diff --git a/1_numpy_matplotlib_scipy_sympy/1-numpy_tutorial.ipynb b/1_numpy_matplotlib_scipy_sympy/1-numpy_tutorial.ipynb index 9f9d2a90e3183abc502e2642f9134f9c8c0f7eb8..f175432238dd7c94d77e256197b8381f6ad78bfb 100644 --- a/1_numpy_matplotlib_scipy_sympy/1-numpy_tutorial.ipynb +++ b/1_numpy_matplotlib_scipy_sympy/1-numpy_tutorial.ipynb @@ -41,7 +41,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -52,7 +52,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -62,7 +62,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -111,7 +111,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -127,7 +127,7 @@ "array([1, 2, 3, 4])" ] }, - "execution_count": 6, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -146,7 +146,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -172,7 +172,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -218,7 +218,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -227,7 +227,7 @@ "(numpy.ndarray, numpy.ndarray)" ] }, - "execution_count": 10, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -245,7 +245,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -254,7 +254,7 @@ "(4,)" ] }, - "execution_count": 11, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -265,7 +265,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -274,7 +274,7 @@ "(4, 3, 2)" ] }, - "execution_count": 12, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -292,7 +292,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -301,7 +301,7 @@ "24" ] }, - "execution_count": 13, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -319,7 +319,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -328,7 +328,7 @@ "(4, 3, 2)" ] }, - "execution_count": 14, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -339,7 +339,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -348,7 +348,7 @@ "24" ] }, - "execution_count": 15, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -375,7 +375,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -384,7 +384,7 @@ "dtype('int64')" ] }, - "execution_count": 16, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -402,7 +402,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -410,9 +410,9 @@ "evalue": "invalid literal for int() with base 10: 'hello'", "output_type": "error", "traceback": [ - "\u001b[0;31m------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mM\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"hello\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mM\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"hello\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mValueError\u001b[0m: invalid literal for int() with base 10: 'hello'" ] } @@ -430,7 +430,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -440,7 +440,7 @@ " [3.