# IEEE-CIS-Fraud-Detection
**Repository Path**: my_yg/IEEE-CIS-Fraud-Detection
## Basic Information
- **Project Name**: IEEE-CIS-Fraud-Detection
- **Description**: IEEE-CIS-Fraud-Detection top 3源码、提交给主办方的write-up
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 1
- **Forks**: 0
- **Created**: 2020-04-04
- **Last Updated**: 2021-09-23
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
## Requirements
python 3.7.3
numpy 1.16.2
pandas 0.24.2
sklearn 0.20.3
keras 2.2.4
tensorflow 1.13.1
xgboost 0.82
lightgbm 2.2.3
## How to reproduce
### 01-Input Model_Data
* Put unzipped data/model data in `01-Input Model_Data`
* [all the model data can be found in google drive](https://drive.google.com/drive/folders/13xt6QpbxvTVwZl7h-Za1-EREcy5i7eln?usp=sharing)
* Generate a simple solution that is good enough for 3rd place (~0.943642 on private LB)
### 02-Feature Enginnering
* 890 features
`cd /02-Feature_Enginnering/890features/`
`python lgb_single_final.py`----Also output the result
* 692 features
`cd /02-Feature Enginnering/692features/1.baseline_features_388/`
`python 1.feature engineering.py`
`python 2.feature selection.py`
`python 3.feature engineering.py`
`cd /02-Feature Enginnering/692features/2.uid_magic_features_301/`
`python uid4_eng.py`
`cd /02-Feature Enginnering/692features/3.combine_features_3/`
`python combine_features_3.py`
### 03-Single Model
* 890 features
`cd /03-Single_Model/890features/`
`python lgb_single_final.py`
-----------------CV 95365 LB 9605
* 692 features
`cd /03-Single_Model/692features/`
`python Lgb_CV9562_LB9597.py`
-----------------CV 9562 LB 9597
----------------- tune the parameters the lgb can reach LB 9614
`python Catboost_CV9582_LB9590.py`
-----------------CV 9582 LB 9590
`python NN_CV9518_LB9556.py`
-----------------CV 9518 LB 9556
### Model Blend
* `cd /04-Model Blend/`
`python model_blend.py`
* **Finally:lgb_0930_0.65_v1**
* **Public:0.967161 Private:0.943642**
```
step 01:
lgb_890features_blend_0.65=0.65*lgb_kfold_9614+0.35*lgb_kfold_9605
------LB 9646-----
step 02:
lgb_0930_0.95_v0=0.95*lgb_890features_blend_0.65+0.05*CV9518_NN_LB9556
------LB 9663-----
step 03:
lgb_0930_0.65_v1 =0.65*lgb_0930_0.95_v0.csv+0.35*pred_692_features_blend
while:
pred_692_features_blend=0.65*lgb_cv9562_692features_9597+0.35*CatBoost_cv9582_692features_9590
```