diff --git a/content/docs-lite/zh/docs/DataVec/DataVec-integrations.md b/content/docs-lite/zh/docs/DataVec/DataVec-integrations.md
index 9345bc5a4ece15fe1654136a2d4ac8334822cfeb..dc98a9e63988bf59cbab1634bcfb488b8d0b4d48 100644
--- a/content/docs-lite/zh/docs/DataVec/DataVec-integrations.md
+++ b/content/docs-lite/zh/docs/DataVec/DataVec-integrations.md
@@ -13,7 +13,7 @@ openGauss DataVec提供多种第三方组件的集成教程,并通过多语言
## API Reference
- [Python](https://gitee.com/opengauss/openGauss-connector-python-psycopg2)
-- [Java](https://gitee.com/opengauss/openGauss-connector-jdbc)
+- [Java](integrationJava.md)
- [Node.js](https://gitee.com/opengauss/openGauss-connector-nodejs)
- [Go](https://gitee.com/opengauss/openGauss-connector-go-pq)
diff --git a/content/docs-lite/zh/docs/DataVec/DataVec-tutorials.md b/content/docs-lite/zh/docs/DataVec/DataVec-tutorials.md
index d5852bed20621a699e3f0434bdc729a8ab8ac819..fdf3cc46fc0a8a80687b324ef900b27759ab7af1 100644
--- a/content/docs-lite/zh/docs/DataVec/DataVec-tutorials.md
+++ b/content/docs-lite/zh/docs/DataVec/DataVec-tutorials.md
@@ -4,4 +4,4 @@
- [打破AI黑盒,拥抱开源力量:基于openGauss+DeepSeek的本地知识库,打造你的专属AI助手!](openGauss-RAG实践.md)
- [openGauss DataVec + Dify, 快速搭建你的智能助手平台](openGauss-Dify.md)
-- SpringBoot 集成 openGauss DataVec, 智能问答一站式开发
+- [SpringBoot 集成 openGauss DataVec, 实现向量化检索](openGauss-Springboot.md)
diff --git a/content/docs-lite/zh/docs/DataVec/figures/opgs-springboot.png b/content/docs-lite/zh/docs/DataVec/figures/opgs-springboot.png
new file mode 100644
index 0000000000000000000000000000000000000000..8c6ea80b3f041c84bcaf9a8f6b727a9e2169d369
Binary files /dev/null and b/content/docs-lite/zh/docs/DataVec/figures/opgs-springboot.png differ
diff --git a/content/docs-lite/zh/docs/DataVec/integrationJava.md b/content/docs-lite/zh/docs/DataVec/integrationJava.md
new file mode 100644
index 0000000000000000000000000000000000000000..d653097d3619e2da48c002ea43de6135667d3538
--- /dev/null
+++ b/content/docs-lite/zh/docs/DataVec/integrationJava.md
@@ -0,0 +1,134 @@
+# Java SDK对接向量数据库
+本文介绍如何使用Java语言调用openGauss向量数据库
+
+## 要求
+- 安装java1.8及以上版本
+- Apache Maven
+
+## 安装SDK
+开发者可以直接从maven中央仓库中获取jar包[maven中央仓库下载](https://central.sonatype.com/artifact/org.opengauss/opengauss-jdbc),也可以在openGauss官网下载[社区官网下载](https://opengauss.org/zh/download/),运行以下命令安装Java SDK
+```xml
+
+ org.opengauss
+ opengauss-jdbc
+ your version
+
+```
+## 基本操作
+### 1.连接数据库
+```java
+public Connection getConnection(String username, String passwd)
+{
+ String driver = "org.opengauss.Driver";
+ String sourceURL = "jdbc:opengauss://localhost:port/database_name";
+ Connection conn = null;
+
+ try {
+ Class.forName(driver).getDeclaredConstructor().newInstance();
+ } catch(Exception e) {
+ e.printStackTrace();
+ return null;
+ }
+ try {
+ conn = DriverManager.getConnection(sourceURL, username, passwd);
+ System.out.println("Connection succeed!");
+ } catch(Exception e) {
+ e.printStackTrace();
+ return null;
+ }
+ return conn;
+}
+```
+### 2.创建表
+```java
