# FastDeploy **Repository Path**: paddlepaddle/FastDeploy ## Basic Information - **Project Name**: FastDeploy - **Description**: High-performance Inference and Deployment Toolkit for LLMs and VLMs based on PaddlePaddle - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: develop - **Homepage**: https://paddlepaddle.github.io/FastDeploy/ - **GVP Project**: No ## Statistics - **Stars**: 89 - **Forks**: 35 - **Created**: 2022-06-28 - **Last Updated**: 2025-07-06 ## Categories & Tags **Categories**: machine-learning **Tags**: None ## README
-------------------------------------------------------------------------------- # FastDeploy 2.0: Inference and Deployment Toolkit for LLMs and VLMs based on PaddlePaddle ## News **[2025-06] 🔥 Released FastDeploy v2.0:** Supports inference and deployment for ERNIE 4.5. Furthermore, we open-source an industrial-grade PD disaggregation with context caching, dynamic role switching for effective resource utilization to further enhance inference performance for MoE models. ## About **FastDeploy** is an inference and deployment toolkit for large language models and visual language models based on PaddlePaddle. It delivers **production-ready, out-of-the-box deployment solutions** with core acceleration technologies: - 🚀 **Load-Balanced PD Disaggregation**: Industrial-grade solution featuring context caching and dynamic instance role switching. Optimizes resource utilization while balancing SLO compliance and throughput. - 🔄 **Unified KV Cache Transmission**: Lightweight high-performance transport library with intelligent NVLink/RDMA selection. - 🤝 **OpenAI API Server and vLLM Compatible**: One-command deployment with [vLLM](https://github.com/vllm-project/vllm/) interface compatibility. - 🧮 **Comprehensive Quantization Format Support**: W8A16, W8A8, W4A16, W4A8, W2A16, FP8, and more. - ⏩ **Advanced Acceleration Techniques**: Speculative decoding, Multi-Token Prediction (MTP) and Chunked Prefill. - 🖥️ **Multi-Hardware Support**: NVIDIA GPU, Kunlunxin XPU, Hygon DCU, Ascend NPU, Iluvatar GPU, Enflame GCU, MetaX GPU etc. ## Requirements - OS: Linux - Python: 3.10 ~ 3.12 ## Installation FastDeploy supports inference deployment on **NVIDIA GPUs**, **Kunlunxin XPUs**, **Iluvatar GPUs**, **Enflame GCUs**, and other hardware. For detailed installation instructions: - [NVIDIA GPU](./docs/get_started/installation/nvidia_gpu.md) - [Kunlunxin XPU](./docs/get_started/installation/kunlunxin_xpu.md) - [Iluvatar GPU](./docs/get_started/installation/iluvatar_gpu.md) - [Enflame GCU](./docs/get_started/installation/Enflame_gcu.md) **Note:** We are actively working on expanding hardware support. Additional hardware platforms including Ascend NPU, Hygon DCU, and MetaX GPU are currently under development and testing. Stay tuned for updates! ## Get Started Learn how to use FastDeploy through our documentation: - [10-Minutes Quick Deployment](./docs/get_started/quick_start.md) - [ERNIE-4.5 Large Language Model Deployment](./docs/get_started/ernie-4.5.md) - [ERNIE-4.5-VL Multimodal Model Deployment](./docs/get_started/ernie-4.5-vl.md) - [Offline Inference Development](./docs/offline_inference.md) - [Online Service Deployment](./docs/online_serving/README.md) - [Full Supported Models List](./docs/supported_models.md) ## Supported Models | Model | Data Type | PD Disaggregation | Chunked Prefill | Prefix Caching | MTP | CUDA Graph | Maximum Context Length | |:--- | :------- | :---------- | :-------- | :-------- | :----- | :----- | :----- | |ERNIE-4.5-300B-A47B | BF16/WINT4/WINT8/W4A8C8/WINT2/FP8 | ✅| ✅ | ✅|✅(WINT4)| WIP |128K | |ERNIE-4.5-300B-A47B-Base| BF16/WINT4/WINT8 | ✅| ✅ | ✅|✅(WINT4)| WIP | 128K | |ERNIE-4.5-VL-424B-A47B | BF16/WINT4/WINT8 | WIP | ✅ | WIP | ❌ | WIP |128K | |ERNIE-4.5-VL-28B-A3B | BF16/WINT4/WINT8 | ❌ | ✅ | WIP | ❌ | WIP |128K | |ERNIE-4.5-21B-A3B | BF16/WINT4/WINT8/FP8 | ❌ | ✅ | ✅ | WIP | ✅|128K | |ERNIE-4.5-21B-A3B-Base | BF16/WINT4/WINT8/FP8 | ❌ | ✅ | ✅ | WIP | ✅|128K | |ERNIE-4.5-0.3B | BF16/WINT8/FP8 | ❌ | ✅ | ✅ | ❌ | ✅| 128K | ## Advanced Usage - [Quantization](./docs/quantization/README.md) - [PD Disaggregation Deployment](./docs/features/disaggregated.md) - [Speculative Decoding](./docs/features/speculative_decoding.md) - [Prefix Caching](./docs/features/prefix_caching.md) - [Chunked Prefill](./docs/features/chunked_prefill.md) ## Acknowledgement FastDeploy is licensed under the [Apache-2.0 open-source license](./LICENSE). During development, portions of [vLLM](https://github.com/vllm-project/vllm) code were referenced and incorporated to maintain interface compatibility, for which we express our gratitude.