# LYT-Net
**Repository Path**: o1o2oxxx/LYT-Net
## Basic Information
- **Project Name**: LYT-Net
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-07-07
- **Last Updated**: 2025-07-07
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# [SPL 2025] LYT-Net: Lightweight YUV Transformer-based Network for Low-Light Image Enhancement

[](https://arxiv.org/abs/2401.15204)
[](https://ieeexplore.ieee.org/abstract/document/10972228)
[](https://paperswithcode.com/sota/low-light-image-enhancement-on-lol?p=lyt-net-lightweight-yuv-transformer-based)
[](https://paperswithcode.com/sota/low-light-image-enhancement-on-lolv2?p=lyt-net-lightweight-yuv-transformer-based)
[](https://paperswithcode.com/sota/low-light-image-enhancement-on-lolv2-1?p=lyt-net-lightweight-yuv-transformer-based)
Ranked #1 on FLOPS(G) (3.49 GFLOPS) and Params(M) (0.045M = 45k Params)
## Updates
- `09.05.2025` Check out our other works on [Low-light Image Enhancement](https://github.com/albrateanu/KANT) and [Image Denoising](https://github.com/albrateanu/AKDT)!
- `21.04.2025` LYT-Net is published as a IEEE Signal Processing Letters paper. [Link to paper](https://ieeexplore.ieee.org/abstract/document/10972228).
- `17.07.2024` Released rudimentary PyTorch implementation.
- `03.04.2024` Training code re-added and adjusted.
- `30.01.2024` arXiv pre-print available.
- `10.01.2024` Pre-trained model weights and code for training and testing are released.
## Experiment
Please check the ```TensorFlow``` and ```PyTorch``` folders for library-specific implementations.
## Results
| Dataset | TensorFlow | | PyTorch | |
|:--------:|:----------:|:---------:|:-------:|:---------:|
| | PSNR | SSIM | PSNR | SSIM |
| LOLv1 | 27.23 | 0.853 | 26.63 | 0.836 |
| LOLv2-R | 27.80 | 0.873 | 28.41 | 0.878 |
| LOLv2-S | 29.39 | 0.939 | 26.72 | 0.928 |
## Citation
```
@article{brateanu2025lyt,
author={Brateanu, Alexandru and Balmez, Raul and Avram, Adrian and Orhei, Ciprian and Ancuti, Cosmin},
journal={IEEE Signal Processing Letters},
title={LYT-NET: Lightweight YUV Transformer-based Network for Low-light Image Enhancement},
year={2025},
volume={},
number={},
pages={1-5},
doi={10.1109/LSP.2025.3563125}}
@article{brateanu2024lyt,
title={LYT-Net: Lightweight YUV Transformer-based Network for Low-Light Image Enhancement},
author={Brateanu, Alexandru and Balmez, Raul and Avram, Adrian and Orhei, Ciprian and Cosmin, Ancuti},
journal={arXiv preprint arXiv:2401.15204},
year={2024}
}
```