+// 执行普通SQL语句
+public void ExecuteSQL(Connection conn, String sql)
+{
+ Statement stmt = null;
+ try {
+ stmt = conn.createStatement();
+ int rc = stmt.executeUpdate(sql);
+ stmt.close();
+ } catch (SQLException e) {
+ if (stmt != null) {
+ try {
+ stmt.close();
+ } catch (SQLException e1) {
+ e1.printStackTrace();
+ }
+ }
+ e.printStackTrace();
+ }
+}
+
+public void CreateTable(int dim)
+{
+ String sql = String.format("CREATE TABLE IF NOT EXISTS demotable(id INTEGER, content TEXT, embedding vector(%d));", dim);
+ ExecuteSQL(sql);
+}
+```
+### 3.创建索引
+```java
+// 用L2距离创建HNSW类型的向量索引
+public void CreateIndex()
+{
+ String sql = String.format("CREATE INDEX ON demotable USING hnsw (embedding vector_l2_ops);");
+ ExecuteSQL(sql);
+}
+```
+### 4.插入/删除/更新
+- 插入
+ ```java
+public void InsertDataSingle(int id, String content, String vector)
+{
+ String sql = String.format("INSERT INTO demotable VALUES(%d, '%s', '%s');", id, content, vector);
+ ExecuteSQL(sql);
+}
+```
+- 删除
+```java
+public void DeleteData()
+{
+ String sql = String.format("DELETE FROM demotable where id > 10;");
+ ExecuteSQL(sql);
+}
+```
+- 更新
+```java
+public void UpdateData(String vector)
+{
+ String sql = String.format("UPDATE demotable set embedding = '%s' where id = 10;");
+ ExecuteSQL(sql);
+}
+```
+### 5.查询
+```java
+public String findNearestVectors(Connection conn, int efsearch, String vector, int topK)
+{
+ Statement statement = null;
+ ResultSet resultSet = null;
+ String res = "";
+ // 设置查询参数
+ String paramsql = String.format("set hnsw_ef_search = %d;", efsearch);
+ ExecuteSQL(paramsql);
+ String querysql = String.format("SELECT * FROM demotable ORDER BY embedding <-> '%s' LIMIT %d;", vector, topK);
+ try {
+ statement = conn.createStatement();
+ resultSet = statement.executeQuery(querysql);
+ while (resultSet.next()) {
+ int id = resultSet.getInt("id");
+ String content = resultSet.getString("content");
+ Object embed = resultSet.getObject("embedding");
+ // 替换成你希望的结果
+ res += "id: " + id + ", content: " + content + ",embedding: " + embed + "\n";
+ }
+ } catch (Exception e) {
+ e.printStackTrace();
+ } finally {
+ try { if (resultSet != null) resultSet.close(); } catch(Exception e) {}
+ try { if (statement != null) statement.close(); } catch(Exception e) {}
+ }
+ return res;
+}
+```
+[更多操作示例参考](https://gitee.com/opengauss/openGauss-connector-jdbc)
\ No newline at end of file
diff --git a/content/docs-lite/zh/docs/DataVec/openGauss-Springboot.md b/content/docs-lite/zh/docs/DataVec/openGauss-Springboot.md
new file mode 100644
index 0000000000000000000000000000000000000000..62aa6029285b660e64ff0e2ca14668472b299482
--- /dev/null
+++ b/content/docs-lite/zh/docs/DataVec/openGauss-Springboot.md
@@ -0,0 +1,200 @@
+# Spring Boot集成openGauss DataVec实现向量化检索
+本文将介绍如何在 Spring Boot 框架中集成 openGauss DataVec 向量数据库,并调用 Ollama 服务提供的 embedding 服务,以此高效实现数据的向量化存储与检索,为 RAG(检索增强生成)提供助力。
+## 要求
+- 安装java1.8及以上版本
+- Spring Boot 3.X及以上版本
+- Ollama服务安装部署 [部署参考](https://github.com/ollama/ollama)
