# PaddleOCR
**Repository Path**: paddlepaddle/PaddleOCR
## Basic Information
- **Project Name**: PaddleOCR
- **Description**: 基于飞桨的OCR和文档解析工具库,包含文字识别PP-OCR系列模型、文档解析PP-Structure系列方案和关键信息抽取PP-ChatOCR系列方案
- **Primary Language**: Python
- **License**: Apache-2.0
- **Default Branch**: main
- **Homepage**: https://paddlepaddle.github.io/PaddleOCR/latest/
- **GVP Project**: Yes
## Statistics
- **Stars**: 4033
- **Forks**: 1020
- **Created**: 2020-05-27
- **Last Updated**: 2025-06-20
## Categories & Tags
**Categories**: cv
**Tags**: None
## README
中文 | [English](./README_en.md)
[](https://github.com/PaddlePaddle/PaddleOCR)
[](https://pypi.org/project/PaddleOCR/)



[](https://www.paddleocr.ai/)
[](https://aistudio.baidu.com/community/app/91660/webUI)
[](https://aistudio.baidu.com/community/app/518494/webUI)
[](https://aistudio.baidu.com/community/app/518493/webUI)
## 🚀 简介
PaddleOCR自发布以来凭借学术前沿算法和产业落地实践,受到了产学研各方的喜爱,并被广泛应用于众多知名开源项目,例如:Umi-OCR、OmniParser、MinerU、RAGFlow等,已成为广大开发者心中的开源OCR领域的首选工具。2025年5月20日,飞桨团队发布**PaddleOCR 3.0**,全面适配**飞桨框架3.0正式版**,进一步**提升文字识别精度**,支持**多文字类型识别**和**手写体识别**,满足大模型应用对**复杂文档高精度解析**的旺盛需求,结合**文心大模型4.5 Turbo**显著提升关键信息抽取精度,并新增**对昆仑芯、昇腾等国产硬件**的支持。完整使用文档请参考 [PaddleOCR 3.0 文档](https://paddlepaddle.github.io/PaddleOCR/latest/)。
PaddleOCR 3.0**新增**三大特色能力:
- 全场景文字识别模型[PP-OCRv5](docs/version3.x/algorithm/PP-OCRv5/PP-OCRv5.md):单模型支持五种文字类型和复杂手写体识别;整体识别精度相比上一代**提升13个百分点**。[在线体验](https://aistudio.baidu.com/community/app/91660/webUI)
- 通用文档解析方案[PP-StructureV3](docs/version3.x/algorithm/PP-StructureV3/PP-StructureV3.md):支持多场景、多版式 PDF 高精度解析,在公开评测集中**领先众多开源和闭源方案**。[在线体验](https://aistudio.baidu.com/community/app/518494/webUI)
- 智能文档理解方案[PP-ChatOCRv4](docs/version3.x/algorithm/PP-ChatOCRv4/PP-ChatOCRv4.md):原生支持文心大模型4.5 Turbo,精度相比上一代**提升15个百分点**。[在线体验](https://aistudio.baidu.com/community/app/518493/webUI)
PaddleOCR 3.0除了提供优秀的模型库外,还提供好学易用的工具,覆盖模型训练、推理和服务化部署,方便开发者快速落地AI应用。
## 📣 最新动态
🔥🔥2025.06.19: **PaddleOCR 3.0.2** 发布,包含:
- **功能新增:**
