# pytorch-msssim **Repository Path**: moonharbour/pytorch-msssim ## Basic Information - **Project Name**: pytorch-msssim - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-01-20 - **Last Updated**: 2021-11-03 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Pytorch MS-SSIM Fast and differentiable MS-SSIM and SSIM for pytorch 1.0+
Structural Similarity (SSIM): Multi-Scale Structural Similarity (MS-SSIM):
# Updates ### _2020.08.21_ (v0.2.1) 3D image support from [@FynnBe](https://github.com/FynnBe)! ### _2020.04.30_ (v0.2) Now (v0.2), **ssim & ms-ssim are calculated in the same way as tensorflow and skimage**, except that zero padding rather than symmetric padding is used during downsampling (there is no symmetric padding in pytorch). The comparison results between pytorch-msssim, tensorflow and skimage can be found in the Tests section. # Installation ```bash pip install pytorch-msssim ``` # Usage Calculations will be on the same device as input images. ### 1. Basic Usage ```python from pytorch_msssim import ssim, ms_ssim, SSIM, MS_SSIM # X: (N,3,H,W) a batch of non-negative RGB images (0~255) # Y: (N,3,H,W) # calculate ssim & ms-ssim for each image ssim_val = ssim( X, Y, data_range=255, size_average=False) # return (N,) ms_ssim_val = ms_ssim( X, Y, data_range=255, size_average=False ) #(N,) # set 'size_average=True' to get a scalar value as loss. see tests/tests_loss.py for more details ssim_loss = 1 - ssim( X, Y, data_range=255, size_average=True) # return a scalar ms_ssim_loss = 1 - ms_ssim( X, Y, data_range=255, size_average=True ) # reuse the gaussian kernel with SSIM & MS_SSIM. ssim_module = SSIM(data_range=255, size_average=True, channel=3) ms_ssim_module = MS_SSIM(data_range=255, size_average=True, channel=3) ssim_loss = 1 - ssim_module(X, Y) ms_ssim_loss = 1 - ms_ssim_module(X, Y) ``` ### 2. Normalized input If you need to calculate MS-SSIM/SSIM on normalized images, please denormalize them to the range of [0, 1] or [0, 255] first. ```python # X: (N,3,H,W) a batch of normalized images (-1 ~ 1) # Y: (N,3,H,W) X = (X + 1) / 2 # [-1, 1] => [0, 1] Y = (Y + 1) / 2 ms_ssim_val = ms_ssim( X, Y, data_range=1, size_average=False ) #(N,) ``` ### 3. Enable nonnegative_ssim For ssim, it is recommended to set `nonnegative_ssim=True` to avoid negative results. However, this option is set to `False` by default to keep it consistent with tensorflow and skimage. For ms-ssim, there is no nonnegative_ssim option and the ssim reponses is forced to be non-negative to avoid NaN results. # Tests and Examples ```bash cd tests ``` ### 1. Comparions between pytorch-msssim, skimage and tensorflow on CPU. ```bash # requires tf2 python tests_comparisons_tf_skimage.py # or skimage only # python tests_comparisons_skimage.py ``` Outputs: ``` Downloading test image... =================================== Test SSIM =================================== ====> Single Image Repeat 100 times sigma=0.0 ssim_skimage=1.000000 (147.2605 ms), ssim_tf=1.000000 (343.4146 ms), ssim_torch=1.000000 (92.9151 ms) sigma=10.0 ssim_skimage=0.932423 (147.5198 ms), ssim_tf=0.932661 (343.5191 ms), ssim_torch=0.932421 (95.6283 ms) sigma=20.0 ssim_skimage=0.785744 (152.6441 ms), ssim_tf=0.785733 (343.4085 ms), ssim_torch=0.785738 (87.5639 ms) sigma=30.0 ssim_skimage=0.636902 (145.5763 ms), ssim_tf=0.636902 (343.5312 ms), ssim_torch=0.636895 (90.4084 ms) sigma=40.0 ssim_skimage=0.515798 (147.3798 ms), ssim_tf=0.515801 (344.8978 ms), ssim_torch=0.515791 (96.4440 ms) sigma=50.0 ssim_skimage=0.422011 (148.2900 ms), ssim_tf=0.422007 (345.4076 ms), ssim_torch=0.422005 (86.3799 ms) sigma=60.0 ssim_skimage=0.351139 (146.2039 ms), ssim_tf=0.351139 (343.4428 ms), ssim_torch=0.351133 (93.3445 ms) sigma=70.0 ssim_skimage=0.296336 (145.5341 ms), ssim_tf=0.296337 (345.2255 ms), ssim_torch=0.296331 (92.6771 ms) sigma=80.0 ssim_skimage=0.253328 (147.6655 ms), ssim_tf=0.253328 (343.1386 ms), ssim_torch=0.253324 (82.5985 ms) sigma=90.0 ssim_skimage=0.219404 (142.6025 ms), ssim_tf=0.219405 (345.8275 ms), ssim_torch=0.219400 (100.9946 ms) sigma=100.0 ssim_skimage=0.192681 (144.5597 ms), ssim_tf=0.192682 (346.5489 ms), ssim_torch=0.192678 (85.0229 ms) Pass! ====> Batch Pass! =================================== Test MS-SSIM =================================== ====> Single Image Repeat 100 times sigma=0.0 msssim_tf=1.000000 (671.5363 ms), msssim_torch=1.000000 (125.1403 ms) sigma=10.0 msssim_tf=0.991137 (669.0296 ms), msssim_torch=0.991086 (113.4078 ms) sigma=20.0 msssim_tf=0.967292 (670.5530 ms), msssim_torch=0.967281 (107.6428 ms) sigma=30.0 msssim_tf=0.934875 (668.7717 ms), msssim_torch=0.934875 (111.3334 ms) sigma=40.0 msssim_tf=0.897660 (669.0801 ms), msssim_torch=0.897658 (107.3700 ms) sigma=50.0 msssim_tf=0.858956 (671.4629 ms), msssim_torch=0.858954 (100.9959 ms) sigma=60.0 msssim_tf=0.820477 (670.5424 ms), msssim_torch=0.820475 (103.4489 ms) sigma=70.0 msssim_tf=0.783511 (671.9357 ms), msssim_torch=0.783507 (113.9048 ms) sigma=80.0 msssim_tf=0.749522 (672.3925 ms), msssim_torch=0.749518 (120.3891 ms) sigma=90.0 msssim_tf=0.716221 (672.9066 ms), msssim_torch=0.716217 (118.3788 ms) sigma=100.0 msssim_tf=0.684958 (675.2075 ms), msssim_torch=0.684953 (117.9481 ms) Pass ====> Batch Pass ```
ssim=1.0000
ssim=0.4225
ssim=0.1924
### 2. MS_SSIM as loss function See ['tests/tests_loss.py'](https://github.com/VainF/pytorch-msssim/tree/master/tests/tests_loss.py) for more details about how to use ssim or ms_ssim as loss functions ### 3. AutoEncoder See ['tests/ae_example'](https://github.com/VainF/pytorch-msssim/tree/master/tests/ae_example) ![results](https://github.com/VainF/Images/blob/master/pytorch_msssim/ae_ms_ssim.jpg) *left: the original image, right: the reconstructed image* # References [https://github.com/jorge-pessoa/pytorch-msssim](https://github.com/jorge-pessoa/pytorch-msssim) [https://ece.uwaterloo.ca/~z70wang/research/ssim/](https://ece.uwaterloo.ca/~z70wang/research/ssim/) [https://ece.uwaterloo.ca/~z70wang/publications/msssim.pdf](https://ece.uwaterloo.ca/~z70wang/publications/msssim.pdf) [Matlab Code](https://ece.uwaterloo.ca/~z70wang/research/iwssim/) [ssim & ms-ssim from tensorflow](https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/ops/image_ops_impl.py#L3314-L3438)