+- openGauss数据库安装部署 [容器镜像安装](../InstallationGuide/容器镜像安装.md)
+
+# 添加Maven依赖
+在pom.xml中添加openGauss jdbc和ollama sdk依赖
+```xml
+
+ org.opengauss
+ opengauss-jdbc
+ 6.0.1
+
+
+ org.springframework.ai
+ spring-ai-ollama-spring-boot-starter
+ 1.0.0.M2
+
+```
+# 配置yml文件
+在application.properities文件中配置相应的数据信息
+```
+server.port=8088
+spring.application.name=your_project_name
+
+spring.datasource.url=jdbc:opengauss://localhost:port/database_name
+spring.datasource.username=username
+spring.datasource.password=password
+spring.datasource.driver-class-name=org.opengauss.Driver
+
+ollama.model=nomic-embed-text:latest // 你选择的embedding模型
+ollama.modelDim=768 // 向量化后数据的维度
+ollama.embeddingURL=ip:port // ollama服务运行的服务器ip和port
+```
+
+# 向量数据库配置和操作类
+- 向量数据库的配置类,获取服务地址、用户名、密码等,并[建立连接](integrationJava.md)
+```java
+@Configuration
+public class opgsConfig {
+ @Value("${spring.datasource.url}")
+ private String url;
+
+ @Value("${spring.datasource.username}")
+ private String username;
+
+ @Value("${spring.datasource.password}")
+ private String password;
+
+ @Value("${spring.datasource.driver-class-name}")
+ private String driver;
+
+ public Connection getConnection() {
+ // 连接数据库
+ }
+}
+```
+- 向量数据库的操作类,与数据库交互,完成增删改查,表、向量索引的创建等 [示例参考](integrationJava.md)
+```java
+@Repository
+public class Repository {
+ private Connection conn;
+
+ public void CreateTable(int dim)
+ {
+ ...
+ }
+
+ public void CreateIndex()
+ {
+ ...
+ }
+
+ public void InsertDataSingle(int id, String content, String vector)
+ {
+ ...
+ }
+
+ public String findNearestVectors(int efsearch, String vector, int topK)
+ {
+ ...
+ }
+ ...
+}
+```
+# Service层
+调用Ollama服务将Controller层传递过来的原始数据embedding,并调用操作类中封装的API实现数据访问
+```java
+@Service
+public class Service {
+ private final Repository repository;
+
+ @Value("${ollama.modelDim}")
+ private int vectorDim;
+
+ @Value("${ollama.embeddingURL}")
+ private String embeddingURL;
+
+ @Value("${ollama.model}")
+ private String ollamaModel;
+
+
+ // 调取Ollama服务embedding
+ public float[] getEmbedding(String message)
+ {
+ OllamaApi ollamaApi = new OllamaApi(embeddingURL);
+ OllamaOptions options = OllamaOptions.builder().withModel(ollamaModel).build();
+ OllamaEmbeddingModel embeddingModel = new OllamaEmbeddingModel(ollamaApi, options);
+ EmbeddingResponse embeddingResponse = embeddingModel.call(new EmbeddingRequest(List.of(message), options));
+ return embeddingResponse.getResult().getOutput();
+ }
+
+ // 调取Repository类与向量数据库交互的API
+ public void CreateTxtTable()
+ {
+ repository.CreateTable(vectorDim);
+ }
+
+ public void InsertTuples(int id, String message)
+ {
+ float[] res = getEmbedding(message);
+ repository.InsertDataSingle(id, message, Arrays.toString(res));
+ }
+
+ public void IndexTxt()
+ {
+ repository.CreateIndex();
+ }
+
+ public String QueryContent(int efsearch, String query, int topK)
+ {
+ float[] res = getEmbedding(query);
+ return repository.findNearestVectors(efsearch, Arrays.toString(res), int topK);
+ }
+ ...
