# paperless-ai **Repository Path**: mqq_whoops/paperless-ai ## Basic Information - **Project Name**: paperless-ai - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2025-03-07 - **Last Updated**: 2025-03-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ![GitHub commit activity](https://img.shields.io/github/commit-activity/t/clusterzx/paperless-ai) ![Docker Pulls](https://img.shields.io/docker/pulls/clusterzx/paperless-ai) ![GitHub User's stars](https://img.shields.io/github/stars/clusterzx) ![GitHub License](https://img.shields.io/github/license/clusterzx/paperless-ai?cacheSeconds=1) # Paperless-AI An automated document analyzer for Paperless-ngx using OpenAI API, Ollama and all OpenAI API compatible Services to automatically analyze and tag your documents. \ It features: Automode, Manual Mode, Ollama and OpenAI, a Chat function to query your documents with AI, a modern and intuitive Webinterface. \ \ **Following Services and OpenAI API compatible services have been successfully tested:** - Ollama - OpenAI - DeepSeek.ai - OpenRouter.ai - Perplexity.ai - Together.ai - VLLM - LiteLLM - Fastchat - Gemini (Google) - ... and there are possibly many more ![PPAI_SHOWCASE3](https://github.com/user-attachments/assets/1fc9f470-6e45-43e0-a212-b8fa6225e8dd) ## Features ### Automated Document Management - **Automatic Scanning**: Identifies and processes new documents within Paperless-ngx. - **AI-Powered Analysis**: Leverages OpenAI API and Ollama (Mistral, Llama, Phi 3, Gemma 2) for precise document analysis. - **Metadata Assignment**: Automatically assigns titles, tags, document_type and correspondent details. ### Advanced Customization Options - **Predefined Processing Rules**: Specify which documents to process based on existing tags. *(Optional)* 🆕 - **Selective Tag Assignment**: Use only selected tags for processing. *(Disables the prompt dialog)* 🆕 - **Custom Tagging**: Assign a specific tag (of your choice) to AI-processed documents for easy identification. 🆕 ### Manual Mode - **AI-Assisted Analysis**: Manually analyze documents with AI support in a modern web interface. *(Accessible via the `/manual` endpoint)* 🆕 ### Interactive Chat Functionality - **Document Querying**: Ask questions about your documents and receive accurate, AI-generated answers. 🆕 ## Installation Visit the Wiki for installation:\ [Click here for Installation](https://github.com/clusterzx/paperless-ai/wiki/2.-Installation) ------------------------------------------- ## Docker Support The application comes with full Docker support: - Automatic container restart on failure - Health monitoring - Volume persistence for database - Resource management - Graceful shutdown handling ## Development To run the application locally without Docker: 1. Install dependencies: ```bash npm install ``` 2. Start the development server: ```bash npm run test ``` ## Contributing 1. Fork the repository 2. Create your feature branch (`git checkout -b feature/AmazingFeature`) 3. Commit your changes (`git commit -m 'Add some AmazingFeature'`) 4. Push to the branch (`git push origin feature/AmazingFeature`) 5. Open a Pull Request ## License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## Acknowledgments - [Paperless-ngx](https://github.com/paperless-ngx/paperless-ngx) for the amazing document management system - OpenAI API - The Express.js and Node.js communities for their excellent tools ## Support If you encounter any issues or have questions: 1. Check the [Issues](https://github.com/clusterzx/paperless-ai/issues) section 2. Create a new issue if yours isn't already listed 3. Provide detailed information about your setup and the problem ## Roadmap (DONE) - [x] Support for custom AI models - [x] Support for multiple language analysis - [x] Advanced tag matching algorithms - [x] Custom rules for document processing - [x] Enhanced web interface with statistics