+0.j, 4.+0.j]])" ] }, - "execution_count": 18, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -483,7 +483,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -506,7 +506,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -519,7 +519,7 @@ " 6.00000000e-01, 7.00000000e-01, 8.00000000e-01, 9.00000000e-01])" ] }, - "execution_count": 22, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -539,7 +539,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -548,7 +548,7 @@ "array([ 0. , 2.5, 5. , 7.5, 10. ])" ] }, - "execution_count": 23, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -560,7 +560,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -571,7 +571,7 @@ " 7.25095809e+03, 2.20264658e+04])" ] }, - "execution_count": 24, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -589,7 +589,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -598,7 +598,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -611,7 +611,7 @@ " [0, 1, 2, 3, 4]])" ] }, - "execution_count": 26, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -622,7 +622,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -635,7 +635,7 @@ " [4, 4, 4, 4, 4]])" ] }, - "execution_count": 27, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -653,7 +653,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -662,39 +662,39 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[[0.34933999, 0.78232989],\n", - " [0.07449912, 0.57488499],\n", - " [0.28079982, 0.65921106],\n", - " [0.71455261, 0.88375022]],\n", + "array([[[0.57397454, 0.12434228],\n", + " [0.74835474, 0.01034541],\n", + " [0.91383579, 0.02807574],\n", + " [0.14217509, 0.64698341]],\n", "\n", - " [[0.00794753, 0.41466795],\n", - " [0.21029866, 0.12968518],\n", - " [0.98595403, 0.47316115],\n", - " [0.50330171, 0.87038751]],\n", + " [[0.65606545, 0.84787378],\n", + " [0.31064031, 0.70205451],\n", + " [0.30486756, 0.34702889],\n", + " [0.47537986, 0.91154076]],\n", "\n", - " [[0.10672402, 0.09192073],\n", - " [0.48656172, 0.16710676],\n", - " [0.46217936, 0.09035176],\n", - " [0.19623019, 0.73555862]],\n", + " [[0.32192343, 0.77700745],\n", + " [0.80485914, 0.85919158],\n", + " [0.29751565, 0.27228179],\n", + " [0.57796668, 0.18255467]],\n", "\n", - " [[0.75468369, 0.76685125],\n", - " [0.68205367, 0.99455825],\n", - " [0.23566499, 0.431837 ],\n", - " [0.86997877, 0.52098775]],\n", + " [[0.50020698, 0.58134695],\n", + " [0.14200095, 0.97556272],\n", + " [0.32948647, 0.35170435],\n", + " [0.27768833, 0.75059373]],\n", "\n", - " [[0.99353122, 0.72868516],\n", - " [0.74724343, 0.63273805],\n", - " [0.16946554, 0.06170885],\n", - " [0.28687951, 