+}
+```
+
+# Controller层
+```java
+@RestController
+public class Controller {
+ @Autowired
+ private Service service;
+
+ @GetMapping("/index")
+ public String IndexDoc()
+ {
+ service.CreateTxtTable();
+ service.InsertTuples(0, "大规模预训练语言模型 高效并行训练 支持多种NLP任务");
+ service.InsertTuples(1, "多模态融合模型 结合文本、图像和音频输入 提供全面的数据理解能力");
+ service.InsertTuples(2, "分布式深度学习框架 易于扩展 支持大规模数据处理");
+ service.InsertTuples(3, "视频理解与生成模型 先进的时间序列分析技术 适用于监控和娱乐");
+ service.InsertTuples(4, "超高分辨率图像生成模型 GAN架构 强大的细节捕捉能力");
+ service.IndexTxt();
+ return "embedding and index succeed!"
+
+ }
+
+ @GetMapping("/queryVector")
+ public String queryVector()
+ {
+ String query = "适合高效并行训练的大语言模型有哪些";
+ int topK = 3;
+ String res = service.QueryContent(2, query, topK);
+ System.out.println(res);
+ return res;
+ }
+
+}
+```
+
+# 结果展示
+- 网页中输入localhost:8088/index完成文本的embedding和索引创建
+
+页面会返回如下结果,用户可根据结果自定义前端页面
+```
+embedding and index succeed!
+```
+- 网页中输入localhost:8088/queryVector得到json格式的查询结果
+
+```
+[
+ {
+ "id": 0,
+ "content": "大规模预训练语言模型 高效并行训练 支持多种NLP任务"
+ },
+ {
+ "id": 4,
+ "content": "超高分辨率图像生成模型 GAN架构 强大的细节捕捉能力"
+ },
+ {
+ "id": 2,
+ "content": "分布式深度学习框架 易于扩展 支持大规模数据处理"
+ },
+]
+```
\ No newline at end of file
diff --git a/content/zh/docs/DataVec/DataVec-integrations.md b/content/zh/docs/DataVec/DataVec-integrations.md
index 9345bc5a4ece15fe1654136a2d4ac8334822cfeb..dc98a9e63988bf59cbab1634bcfb488b8d0b4d48 100644
--- a/content/zh/docs/DataVec/DataVec-integrations.md
+++ b/content/zh/docs/DataVec/DataVec-integrations.md
@@ -13,7 +13,7 @@ openGauss DataVec提供多种第三方组件的集成教程,并通过多语言
## API Reference
- [Python](https://gitee.com/opengauss/openGauss-connector-python-psycopg2)
-- [Java](https://gitee.com/opengauss/openGauss-connector-jdbc)
+- [Java](integrationJava.md)
- [Node.js](https://gitee.com/opengauss/openGauss-connector-nodejs)
- [Go](https://gitee.com/opengauss/openGauss-connector-go-pq)
diff --git a/content/zh/docs/DataVec/DataVec-tutorials.md b/content/zh/docs/DataVec/DataVec-tutorials.md
index d5852bed20621a699e3f0434bdc729a8ab8ac819..fdf3cc46fc0a8a80687b324ef900b27759ab7af1 100644
--- a/content/zh/docs/DataVec/DataVec-tutorials.md
+++ b/content/zh/docs/DataVec/DataVec-tutorials.md
@@ -4,4 +4,4 @@
- [打破AI黑盒,拥抱开源力量:基于openGauss+DeepSeek的本地知识库,打造你的专属AI助手!](openGauss-RAG实践.md)
- [openGauss DataVec + Dify, 快速搭建你的智能助手平台](openGauss-Dify.md)
-- SpringBoot 集成 openGauss DataVec, 智能问答一站式开发
+- [SpringBoot 集成 openGauss DataVec, 实现向量化检索](openGauss-Springboot.md)
diff --git a/content/zh/docs/DataVec/figures/opgs-springboot.png b/content/zh/docs/DataVec/figures/opgs-springboot.png
new file mode 100644
index 0000000000000000000000000000000000000000..8c6ea80b3f041c84bcaf9a8f6b727a9e2169d369
Binary files /dev/null and b/content/zh/docs/DataVec/figures/opgs-springboot.png differ
