Optimize Metal Kernel for Grouped Query Attention (GQA)
# HARDWARE: Apple M-series GPUs with unified memory architecture
# GOAL: 5-15% performance improvement
# OPTIMIZATION OPPORTUNITIES:
**1. Memory Access Pattern Optimization:**
- Coalesced access patterns for Apple Silicon
- Vectorized loading using SIMD
- Pre-compute frequently used indices
**2. Algorithm Fusion:**
- Combine max finding with score computation
- Reduce number of passes through data
# CONSTRAINTS - CRITICAL SAFETY RULES:
**MUST NOT CHANGE:**
β Kernel function signature
β Template parameter names or types
β Overall algorithm correctness
**ALLOWED TO OPTIMIZE:**
β
Memory access patterns and indexing
β
Computation order and efficiency
β
Vectorization and SIMD utilization
β
Apple Silicon specific optimizations
```
### Best Practices
π¨ Prompt Engineering Patterns
**Structure Your Message:** Start with role definition β Define task/context β List optimization opportunities β Set constraints β Success criteria
**Use Specific Examples:**
```yaml
# Good: "Focus on reducing memory allocations. Example: Replace `new Vector()` with pre-allocated arrays."
# Avoid: "Make the code faster"
```
**Include Domain Knowledge:**
```yaml
# Good: "For GPU kernels: 1) Memory coalescing 2) Occupancy 3) Shared memory usage"
# Avoid: "Optimize the algorithm"
```
**Set Clear Boundaries:**
```yaml
system_message: |
MUST NOT CHANGE: β Function signatures β Algorithm correctness β External API
ALLOWED: β
Internal implementation β
Data structures β
Performance optimizations
```
π¬ Advanced Techniques
**Artifact-Driven Iteration:** Enable artifacts in config β Include common error patterns in system message β Add guidance based on stderr/warning patterns
**Multi-Phase Evolution:** Start broad ("Explore different algorithmic approaches"), then focus ("Given successful simulated annealing, focus on parameter tuning")
**Template Stochasticity:** See the [Configuration section](#configuration) for complete template variation examples.
### Meta-Evolution: Using OpenEvolve to Optimize Prompts
**You can use OpenEvolve to evolve your system messages themselves!** This powerful technique lets you optimize prompts for better LLM performance automatically.
See the [LLM Prompt Optimization example](examples/llm_prompt_optimization/) for a complete implementation, including the HotpotQA case study with +23% accuracy improvement.
### Common Pitfalls to Avoid
- **Too Vague**: "Make the code better" β Specify exactly what "better" means
- **Too Restrictive**: Over-constraining can prevent useful optimizations
- **Missing Context**: Include relevant domain knowledge and terminology
- **No Examples**: Concrete examples guide LLM better than abstract descriptions
- **Ignoring Artifacts**: Don't refine prompts based on error feedback
## Artifacts & Debugging
**Artifacts side-channel** provides rich feedback to accelerate evolution:
```python
# Evaluator can return execution context
from openevolve.evaluation_result import EvaluationResult
return EvaluationResult(
metrics={"performance": 0.85, "correctness": 1.0},
artifacts={
"stderr": "Warning: suboptimal memory access pattern",
"profiling_data": {...},
"llm_feedback": "Code is correct but could use better variable names",
"build_warnings": ["unused variable x"]
}
)
```
**Next generation prompt automatically includes:**
```markdown
## Previous Execution Feedback
β οΈ Warning: suboptimal memory access pattern
π‘ LLM Feedback: Code is correct but could use better variable names
π§ Build Warnings: unused variable x
```
This creates a **feedback loop** where each generation learns from previous mistakes!
## Visualization
**Real-time evolution tracking** with interactive web interface:
```bash
# Install visualization dependencies
pip install -r scripts/requirements.txt
# Launch interactive visualizer
python scripts/visualizer.py
# Or visualize specific checkpoint
python scripts/visualizer.py --path examples/function_minimization/openevolve_output/checkpoints/checkpoint_100/
```
**Features:**
- π³ **Evolution tree** with parent-child relationships
- π **Performance tracking** across generations
- π **Code diff viewer** showing mutations
- π **MAP-Elites grid** visualization
- π― **Multi-metric analysis** with custom dimensions

## Roadmap
### **π₯ Upcoming Features**
- [ ] **Multi-Modal Evolution**: Images, audio, and text simultaneously
- [ ] **Federated Learning**: Distributed evolution across multiple machines
- [ ] **AutoML Integration**: Hyperparameter and architecture evolution
- [ ] **Benchmark Suite**: Standardized evaluation across domains
### **π Research Directions**
- [ ] **Self-Modifying Prompts**: Evolution modifies its own prompting strategy
- [ ] **Cross-Language Evolution**: Python β Rust β C++ optimization chains
- [ ] **Neurosymbolic Reasoning**: Combine neural and symbolic approaches
- [ ] **Human-AI Collaboration**: Interactive evolution with human feedback
Want to contribute? Check out our [roadmap discussions](https://github.com/algorithmicsuperintelligence/openevolve/discussions/categories/roadmap)!
