Ai
1 Star 2 Fork 3

hymilex/yolov5_rknn

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
detect.py 12.32 KB
一键复制 编辑 原始数据 按行查看 历史
import argparse
import time
from pathlib import Path
import cv2
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from numpy import random
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized
def detect(save_img=False):
source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
('rtsp://', 'rtmp://', 'http://'))
# Directories
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Initialize
set_logging()
device = select_device(opt.device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
# Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
if opt.rknn_mode == True:
print('model convert to rknn_mode')
from models.common_rk_plug_in import surrogate_silu, surrogate_hardswish
from models import common
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
if isinstance(m, common.Conv): # assign export-friendly activations
if isinstance(m.act, torch.nn.Hardswish):
m.act = torch.nn.Hardswish()
elif isinstance(m.act, torch.nn.SiLU):
# m.act = torch.nn.SiLU()
m.act = surrogate_silu()
# elif isinstance(m, models.yolo.Detect):
# m.forward = m.forward_export # assign forward (optional)
if isinstance(m, common.SPP): # assign export-friendly activations
### best
# tmp = nn.Sequential(*[nn.MaxPool2d(kernel_size=3, stride=1, padding=1) for i in range(2)])
# m.m[0] = tmp
# m.m[1] = tmp
# m.m[2] = tmp
### friendly to origin config
tmp = nn.Sequential(*[nn.MaxPool2d(kernel_size=3, stride=1, padding=1) for i in range(2)])
m.m[0] = tmp
tmp = nn.Sequential(*[nn.MaxPool2d(kernel_size=3, stride=1, padding=1) for i in range(4)])
m.m[1] = tmp
tmp = nn.Sequential(*[nn.MaxPool2d(kernel_size=3, stride=1, padding=1) for i in range(6)])
m.m[2] = tmp
### use deconv2d to surrogate upsample layer.
# replace_one = torch.nn.ConvTranspose2d(model.model[10].conv.weight.shape[0],
# model.model[10].conv.weight.shape[0],
# (2, 2),
# groups=model.model[10].conv.weight.shape[0],
# bias=False,
# stride=(2, 2))
# replace_one.weight.data.fill_(1)
# replace_one.eval().to(device)
# temp_i = model.model[11].i
# temp_f = model.model[11].f
# model.model[11] = replace_one
# model.model[11].i = temp_i
# model.model[11].f = temp_f
# replace_one = torch.nn.ConvTranspose2d(model.model[14].conv.weight.shape[0],
# model.model[14].conv.weight.shape[0],
# (2, 2),
# groups=model.model[14].conv.weight.shape[0],
# bias=False,
# stride=(2, 2))
# replace_one.weight.data.fill_(1)
# replace_one.eval().to(device)
# temp_i = model.model[11].i
# temp_f = model.model[11].f
# model.model[15] = replace_one
# model.model[15].i = temp_i
# model.model[15].f = temp_f
### use conv to surrogate slice operator
from models.common_rk_plug_in import surrogate_focus
surrogate_focous = surrogate_focus(int(model.model[0].conv.conv.weight.shape[1]/4),
model.model[0].conv.conv.weight.shape[0],
k=tuple(model.model[0].conv.conv.weight.shape[2:4]),
s=model.model[0].conv.conv.stride,
p=model.model[0].conv.conv.padding,
g=model.model[0].conv.conv.groups,
act=True)
surrogate_focous.conv.conv.weight = model.model[0].conv.conv.weight
surrogate_focous.conv.conv.bias = model.model[0].conv.conv.bias
surrogate_focous.conv.act = model.model[0].conv.act
temp_i = model.model[0].i
temp_f = model.model[0].f
model.model[0] = surrogate_focous
model.model[0].i = temp_i
model.model[0].f = temp_f
model.model[0].eval().to(device)
if half:
model.half() # to FP16
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
else:
save_img = True
dataset = LoadImages(source, img_size=imgsz, stride=stride)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
print('names', names)
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
pred = model(img, augment=opt.augment)[0]
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t2 = time_synchronized()
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
else:
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or view_img: # Add bbox to image
label = f'{names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=2)
# Print time (inference + NMS)
print(f'{s}Done. ({t2 - t1:.3f}s)')
# Stream results
if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video'
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fourcc = 'mp4v' # output video codec
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f"Results saved to {save_dir}{s}")
print(f'Done. ({time.time() - t0:.3f}s)')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='./runs/train/exp/weights/best.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default=r'D:\data\liftcar_tuyang\convert_416x416\val_data\liftcar_tuyang_1.jpg', help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--rknn_mode', action='store_true', help='export rknn-friendly onnx model')
opt = parser.parse_args()
print(opt)
# check_requirements(exclude=('pycocotools', 'thop'))
with torch.no_grad():
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
detect()
strip_optimizer(opt.weights)
else:
detect()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mlhan/yolov5_rknn.git
git@gitee.com:mlhan/yolov5_rknn.git
mlhan
yolov5_rknn
yolov5_rknn
master

搜索帮助