diff --git a/content/zh/docs/DataVec/integrationJava.md b/content/zh/docs/DataVec/integrationJava.md
new file mode 100644
index 0000000000000000000000000000000000000000..d653097d3619e2da48c002ea43de6135667d3538
--- /dev/null
+++ b/content/zh/docs/DataVec/integrationJava.md
@@ -0,0 +1,134 @@
+# Java SDK对接向量数据库
+本文介绍如何使用Java语言调用openGauss向量数据库
+
+## 要求
+- 安装java1.8及以上版本
+- Apache Maven
+
+## 安装SDK
+开发者可以直接从maven中央仓库中获取jar包[maven中央仓库下载](https://central.sonatype.com/artifact/org.opengauss/opengauss-jdbc),也可以在openGauss官网下载[社区官网下载](https://opengauss.org/zh/download/),运行以下命令安装Java SDK
+```xml
+
+ org.opengauss
+ opengauss-jdbc
+ your version
+
+```
+## 基本操作
+### 1.连接数据库
+```java
+public Connection getConnection(String username, String passwd)
+{
+ String driver = "org.opengauss.Driver";
+ String sourceURL = "jdbc:opengauss://localhost:port/database_name";
+ Connection conn = null;
+
+ try {
+ Class.forName(driver).getDeclaredConstructor().newInstance();
+ } catch(Exception e) {
+ e.printStackTrace();
+ return null;
+ }
+ try {
+ conn = DriverManager.getConnection(sourceURL, username, passwd);
+ System.out.println("Connection succeed!");
+ } catch(Exception e) {
+ e.printStackTrace();
+ return null;
+ }
+ return conn;
+}
+```
+### 2.创建表
+```java
+// 执行普通SQL语句
+public void ExecuteSQL(Connection conn, String sql)
+{
+ Statement stmt = null;
+ try {
+ stmt = conn.createStatement();
+ int rc = stmt.executeUpdate(sql);
+ stmt.close();
+ } catch (SQLException e) {
+ if (stmt != null) {
+ try {
+ stmt.close();
+ } catch (SQLException e1) {
+ e1.printStackTrace();
+ }
+ }
+ e.printStackTrace();
+ }
+}
+
+public void CreateTable(int dim)
+{
+ String sql = String.format("CREATE TABLE IF NOT EXISTS demotable(id INTEGER, content TEXT, embedding vector(%d));", dim);
+ ExecuteSQL(sql);
+}
+```
+### 3.创建索引
+```java
+// 用L2距离创建HNSW类型的向量索引
+public void CreateIndex()
+{
+ String sql = String.format("CREATE INDEX ON demotable USING hnsw (embedding vector_l2_ops);");
+ ExecuteSQL(sql);
+}
+```
+### 4.插入/删除/更新
+- 插入
+ ```java
+public void InsertDataSingle(int id, String content, String vector)
+{
+ String sql = String.format("INSERT INTO demotable VALUES(%d, '%s', '%s');", id, content, vector);
+ ExecuteSQL(sql);
+}
+```
+- 删除
+```java
+public void DeleteData()
+{
+ String sql = String.format("DELETE FROM demotable where id > 10;");
+ ExecuteSQL(sql);
+}
+```
+- 更新
+```java
+public void UpdateData(String vector)
+{
+ String sql = String.format("UPDATE demotable set embedding = '%s' where id = 10;");
+ ExecuteSQL(sql);
+}
+```
+### 5.查询
+```java
+public String findNearestVectors(Connection conn, int efsearch, String vector, int topK)
+{
+ Statement statement = null;
+ ResultSet resultSet = null;
+ String res = "";
+ // 设置查询参数
+ String paramsql = String.format("set hnsw_ef_search = %d;", efsearch);