## FAQ
π° How much does it cost to run?
See the [Cost Estimation](#cost-estimation) section in Installation & Setup for detailed pricing information and cost-saving tips.
π How does this compare to manual optimization?
| Aspect | Manual | OpenEvolve |
|--------|--------|------------|
| **Initial Learning** | Weeks to understand domain | Minutes to start |
| **Solution Quality** | Depends on expertise | Consistently explores novel approaches |
| **Time Investment** | Days-weeks per optimization | Hours for complete evolution |
| **Reproducibility** | Hard to replicate exact process | Perfect reproduction with seeds |
| **Scaling** | Doesn't scale beyond human capacity | Parallel evolution across islands |
**OpenEvolve shines** when you need to explore large solution spaces or optimize for multiple objectives simultaneously.
π§ Can I use my own LLM?
**Yes!** OpenEvolve supports any OpenAI-compatible API:
- **Commercial**: OpenAI, Google, Cohere
- **Local**: Ollama, vLLM, LM Studio, text-generation-webui
- **Advanced**: OptiLLM for routing and test-time compute
Just set the `api_base` in your config to point to your endpoint.
π¨ What if evolution gets stuck?
**Built-in mechanisms prevent stagnation:**
- **Island migration**: Fresh genes from other populations
- **Temperature control**: Exploration vs exploitation balance
- **Diversity maintenance**: MAP-Elites prevents convergence
- **Artifact feedback**: Error messages guide improvements
- **Template stochasticity**: Randomized prompts break patterns
**Manual interventions:**
- Increase `num_diverse_programs` for more exploration
- Add custom feature dimensions to diversify search
- Use template variations to randomize prompts
- Adjust migration intervals for more cross-pollination
π How do I measure success?
**Multiple success metrics:**
1. **Primary Metric**: Your evaluator's `combined_score` or metric average
2. **Convergence**: Best score improvement over time
3. **Diversity**: MAP-Elites grid coverage
4. **Efficiency**: Iterations to reach target performance
5. **Robustness**: Performance across different test cases
**Use the visualizer** to track all metrics in real-time and identify when evolution has converged.
### **Contributors**
Thanks to all our amazing contributors who make OpenEvolve possible!
### **Contributing**
We welcome contributions! Here's how to get started:
1. π΄ **Fork** the repository
2. πΏ **Create** your feature branch: `git checkout -b feat-amazing-feature`
3. β¨ **Add** your changes and tests
4. β
**Test** everything: `python -m unittest discover tests`
5. π **Commit** with a clear message
6. π **Push** and create a Pull Request
**New to open source?** Check out our [Contributing Guide](CONTRIBUTING.md) and look for [`good-first-issue`](https://github.com/algorithmicsuperintelligence/openevolve/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) labels!
### **Academic & Research**
**Articles & Blog Posts About OpenEvolve**:
- [Towards Open Evolutionary Agents](https://huggingface.co/blog/driaforall/towards-open-evolutionary-agents) - Evolution of coding agents and the open-source movement
- [OpenEvolve: GPU Kernel Discovery](https://huggingface.co/blog/codelion/openevolve-gpu-kernel-discovery) - Automated discovery of optimized GPU kernels
- [OpenEvolve: Evolutionary Coding with LLMs](https://huggingface.co/blog/codelion/openevolve) - Introduction to evolutionary algorithm discovery using large language models
## Citation
If you use OpenEvolve in your research, please cite:
```bibtex
@software{openevolve,
title = {OpenEvolve: an open-source evolutionary coding agent},
author = {Asankhaya Sharma},
year = {2025},
publisher = {GitHub},
url = {https://github.com/algorithmicsuperintelligence/openevolve}
}
```
---
### **π Ready to evolve your code?**
**Maintained by the OpenEvolve community**
*If OpenEvolve helps you discover breakthrough algorithms, please consider starring this repository.*