# MinerU
**Repository Path**: ouw/MinerU
## Basic Information
- **Project Name**: MinerU
- **Description**: 大模型OCR
- **Primary Language**: Python
- **License**: AGPL-3.0
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 1
- **Created**: 2025-01-10
- **Last Updated**: 2025-01-10
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
[](https://github.com/opendatalab/MinerU)
[](https://github.com/opendatalab/MinerU)
[](https://github.com/opendatalab/MinerU/issues)
[](https://github.com/opendatalab/MinerU/issues)
[](https://badge.fury.io/py/magic-pdf)
[](https://pepy.tech/project/magic-pdf)
[](https://pepy.tech/project/magic-pdf)
[](https://opendatalab.com/OpenSourceTools/Extractor/PDF)
[](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
[](https://huggingface.co/spaces/opendatalab/MinerU)
[](https://colab.research.google.com/gist/myhloli/3b3a00a4a0a61577b6c30f989092d20d/mineru_demo.ipynb)
[](https://arxiv.org/abs/2409.18839)

[English](README.md) | [简体中文](README_zh-CN.md)
PDF-Extract-Kit: 高质量PDF解析工具箱🔥🔥🔥
👋 join us on Discord and WeChat
# 更新记录
- 2024/11/22 0.10.0发布,通过引入混合OCR文本提取能力,
- 在公式密集、span区域不规范、部分文本使用图像表现等复杂文本分布场景下获得解析效果的显著提升
- 同时具备文本模式内容提取准确、速度更快与OCR模式span/line区域识别更准的双重优势
- 2024/11/15 0.9.3发布,为表格识别功能接入了[RapidTable](https://github.com/RapidAI/RapidTable),单表解析速度提升10倍以上,准确率更高,显存占用更低
- 2024/11/06 0.9.2发布,为表格识别功能接入了[StructTable-InternVL2-1B](https://huggingface.co/U4R/StructTable-InternVL2-1B)模型
- 2024/10/31 0.9.0发布,这是我们进行了大量代码重构的全新版本,解决了众多问题,提升了性能,降低了硬件需求,并提供了更丰富的易用性:
- 重构排序模块代码,使用 [layoutreader](https://github.com/ppaanngggg/layoutreader) 进行阅读顺序排序,确保在各种排版下都能实现极高准确率
- 重构段落拼接模块,在跨栏、跨页、跨图、跨表情况下均能实现良好的段落拼接效果
- 重构列表和目录识别功能,极大提升列表块和目录块识别的准确率及对应文本段落的解析效果
- 重构图、表与描述性文本的匹配逻辑,大幅提升 caption 和 footnote 与图表的匹配准确率,并将描述性文本的丢失率降至接近0
- 增加 OCR 的多语言支持,支持 84 种语言的检测与识别,语言支持列表详见 [OCR 语言支持列表](https://paddlepaddle.github.io/PaddleOCR/latest/ppocr/blog/multi_languages.html#5)
- 增加显存回收逻辑及其他显存优化措施,大幅降低显存使用需求。开启除表格加速外的全部加速功能(layout/公式/OCR)的显存需求从16GB降至8GB,开启全部加速功能的显存需求从24GB降至10GB
- 优化配置文件的功能开关,增加独立的公式检测开关,无需公式检测时可大幅提升速度和解析效果
- 集成 [PDF-Extract-Kit 1.0](https://github.com/opendatalab/PDF-Extract-Kit)
- 加入自研的 `doclayout_yolo` 模型,在相近解析效果情况下比原方案提速10倍以上,可通过配置文件与 `layoutlmv3` 自由切换
- 公式解析升级至 `unimernet 0.2.1`,在提升公式解析准确率的同时,大幅降低显存需求
- 因 `PDF-Extract-Kit 1.0` 更换仓库,需要重新下载模型,步骤详见 [如何下载模型](docs/how_to_download_models_zh_cn.md)
- 2024/09/27 0.8.1发布,修复了一些bug,同时提供了[在线demo](https://opendatalab.com/OpenSourceTools/Extractor/PDF/)的[本地化部署版本](projects/web_demo/README_zh-CN.md)和[前端界面](projects/web/README_zh-CN.md)
- 2024/09/09 0.8.0发布,支持Dockerfile快速部署,同时上线了huggingface、modelscope demo
- 2024/08/30 0.7.1发布,集成了paddle tablemaster表格识别功能
- 2024/08/09 0.7.0b1发布,简化安装步骤提升易用性,加入表格识别功能
- 2024/08/01 0.6.2b1发布,优化了依赖冲突问题和安装文档
- 2024/07/05 首次开源