+ ExecuteSQL(paramsql);
+ String querysql = String.format("SELECT * FROM demotable ORDER BY embedding <-> '%s' LIMIT %d;", vector, topK);
+ try {
+ statement = conn.createStatement();
+ resultSet = statement.executeQuery(querysql);
+ while (resultSet.next()) {
+ int id = resultSet.getInt("id");
+ String content = resultSet.getString("content");
+ Object embed = resultSet.getObject("embedding");
+ // 替换成你希望的结果
+ res += "id: " + id + ", content: " + content + ",embedding: " + embed + "\n";
+ }
+ } catch (Exception e) {
+ e.printStackTrace();
+ } finally {
+ try { if (resultSet != null) resultSet.close(); } catch(Exception e) {}
+ try { if (statement != null) statement.close(); } catch(Exception e) {}
+ }
+ return res;
+}
+```
+[更多操作示例参考](https://gitee.com/opengauss/openGauss-connector-jdbc)
\ No newline at end of file
diff --git a/content/zh/docs/DataVec/openGauss-Springboot.md b/content/zh/docs/DataVec/openGauss-Springboot.md
new file mode 100644
index 0000000000000000000000000000000000000000..62aa6029285b660e64ff0e2ca14668472b299482
--- /dev/null
+++ b/content/zh/docs/DataVec/openGauss-Springboot.md
@@ -0,0 +1,200 @@
+# Spring Boot集成openGauss DataVec实现向量化检索
+本文将介绍如何在 Spring Boot 框架中集成 openGauss DataVec 向量数据库,并调用 Ollama 服务提供的 embedding 服务,以此高效实现数据的向量化存储与检索,为 RAG(检索增强生成)提供助力。
+## 要求
+- 安装java1.8及以上版本
+- Spring Boot 3.X及以上版本
+- Ollama服务安装部署 [部署参考](https://github.com/ollama/ollama)
+- openGauss数据库安装部署 [容器镜像安装](../InstallationGuide/容器镜像安装.md)
+
+# 添加Maven依赖
+在pom.xml中添加openGauss jdbc和ollama sdk依赖
+```xml
+
+ org.opengauss
+ opengauss-jdbc
+ 6.0.1
+
+
+ org.springframework.ai
+ spring-ai-ollama-spring-boot-starter
+ 1.0.0.M2
+
+```
+# 配置yml文件
+在application.properities文件中配置相应的数据信息
+```
+server.port=8088
+spring.application.name=your_project_name
+
+spring.datasource.url=jdbc:opengauss://localhost:port/database_name
+spring.datasource.username=username
+spring.datasource.password=password
+spring.datasource.driver-class-name=org.opengauss.Driver
+
+ollama.model=nomic-embed-text:latest // 你选择的embedding模型
+ollama.modelDim=768 // 向量化后数据的维度
+ollama.embeddingURL=ip:port // ollama服务运行的服务器ip和port
+```
+
+# 向量数据库配置和操作类
+- 向量数据库的配置类,获取服务地址、用户名、密码等,并[建立连接](integrationJava.md)
+```java
+@Configuration
+public class opgsConfig {
+ @Value("${spring.datasource.url}")
+ private String url;
+
+ @Value("${spring.datasource.username}")
+ private String username;
+
+ @Value("${spring.datasource.password}")
+ private String password;
+
+ @Value("${spring.datasource.driver-class-name}")
+ private String driver;
+
+ public Connection getConnection() {
+ // 连接数据库
+ }
+}
+```
+- 向量数据库的操作类,与数据库交互,完成增删改查,表、向量索引的创建等 [示例参考](integrationJava.md)
+```java
+@Repository
+public class Repository {
+ private Connection conn;
+
+ public void CreateTable(int dim)
+ {
+ ...
