代码拉取完成,页面将自动刷新
import numpy as np
import numpy as np
import cv2
from rknn.api import RKNN
import os
import torch
import os
def show_outputs(output):
index = sorted(range(len(output)), key=lambda k : output[k], reverse=True)
fp = open('./labels.txt', 'r')
labels = fp.readlines()
top5_str = 'mobilenetv3\n-----TOP 5-----\n'
for i in range(5):
value = output[index[i]]
if value > 0:
topi = '[{:>3d}] score:{:.6f} class:"{}"\n'.format(index[i], value, labels[index[i]].strip().split(':')[-1])
else:
topi = '[ -1]: 0.0\n'
top5_str += topi
print(top5_str.strip())
def show_perfs(perfs):
perfs = 'perfs: {}\n'.format(perfs)
print(perfs)
def softmax(x):
return np.exp(x)/sum(np.exp(x))
if __name__ == '__main__':
rknn = RKNN(verbose=True)
# Pre-process config
input_size_list = [[1, 3, 224, 224]]
print('--> Config model')
rknn.config(mean_values=[123.675, 116.28, 103.53], std_values=[58.395, 58.395, 58.395], target_platform='rk3566')
print('done')
# Load model
print('--> Loading model')
ret = rknn.load_pytorch(model="./MobileNetV3.pt", input_size_list=input_size_list)
if ret != 0:
print('Load model failed!')
exit(ret)
print('done')
# Build model
print('--> Building model')
ret = rknn.build(do_quantization=False, dataset='./dataset.txt')
if ret != 0:
print('Build model failed!')
print('done')
# Export rknn model
print('--> Export rknn model')
ret = rknn.export_rknn('./tspi_moblienetv3_demo.rknn')
if ret != 0:
print('Export rknn model failed!')
exit(ret)
print('done')
img = cv2.imread('./demo_pig.jpg')
# 调整图片大小为模型所需大小
img = cv2.resize(img, (224, 224))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.expand_dims(img, 0)
# Init runtime environment
print('--> Init runtime environment')
ret = rknn.init_runtime()
if ret != 0:
print('Init runtime environment failed!')
exit(ret)
print('done')
# Inference
print('--> Running model')
outputs = rknn.inference(inputs=[img], data_format=['nhwc'])
print(outputs)
show_outputs(softmax(np.array(outputs[0][0])))
print('done')
rknn.release()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。