- 模型默认下载源从`BOS`改为`HuggingFace`,同时也支持用户通过更改环境变量`PADDLE_PDX_MODEL_SOURCE`为`BOS`,将模型下载源设置为百度云对象存储BOS。
- PP-OCRv5、PP-StructureV3、PP-ChatOCRv4等pipeline新增C++、Java、Go、C#、Node.js、PHP 6种语言的服务调用示例。
- 优化PP-StructureV3产线中版面分区排序算法,对复杂竖版版面排序逻辑进行完善,进一步提升了复杂版面排序效果。
- 优化模型选择逻辑,当指定语言、未指定模型版本时,自动选择支持该语言的最新版本的模型。
- 为MKL-DNN缓存大小设置默认上界,防止缓存无限增长。同时,支持用户配置缓存容量。
- 更新高性能推理默认配置,支持Paddle MKL-DNN加速。优化高性能推理自动配置逻辑,支持更智能的配置选择。
- 调整默认设备获取逻辑,考虑环境中安装的Paddle框架对计算设备的实际支持情况,使程序行为更符合直觉。
- 新增PP-OCRv5的Android端示例,[详情](https://paddlepaddle.github.io/PaddleOCR/latest/version3.x/deployment/on_device_deployment.html)。
- **Bug修复:**
- 修复PP-StructureV3部分CLI参数不生效的问题。
- 修复部分情况下`export_paddlex_config_to_yaml`无法正常工作的问题。
- 修复save_path实际行为与文档描述不符的问题。
- 修复基础服务化部署在使用MKL-DNN时可能出现的多线程错误。
- 修复Latex-OCR模型的图像预处理的通道顺序错误。
- 修复文本识别模块保存可视化图像的通道顺序错误。
- 修复PP-StructureV3中表格可视化结果通道顺序错误。
- 修复PP-StructureV3产线中极特殊的情况下,计算overlap_ratio时,变量溢出问题。
- **文档优化:**
- 更新文档中对`enable_mkldnn`参数的说明,使其更准确地描述程序的实际行为。
- 修复文档中对`lang`和`ocr_version`参数描述的错误。
- 补充通过CLI导出产线配置文件的说明。
- 修复PP-OCRv5性能数据表格中的列缺失问题。
- 润色PP-StructureV3在不同配置下的benchmark指标。
- **其他:**
- 放松numpy、pandas等依赖的版本限制,恢复对Python 3.12的支持。
历史日志
🔥🔥2025.06.05: **PaddleOCR 3.0.1** 发布,包含:
- **优化部分模型和模型配置:**
- 更新 PP-OCRv5默认模型配置,检测和识别均由mobile改为server模型。为了改善大多数的场景默认效果,配置中的参数`limit_side_len`由736改为64
- 新增文本行方向分类`PP-LCNet_x1_0_textline_ori`模型,精度99.42%,OCR、PP-StructureV3、PP-ChatOCRv4产线的默认文本行方向分类器改为该模型
- 优化文本行方向分类`PP-LCNet_x0_25_textline_ori`模型,精度提升3.3个百分点,当前精度98.85%
- **优化和修复3.0.0版本部分存在的问题,[详情](https://paddlepaddle.github.io/PaddleOCR/latest/update/update.html)**
🔥🔥2025.05.20: **PaddleOCR 3.0** 正式发布,包含:
- **PP-OCRv5**: 全场景高精度文字识别
1. 🌐 单模型支持**五种**文字类型(**简体中文**、**繁体中文**、**中文拼音**、**英文**和**日文**)。
2. ✍️ 支持复杂**手写体**识别:复杂连笔、非规范字迹识别性能显著提升。
3. 🎯 整体识别精度提升 - 多种应用场景达到 SOTA 精度, 相比上一版本PP-OCRv4,识别精度**提升13个百分点**!
- **PP-StructureV3**: 通用文档解析方案
1. 🧮 支持多场景 PDF 高精度解析,在 OmniDocBench 基准测试中**领先众多开源和闭源方案**。
2. 🧠 多项专精能力: **印章识别**、**图表转表格**、**嵌套公式/图片的表格识别**、**竖排文本解析**及**复杂表格结构分析**等。
- **PP-ChatOCRv4**: 智能文档理解方案
1. 🔥 文档图像(PDF/PNG/JPG)关键信息提取精度相比上一代**提升15个百分点**!
