# IEEE-CIS-Fraud-Detection **Repository Path**: my_yg/IEEE-CIS-Fraud-Detection ## Basic Information - **Project Name**: IEEE-CIS-Fraud-Detection - **Description**: IEEE-CIS-Fraud-Detection top 3源码、提交给主办方的write-up - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-04-04 - **Last Updated**: 2021-09-23 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Requirements python 3.7.3 numpy 1.16.2 pandas 0.24.2 sklearn 0.20.3 keras 2.2.4 tensorflow 1.13.1 xgboost 0.82 lightgbm 2.2.3 ## How to reproduce ### 01-Input Model_Data * Put unzipped data/model data in `01-Input Model_Data` * [all the model data can be found in google drive](https://drive.google.com/drive/folders/13xt6QpbxvTVwZl7h-Za1-EREcy5i7eln?usp=sharing) * Generate a simple solution that is good enough for 3rd place (~0.943642 on private LB) ### 02-Feature Enginnering * 890 features
`cd /02-Feature_Enginnering/890features/`
`python lgb_single_final.py`----Also output the result * 692 features
`cd /02-Feature Enginnering/692features/1.baseline_features_388/`
`python 1.feature engineering.py`
`python 2.feature selection.py`
`python 3.feature engineering.py`
`cd /02-Feature Enginnering/692features/2.uid_magic_features_301/`
`python uid4_eng.py`
`cd /02-Feature Enginnering/692features/3.combine_features_3/`
`python combine_features_3.py`
### 03-Single Model * 890 features
`cd /03-Single_Model/890features/`
`python lgb_single_final.py`
-----------------CV 95365 LB 9605 * 692 features
`cd /03-Single_Model/692features/`
`python Lgb_CV9562_LB9597.py`
-----------------CV 9562 LB 9597
----------------- tune the parameters the lgb can reach LB 9614
`python Catboost_CV9582_LB9590.py`
-----------------CV 9582 LB 9590
`python NN_CV9518_LB9556.py`
-----------------CV 9518 LB 9556
### Model Blend * `cd /04-Model Blend/`
`python model_blend.py`
* **Finally:lgb_0930_0.65_v1**
* **Public:0.967161 Private:0.943642**
``` step 01: lgb_890features_blend_0.65=0.65*lgb_kfold_9614+0.35*lgb_kfold_9605 ------LB 9646----- step 02: lgb_0930_0.95_v0=0.95*lgb_890features_blend_0.65+0.05*CV9518_NN_LB9556 ------LB 9663----- step 03: lgb_0930_0.65_v1 =0.65*lgb_0930_0.95_v0.csv+0.35*pred_692_features_blend while: pred_692_features_blend=0.65*lgb_cv9562_692features_9597+0.35*CatBoost_cv9582_692features_9590 ```