+ }
+
+ public void CreateIndex()
+ {
+ ...
+ }
+
+ public void InsertDataSingle(int id, String content, String vector)
+ {
+ ...
+ }
+
+ public String findNearestVectors(int efsearch, String vector, int topK)
+ {
+ ...
+ }
+ ...
+}
+```
+# Service层
+调用Ollama服务将Controller层传递过来的原始数据embedding,并调用操作类中封装的API实现数据访问
+```java
+@Service
+public class Service {
+ private final Repository repository;
+
+ @Value("${ollama.modelDim}")
+ private int vectorDim;
+
+ @Value("${ollama.embeddingURL}")
+ private String embeddingURL;
+
+ @Value("${ollama.model}")
+ private String ollamaModel;
+
+
+ // 调取Ollama服务embedding
+ public float[] getEmbedding(String message)
+ {
+ OllamaApi ollamaApi = new OllamaApi(embeddingURL);
+ OllamaOptions options = OllamaOptions.builder().withModel(ollamaModel).build();
+ OllamaEmbeddingModel embeddingModel = new OllamaEmbeddingModel(ollamaApi, options);
+ EmbeddingResponse embeddingResponse = embeddingModel.call(new EmbeddingRequest(List.of(message), options));
+ return embeddingResponse.getResult().getOutput();
+ }
+
+ // 调取Repository类与向量数据库交互的API
+ public void CreateTxtTable()
+ {
+ repository.CreateTable(vectorDim);
+ }
+
+ public void InsertTuples(int id, String message)
+ {
+ float[] res = getEmbedding(message);
+ repository.InsertDataSingle(id, message, Arrays.toString(res));
+ }
+
+ public void IndexTxt()
+ {
+ repository.CreateIndex();
+ }
+
+ public String QueryContent(int efsearch, String query, int topK)
+ {
+ float[] res = getEmbedding(query);
+ return repository.findNearestVectors(efsearch, Arrays.toString(res), int topK);
+ }
+ ...
+}
+```
+
+# Controller层
+```java
+@RestController
+public class Controller {
+ @Autowired
+ private Service service;
+
+ @GetMapping("/index")
+ public String IndexDoc()
+ {
+ service.CreateTxtTable();
+ service.InsertTuples(0, "大规模预训练语言模型 高效并行训练 支持多种NLP任务");
+ service.InsertTuples(1, "多模态融合模型 结合文本、图像和音频输入 提供全面的数据理解能力");
+ service.InsertTuples(2, "分布式深度学习框架 易于扩展 支持大规模数据处理");
+ service.InsertTuples(3, "视频理解与生成模型 先进的时间序列分析技术 适用于监控和娱乐");
+ service.InsertTuples(4, "超高分辨率图像生成模型 GAN架构 强大的细节捕捉能力");
+ service.IndexTxt();
+ return "embedding and index succeed!"
+
+ }
+
+ @GetMapping("/queryVector")
+ public String queryVector()
+ {
+ String query = "适合高效并行训练的大语言模型有哪些";
+ int topK = 3;
+ String res = service.QueryContent(2, query, topK);
+ System.out.println(res);
+ return res;
+ }
+
+}
+```
+
+# 结果展示
+- 网页中输入localhost:8088/index完成文本的embedding和索引创建
+
+页面会返回如下结果,用户可根据结果自定义前端页面
+```
+embedding and index succeed!
+```
+- 网页中输入localhost:8088/queryVector得到json格式的查询结果
+
+```
+[
+ {
+ "id": 0,
+ "content": "大规模预训练语言模型 高效并行训练 支持多种NLP任务"
+ },
+ {
+ "id": 4,
+ "content": "超高分辨率图像生成模型 GAN架构 强大的细节捕捉能力"
+ },
+ {
+ "id": 2,
+ "content": "分布式深度学习框架 易于扩展 支持大规模数据处理"
+ },
+]
+```
\ No newline at end of file