# LYT-Net **Repository Path**: o1o2oxxx/LYT-Net ## Basic Information - **Project Name**: LYT-Net - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-07-07 - **Last Updated**: 2025-07-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # [SPL 2025] LYT-Net: Lightweight YUV Transformer-based Network for Low-Light Image Enhancement
![Logo](./figs/Logo.png) [![arXiv](https://img.shields.io/badge/arxiv-paper-179bd3)](https://arxiv.org/abs/2401.15204) [![IEEE](https://img.shields.io/badge/IEEE-paper-blue)](https://ieeexplore.ieee.org/abstract/document/10972228) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/lyt-net-lightweight-yuv-transformer-based/low-light-image-enhancement-on-lol)](https://paperswithcode.com/sota/low-light-image-enhancement-on-lol?p=lyt-net-lightweight-yuv-transformer-based) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/lyt-net-lightweight-yuv-transformer-based/low-light-image-enhancement-on-lolv2)](https://paperswithcode.com/sota/low-light-image-enhancement-on-lolv2?p=lyt-net-lightweight-yuv-transformer-based) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/lyt-net-lightweight-yuv-transformer-based/low-light-image-enhancement-on-lolv2-1)](https://paperswithcode.com/sota/low-light-image-enhancement-on-lolv2-1?p=lyt-net-lightweight-yuv-transformer-based) Ranked #1 on FLOPS(G) (3.49 GFLOPS) and Params(M) (0.045M = 45k Params)
## Updates - `09.05.2025` Check out our other works on [Low-light Image Enhancement](https://github.com/albrateanu/KANT) and [Image Denoising](https://github.com/albrateanu/AKDT)! - `21.04.2025` LYT-Net is published as a IEEE Signal Processing Letters paper. [Link to paper](https://ieeexplore.ieee.org/abstract/document/10972228). - `17.07.2024` Released rudimentary PyTorch implementation. - `03.04.2024` Training code re-added and adjusted. - `30.01.2024` arXiv pre-print available. - `10.01.2024` Pre-trained model weights and code for training and testing are released. ## Experiment Please check the ```TensorFlow``` and ```PyTorch``` folders for library-specific implementations. ## Results | Dataset | TensorFlow | | PyTorch | | |:--------:|:----------:|:---------:|:-------:|:---------:| | | PSNR | SSIM | PSNR | SSIM | | LOLv1 | 27.23 | 0.853 | 26.63 | 0.836 | | LOLv2-R | 27.80 | 0.873 | 28.41 | 0.878 | | LOLv2-S | 29.39 | 0.939 | 26.72 | 0.928 | ## Citation ``` @article{brateanu2025lyt, author={Brateanu, Alexandru and Balmez, Raul and Avram, Adrian and Orhei, Ciprian and Ancuti, Cosmin}, journal={IEEE Signal Processing Letters}, title={LYT-NET: Lightweight YUV Transformer-based Network for Low-light Image Enhancement}, year={2025}, volume={}, number={}, pages={1-5}, doi={10.1109/LSP.2025.3563125}} @article{brateanu2024lyt, title={LYT-Net: Lightweight YUV Transformer-based Network for Low-Light Image Enhancement}, author={Brateanu, Alexandru and Balmez, Raul and Avram, Adrian and Orhei, Ciprian and Cosmin, Ancuti}, journal={arXiv preprint arXiv:2401.15204}, year={2024} } ```