2. 💻 原生支持**文心大模型4.5 Turbo**,还兼容 PaddleNLP、Ollama、vLLM 等工具部署的大模型。
3. 🤝 集成 [PP-DocBee2](https://github.com/PaddlePaddle/PaddleMIX/tree/develop/paddlemix/examples/ppdocbee2),支持印刷文字、手写体文字、印章信息、表格、图表等常见的复杂文档信息抽取和理解的能力。
[更多日志](https://paddlepaddle.github.io/PaddleOCR/latest/update/update.html)
## ⚡ 快速开始
### 1. 在线体验
[](https://aistudio.baidu.com/community/app/91660/webUI)
[](https://aistudio.baidu.com/community/app/518494/webUI)
[](https://aistudio.baidu.com/community/app/518493/webUI)
### 2. 本地安装
请参考[安装指南](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/develop/install/pip/linux-pip.html)完成**PaddlePaddle 3.0**的安装,然后安装paddleocr。
```bash
# 安装 paddleocr
pip install paddleocr
```
### 3. 命令行方式推理
```bash
# 运行 PP-OCRv5 推理
paddleocr ocr -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_002.png --use_doc_orientation_classify False --use_doc_unwarping False --use_textline_orientation False
# 运行 PP-StructureV3 推理
paddleocr pp_structurev3 -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/pp_structure_v3_demo.png --use_doc_orientation_classify False --use_doc_unwarping False
# 运行 PP-ChatOCRv4 推理前,需要先获得千帆API Key
paddleocr pp_chatocrv4_doc -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/vehicle_certificate-1.png -k 驾驶室准乘人数 --qianfan_api_key your_api_key --use_doc_orientation_classify False --use_doc_unwarping False
# 查看 "paddleocr ocr" 详细参数
paddleocr ocr --help
```
### 4. API方式推理
**4.1 PP-OCRv5 示例**
```python
from paddleocr import PaddleOCR
# 初始化 PaddleOCR 实例
ocr = PaddleOCR(
use_doc_orientation_classify=False,
use_doc_unwarping=False,
use_textline_orientation=False)
# 对示例图像执行 OCR 推理
result = ocr.predict(
input="https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_002.png")
# 可视化结果并保存 json 结果
for res in result:
res.print()
res.save_to_img("output")
res.save_to_json("output")
```
4.2 PP-StructureV3 示例
```python
from pathlib import Path
from paddleocr import PPStructureV3
pipeline = PPStructureV3(
use_doc_orientation_classify=False,
use_doc_unwarping=False
)
# For Image
output = pipeline.predict(
input="https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/pp_structure_v3_demo.png",
)
# 可视化结果并保存 json 结果
for res in output:
res.print()
res.save_to_json(save_path="output")
res.save_to_markdown(save_path="output")
```
4.3 PP-ChatOCRv4 示例
```python
from paddleocr import PPChatOCRv4Doc
chat_bot_config = {
"module_name": "chat_bot",
"model_name": "ernie-3.5-8k",
"base_url": "https://qianfan.baidubce.com/v2",
"api_type": "openai",
"api_key": "api_key", # your api_key
}
retriever_config = {
"module_name": "retriever",
"model_name": "embedding-v1",
"base_url": "https://qianfan.baidubce.com/v2",
"api_type": "qianfan",
"api_key": "api_key", # your api_key
}
pipeline = PPChatOCRv4Doc(
use_doc_orientation_classify=False,
use_doc_unwarping=False
)
visual_predict_res = pipeline.visual_predict(
input="https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/vehicle_certificate-1.png",
use_common_ocr=True,
use_seal_recognition=True,
use_table_recognition=True,
)
mllm_predict_info = None
use_mllm = False
# 如果使用多模态大模型,需要启动本地 mllm 服务,可以参考文档:https://github.com/PaddlePaddle/PaddleX/blob/release/3.0/docs/pipeline_usage/tutorials/vlm_pipelines/doc_understanding.md 进行部署,并更新 mllm_chat_bot_config 配置。
if use_mllm:
mllm_chat_bot_config = {
"module_name": "chat_bot",
"model_name": "PP-DocBee",
"base_url": "http://127.0.0.1:8080/", # your local mllm service url
"api_type": "openai",
"api_key": "api_key", # your api_key
}
mllm_predict_res = pipeline.mllm_pred(
input="https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/vehicle_certificate-1.png",
key_list=["驾驶室准乘人数"],
mllm_chat_bot_config=mllm_chat_bot_config,
)
mllm_predict_info = mllm_predict_res["mllm_res"]
visual_info_list = []
for res in visual_predict_res:
visual_info_list.append(res["visual_info"])
layout_parsing_result = res["layout_parsing_result"]
vector_info = pipeline.build_vector(
visual_info_list, flag_save_bytes_vector=True, retriever_config=retriever_config
)
chat_result = pipeline.chat(
key_list=["驾驶室准乘人数"],
visual_info=visual_info_list,
vector_info=vector_info,
mllm_predict_info=mllm_predict_info,
chat_bot_config=chat_bot_config,
retriever_config=retriever_config,
)
print(chat_result)
```
### 5. **国产化硬件使用**
- [昆仑芯安装指南](https://paddlepaddle.github.io/PaddleOCR/latest/version3.x/other_devices_support/paddlepaddle_install_XPU.html)
- [昇腾安装指南](https://paddlepaddle.github.io/PaddleOCR/latest/version3.x/other_devices_support/paddlepaddle_install_NPU.html)
## ⛰️ 进阶指南
- [PP-OCRv5 使用教程](https://paddlepaddle.github.io/PaddleOCR/latest/version3.x/pipeline_usage/OCR.html)
- [PP-StructureV3 使用教程](https://paddlepaddle.github.io/PaddleOCR/latest/version3.x/pipeline_usage/PP-StructureV3.html)
- [PP-ChatOCRv4 使用教程](https://paddlepaddle.github.io/PaddleOCR/latest/version3.x/pipeline_usage/PP-ChatOCRv4.html)
## 🔄 效果展示
## 👩👩👧👦 开发者社区
| 扫码关注飞桨公众号 | 扫码加入技术交流群 |
| :---: | :---: |
|
|
|
## 🏆 使用 PaddleOCR 的优秀项目
PaddleOCR 的发展离不开社区贡献!💗衷心感谢所有开发者、合作伙伴与贡献者!
| 项目名称 | 简介 |
| ------------ | ----------- |
| [RAGFlow](https://github.com/infiniflow/ragflow)
|基于RAG的AI工作流引擎|
| [MinerU](https://github.com/opendatalab/MinerU)
|多类型文档转换Markdown工具|
| [Umi-OCR](https://github.com/hiroi-sora/Umi-OCR)
|开源批量离线OCR软件|
| [OmniParser](https://github.com/microsoft/OmniParser)
|基于纯视觉的GUI智能体屏幕解析工具|
| [QAnything](https://github.com/netease-youdao/QAnything)
|基于任意内容的问答系统|
| [PDF-Extract-Kit](https://github.com/opendatalab/PDF-Extract-Kit)
|高效复杂PDF文档提取工具包|
| [Dango-Translator](https://github.com/PantsuDango/Dango-Translator)
|屏幕实时翻译工具|
| [更多项目](./awesome_projects.md) | |
## 👩👩👧👦 贡献者
## 🌟 Star
[](https://star-history.com/#PaddlePaddle/PaddleOCR&Date)
## 📄 许可协议
本项目的发布受[Apache 2.0 license](LICENSE)许可认证。
## 🎓 学术引用
```
@misc{paddleocr2020,
title={PaddleOCR, Awesome multilingual OCR toolkits based on PaddlePaddle.},
author={PaddlePaddle Authors},
howpublished = {\url{https://github.com/PaddlePaddle/PaddleOCR}},
year={2020}
}
```