0.6671094 ]]])" + " [[0.23972627, 0.08461662],\n", + " [0.1929383 , 0.80565903],\n", + " [0.2627892 , 0.73361884],\n", + " [0.18415944, 0.44976198]]])" ] }, - "execution_count": 31, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -706,19 +706,19 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[-0.47727318, -2.11212891, -0.10766674, 0.88444896],\n", - " [-1.66157402, 1.80598739, 0.20359836, -1.1118912 ],\n", - " [ 0.24731274, 0.0396289 , -0.54177391, 0.38118806],\n", - " [-0.15762081, -1.05826785, 0.91565702, 0.79167261]])" + "array([[-1.74300737, 1.94689131, 0.18922227, -0.20440928],\n", + " [ 1.31664152, -0.01176745, -0.43956951, 0.53571291],\n", + " [ 0.02140654, -0.09635041, -1.84205831, 0.64951045],\n", + " [ 0.35682903, 0.96657395, -0.50099255, -0.80044681]])" ] }, - "execution_count": 33, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -737,7 +737,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -748,7 +748,7 @@ " [0, 0, 3]])" ] }, - "execution_count": 34, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -760,7 +760,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -772,7 +772,7 @@ " [0, 0, 3, 0]])" ] }, - "execution_count": 35, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -791,7 +791,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -802,7 +802,7 @@ " [0., 0., 0.]])" ] }, - "execution_count": 36, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -813,7 +813,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -824,7 +824,7 @@ " [1., 1., 1.]])" ] }, - "execution_count": 39, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -856,7 +856,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 30, "metadata": {}, "outputs": [ { @@ -882,7 +882,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 31, "metadata": {}, "outputs": [], "source": [ @@ -893,7 +893,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -902,7 +902,7 @@ "(77431, 7)" ] }, - "execution_count": 43, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -913,12 +913,12 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 33, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAAEWCAYAAACpAjzFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAClmElEQVR4nO2dd5jcxPnHv3Pn3nsv54aNO9iY3k01vQXSKCGEQBIIkMQQAiRAMIFAyi8JJdQQaugY0003NsYNjHsvuOPerszvj5V2R7Oa2Vfa2Xb3fp7Hj/d2pdFIGo3m7UJKCYZhGIZhGIZhmLpKWaE7wDAMwzAMwzAMU0hYKGIYhmEYhmEYpk7DQhHDMAzDMAzDMHUaFooYhmEYhmEYhqnTsFDEMAzDMAzDMEydhoUihmEYhmEYhmHqNCwUMQzDMLUaIcQEIcSFhe6HDSHEUiHE6Ki/EdqVQoi+2fWOYRim9sNCEcMwTBGTzYK4kAghbhFCPFHofgCAlPIkKeVjcfYVQhwmhPhUCLFFCLFJCPGJEOIA77eLhBAfu+0twzAMUwjqFboDDMMwDKMjhKgnpawqcB9aAHgNwE8BPAugAYDDAewpZL8YhmEY97CliGEYpkgRQvwHQA8Arwohtgshfu19f5BnvdgshJgphDhK2ed9IcRt3u/bhRCvCiHaCiH+K4TYKoT4XAhRoWwvhRC/EEIsFkJsEELcJYQoU36/RAgxRwjxrRDiTSFET+W3vwohVnjtfiGEONz7/kQANwD4jteHmd73AauXak0SQlR4ffmREGI5gPdsxxcJ7hVCrPOO/6UQYrDhOr4vhLjU+3yREOJjIcTdXptLhBAnGW7BPgAgpXxKSlktpdwlpXxLSjlLCLEvgPsAHOyd42av/ZZCiMeFEOuFEMuEEDdq1/PH3vlsE0J8LYTYP6S/+3r9ukD5ergQYpZnsXpGCNFIa3OhZ8l6RQjRxXAdHhVC/NNzJ9zuWb06CSH+4l2LuUKI/QzXgmEYplbDQhHDMEyRIqX8AYDlAE6VUjaTUv5JCNEVwHgAtwFoA+A6AM8LIdoru54P4AcAugLoA2ASgEe87ecAuFk71JkARgLYH8DpAC4BACHE6UgIN2cBaA/gIwBPKft9DmC41+6TAJ4TQjSSUr4B4I8AnvH6PSzCaR8JYF8AJ2Q4/vEAjkBCcGkJ4DwAG4nHOBDAPADtAPwJwENCCBGy3XwA1UKIx4QQJwkhWvs/SCnnALgcwCTvHFt5P/3d609v71x+COBiABBCnAvgFu+7FgBO0/vsCUlvAvi5lFK91ucBOBFALwBDAVzkbX8MgDu83zsDWAbgacu5nwfgRu/c9yAxNqZ5f/8PwD2WfRmGYWotLBQxDMOUFt8H8LqU8nUpZY2U8m0AUwGcrGzziJRykZRyC4AJABZJKd/x3NGeA6BbA+6UUm6SUi4H8BcAvoXicgB3SCnnePv+EQmLRU8AkFI+IaXcKKWsklL+GUBDAP2zPL9bpJQ7pJS7Mhy/EkBzAAMACG+bb4jHWCalfFBKWQ3gMSSEiY76RlLKrQAOAyABPAhgvWeJSdsWAIQQ5UgIpNdLKbdJKZcC+DMSAioAXArgT1LKz2WChVLKZUoThwN4BcAPpZSvac3/TUq5Wkq5CcCrSAijAPA9AA9LKadJKfcAuB4J61WF4dxflFJ+IaXcDeBFALullI971+IZpI8NhmGYOgELRQzDMKVFTwDneq5zmz23rcOQWNj7rFU+7wr5u5nW5grl8zIAvvtVTwB/VY6zCYBAwgIFIcR1nivYFu/3lkhYHLJB7Yvx+FLK9wD8H4B/AFgnhHhAJGKAKKzxP0gpd3of9Wvi/z5HSnmRlLIbgMFIXJu/GNptB6A+EtfQZxm86wWgO4BFln5dDuBTKeX7tj4D2Kn0t4t6PCnldiSsT10RTtSxwTAMUydgoYhhGKa4kdrfKwD8R0rZSvnXVEo5LotjdFc+9wCwWjnWT7RjNZZSfurFD/0aCXes1p772BYkhJawfgPADgBNlL87hWyj7mc8PgBIKf8mpRwBYCASbnS/inLSUZFSzgXwKBLCkd5XANiAhAWrp/JdDwCrvM8rkHBnNHE5gB5CiHsjdGu1ejwhRFMAbZVjMgzDMARYKGIYhilu1iIRn+LzBIBThRAnCCHKhRCNhBBHCSG6ZXGMXwkhWgshugO4Cgk3KiCRSOB6IcQgIJlE4Fzvt+YAqgCsB1BPCHETEnEyar8r1CQDAGYAOF8IUV8IMRLAORn6ZTy+EOIAIcSBQoj6SAhbuwHUxDl5E0KIAUKIa/1r612fCwB85m2yFkA3IUQDAPBc0J4FcLsQornn5ncNEvcMAP4N4DohxAgvUURfoSSuALANibihI4QQVCH3KQAXCyGGCyEaIuFiONlz3WMYhmGIsFDEMAxT3NwB4EbPhew6KeUKJJIh3ICEQLICCQtJNvP5ywC+QEJoGQ/gIQCQUr4I4E4ATwshtgL4CoCfqe1NAG8gkYxgGRJCier69pz3/0YhxDTv8++QsJR8C+D3SCRnMJLh+C2QiPP51jv+RgB3RTvtjGxDIinDZCHEDiSEoa8AXOv9/h6A2QDWCCE2eN/9HAkhbTGAj5E4x4e983kOwO3ed9sAvIREkookUsrNAI4DcJIQ4tZMHZRSvoPEdX0ewDdIXN/z45wswzBMXUZIGebhwDAMw9QFhBASQD8p5cJC94VhGIZhCgVbihiGYRiGYRiGqdOwUMQwDMMwDMMwTJ2mYEKRFxw8RSSqsc8WQvze+76XEGKyV537GT+AlWEYhnGPlFKw6xzDMAxT1ymkpWgPgGO8SufDAZwohDgIiaDae6WUfZEIoP1R4brIMAzDMAzDMExtp16hDiwTGR62e3/W9/5JAMcA+K73/WMAbgHwL1tb7dq1kxUVFTnpJ8MwDMMwDMMwpc8XX3yxQUrZPuy3gglFACCEKEciDWxfJKqSLwKwWUpZ5W2yEoaq3EKIywBcBgA9evTA1KlTc99hhmEYhmEYhmFKEiHEMtNvBU20IKWsllIOB9ANwCgAAyLs+4CUcqSUcmT79qECH8MwDMMwDMMwTEaKIvucV6xuIoCDAbQSQvgWrG4AVhWqXwzDMAzDMAzD1H4KmX2uvRCilfe5MRIVvOcgIRyd4212IRKV1hmGYRiGYRiGYXJCIWOKOgN4zIsrKgPwrJTyNSHE1wCeFkLcBmA6gIcK2EeGYRiGYRiGYWo5hcw+NwvAfiHfL0YivohhGIZhGIZhGCbnFEVMEcMwDMMwDMMwTKFgoYhhGIZhGIZhmDoNC0UMwzAMwzBMXpm2/Ft8vXprobvBMEkKWryVYRiGYRiGqXuc9c9PAQBLx40pcE8YJgFbihiGYRiGYRiGqdOwUMQwDMMwDMPUWrbtrix0F5gSgIWiOsK3O/ZiypJNhe4GwzAMwzBM3pi0aCOG3PIWPpi/vtBdYYocForqCN/992Scd/+kQneDYRiGYfLOrr3VWLR+e6G7wRSAL5YlFMJTlmwscE9SfLVqCyrGjsfUpaysLiZYKKojzPkmkeFFSlngnjDFzKYde1FTw2OEYZho7NxbhZ17qwrdDSM/e3Iajv3zB9hbVZP22/hZ37DAxOSVjxZsAAC8PWdtgXvCqLBQVMd4b+66QnehZJBSYvysb1BdR4SEDdv3YP9b38Y9b88vdFcYhikxBt70Jgbe9Gahu2Hk44WJRWhNiGLwSk9gYmonxagL3l1ZXegu5IR73p6Pf0xcWOhuxIaFojrG7sp0LRkTziszV+PKJ6fh3x8tLnRXjFSMHY9rnp3hpK0N2/cAAN76eo2T9nLNo58sQcXY8di8c2+hu8LkiPs/WMTuJUwaC9dtx5ad0QLni2VdPG/NNmzfU7wWtdqMgCh0F5L89d0FAIAZyzcXtiOO+du7C3DXm/MK3Y3YsFBUx5A5ejW88/XaWrd4Wb8tISSs3bqnwD2x88K0VU7aKaYXBoWnpqwAAKzZurvAPWFyxR0T5uKc+zgWkgky+p4PMObvH2Xc7uUZqzB3TXEVBz3hLx/ikkc+L3Q3aj2bd+7F/R8sKvqQgWISkO/7YBEG3fRGobtRUFgoKkEe+ngJfvnMjJy0LaXE81+sRGV1NIvSpY9PzdviJWrfmNpNkb/zGCaAlBJVPIdlzcpvd2Xc5qqnZ+DEv2QWnvKFv0CfUssUiMXI9S98iTsmzMXkHGTdlVLipemrnLjAiSLSRY6bMBc79tZOtz4qLBSVILe+9jVenO7GOqDzyszVuPa5mbjv/UU5aT9bvly5Bf1+OwETOTYqZ7gUMuav3Za0uDEMA9zw4pfo+9sJztqTUuLTRRuKXiPO1E2e/XwFXsrResXGtt0JC4yqRHXlKfPRgg24+pkZuPONuVm3tXozezoUEywU5YHj7vkAlz0+NeN2W3ZVYuP2wi4gv92RiM/YUOB+mPjc07BxvYH4rNi0Ew9+mJ84qePv/RCH/+m9nB4jTNO2evOupBZv9eZduK8E3CiY0mbdtt247rmZGceZ7/bpiglfrcF3H5yMJz5bZt2upkbiL+/Mr7sxeMTHf/ueKtzz1rycWPPq4hT06+dn4eocebZExZWL+JZdiXi2dQ5c6zftiP88Vowdj4qx47ErgnVnd2U1KsaOzzhf7K2qwZ/fmhep7doAC0V5YMG67Xjr68xpF0fe9jZG3PYOgMTC9W3CPlHJx6RcUyNzlprV737YQvjZqStw2v99nJPj1iZ+8NBk3P76nEgC+JadlXhx+spYxytEco9Dxr2Hnz7xBQDgsv9MxbgJc7Fs486894OpO4y6/V3874uVeOSTpXk97spvE+M60/ieOG8d/vLOAtz8yux8dKtoyeSudPeb8/C39xbipRmr89MhpuTwMxgWi+tbFCX2Zi9Byd/fW2Dd7snJy/D39xbin++Xbia5OLBQVERUVqcklpP/9hF+TLAuRSUfiqo7JszBwJvejORvO3XpJvzmf7Myaln938M2+/X/ZmHWyi2R+loX8d0K9EvoT/Bhd+AXT0/HL5+ZmbGWR02NxLXPzsSMFZuz7me2TJyXsCb657uX4zjyyh0T5uCdHCh28s3uympc/p8vsGzjDtL2SzbQtss3fn2eYk4FvGDtNizPsfIik2Jwhxf4Xl2TA0uR8xYZCv51/9aRldQfQ+VlRSIVhXDjS19i0qJEsdqaGomJ89aFrq9em7Uaf3knvQzHnhKYL3IBC0VFir+Qy8Sbs9egYux4fLMlc9BpvnjwoyUAUi8XCufdPwnPTF2RsSaQ7zb36KdLrdtJKTFvzTby8esSpitsm9798ZUpycXGHXvx/LSV+NGjxZNdydeg3zkhe/9vhs79HyzGpTlQ7OSb9+auwxuz1+BX/5tF2r5YtMcAsGbLbvz5rXmQMhVN4bsQrdu6OyvXHSpLN+xAxdjx+JDg8nzcvR/iiLsm5rxPNvxXkMjBjYzrwvvpwg14/ot4lnqXVIwdjz+8+nWhuxGb/05e7qSdpKXISWsJNu3Yi3UOM6k+8dlyXPDgZwCAxyctxcWPfI5XZ32TVNr4WXV/9uR0/OWddKtRMc1j+YSFohLnmc8T/umzV9HSjuZznEepeZpyi7P3kOrD+9/Jy3HCXz7EJ17BPiaFjDGh+/eyTAhIKVExdjwOuP2d9LbhuxXkb6RR1xnLNkXTQI+87R089PGSGD1iCsnuymqn7rtPe3PsFGIWq0KtJcIeuZ8/NQ1/f28hvlq1Nfmc+NuN+uO72P/WtzO2+9qs1QHrzbcRBSk/09rLnjvajj1V2FNVvNpnfw4rK6JV4Xf/PRnXPjez0N0AADz8SW7mxI8WrMeXJeLpIZX3oSv2v/VtjPrju6G/vTBtZVap5Vd4mRrXbtmNyUs2kvYZP+sbAEEPJp/Pl25C/xsnRJ4LSgEWikocGdG31ZX5XkqJN75aYw1GjaIVS76wM21HPIPZqxMTyFKiy0tdxCS4hN03/7sykZokw7LK+R4nxZioo14EV4dVm3dhw/Y9uPW14tGKVlbX4I2v1uQlYcTarbvzVnds5bc7nbpbHnfvBxh405vO2juwVxsAQL8OzZy16RLbcNiluL6kFBbR2v/Zk9Nx0l8/BJAQDPe79W288VWEAs/JBWTi/0E3v4mT/pr/NNnUd8cqbwG5dVe04rC0PmRHLhIMVVbX4MKHp2Bmhmcw12nkf/DQFJxaIjHBNdQFS0yWb9yJ79w/Cdt2V0JKiWuenZlVavn3vGy9QtCV1TM9ATXM5fCfExdiT1UNpq/4NnafihUWikocW+KBXPL212tx+RNf4B8Tzam7o1iKfDKdR5w2axNTlmzCI1lq6jYbXva2a091KdlVAP9j6tivX06f7lYRaqDkm7+/uwCXP/EFJs7LfTr64+/9MHLdsd2V1bjp5a+wdXe0xeRhd07EGf/4JO17agwPAOxz4wRc8EDCVWTFptS9q6yuwUvTV0Vy5dVp27QBAGC/Hq1I2+fTSpoJX0khhKp4it4/v3aJv3D+PIPA/Jbn1r10w47kAvLtOan4ssXri1dZ5de1eXWW+0QL2eozpi1zvwid881WfDB/PX6dwT00zGIQxp6qanz3wc+werO7OXT15l2RXctyVag+0XaCXFkT731nPiYv2YS3Zq/FEw5c/tQ4x6ixcrYYSSnjz/vFCgtFJY7tRbd9T1XOqiVv2J7QHthimWocabRXb96FJ72JgdJmJk368o07UTF2PL5aRTPVZ5r3npqyHPv8dkLGeCidtTH8h8+7fxJ+n6VPdyYlV9hZ+BPji9Ps9Sbi3vNj//w+7pgwJ9I+UV969cuLZ7Eah5XeImPj9mguC0f8aSLueWtepH22xNCSPzVlOR6ftAx/f9ee1YjKjj10AXtvVQ0mLU53Cxk3YS6ufmYGjrzrfSd9KjXUOcmFAq1GsRgDwH8mLQ1drL4yMyFQzFq1JXlcP+tVoaFOUcXkPueTiy797qWvAABrvPu4u7IaW7K4Vy9MW4VPF23EIePclWI4ZNx7RtcyCq6N61J7Duav3ZYc83e+MRcVY8dn5Qqo3ubZxHUKhV17qyNbG/3kVeu27lY8k1I9/O/kxLz/f+8Fs9RFXQ8VCywUFSGR3M78DyGT5eCb38Tgm925kYRhm6TnrY2e6CBMy/r9hybjhhe/xJadlSQNY+Lyma/hu3MTGsvnptLqhWS6Hbe8Mht7q2uS2Z0ovDBtJQ7847v4wqD5q6mROXeTEiIx0aUCoDO/cd+fv84qjMTt86L1O3D/B/FqJ/kKgZoMk3CUOboI10NWDf/6bXvwvsGCtHzTTvzNe2FJKTNep7j4L8FiSvLnu+WZ3DlzcS0KNXbC5s5NnutLwlKUfbyfGlu4fONO/O7l2fiJl/o+rC9SSquiREppXTxFvT/VNRLn3T8pNKlD1KmpPJvrZJi/s7VeuKqzo+K7SW3zNP0n//UjDPvDWwAS76nL/5N+f4FEaYc3Z6e7UbpShpqgvhs3bMtdvIv6HAAJy/ovnpoOAPiXV/j+ySmJOkDZvsv9mEYb+lA1He/ed+bHmp8XrtuOUX98NzTG1rc86c9qpqRMxQoLRTlizjdbM2pbpZS49LHP05IBvByjPgJ1qsz0cK7ektAWVTlYLGSyKlDxNePUydbVpOy7C2QKLPWP9tsXv0z7bcvOytAASd/9xJQhr/cNr2cMrHUhNJ3xj0/ww4enkLdfumGndXERJSX6lCWbnCxKJSTenbMWvW94HXO+MQejRolbKRaZaPXmXWkpisOu2Ln3fYqLHsmc8e/CRz5H7xted9Q796z8didO/8cn2L6nKqfuLwDwxldr0PuG17Egg/JGz9r25cotVne8XCxc49K6SX0AQL2yMnLcpo3kPRGpFPdh7zlfgy6lXRh57NOl6HPD66E106Yu3YTeN7xOTnABJOIfpizZFFos1H+nUZNwZCPc9r7hdZwb0f2UQi4Fbv82LVbcpa55dibe8AQfPYb0owUb8JMQgSnXFoLeN7yO657LnAkyjlKWSg1BweCP+943vI6bXs5vbTDTM1cj460blm9KjAlb4qqwSzF9+beRvRQKDQtFOeKkv36E79xvnxQ37diLd+asw/f+PTntewpV1TXOrQkPfJjQ1k/O8CJassFerwYwx674TFq0MVKBWuoLITEnBzeesWJz0ry9k1iheZf28hzwuwn4c9gD7t2CF6anC4HD/vBW5ABJPzPTCxmEShe33heCgw0n/rv55a9wkOaysH1PlfW41zxLy5A0ce46nHf/JDySIbU6lbdmJ8ZRruojXfDAZ/jBQ5MzbvfW7DXJ2hBU9lRV496354fWgzhk3Hs44q6J+GrVFuv4X0qs7UJJixyFf3+0GBVjx1vnoSgaw8PunIiZKzbjYUdZ/2zH9rXcX2ZwT1Gztu3YU4VT/+9j/OzJacbtw+7TgrXb8PSUYGxA1GQkFz0yBefe92mkfcLIZmGtZt2yZbH0v5Owa8mf9+a4VSHxJ35M2+tffmPt0/Tl3ybndt9ab3uHPvEZLUYj2xo0Uz0vgF17q7FuW2KezXbOzqW4nalvfyAmnclHXZvnp6XSk6/8dmfOBDH1mduxpyr5zPqHsyeaSn3+z2fLctK/YsA0boQAzvznp0kvhVKBhaIcMjfECrBw3XYcfMe7WL9tD/6ape/9ciXFsBAC3+7Yi0PHvYevV8dP3Whj9uot+GJZQljyaxHZyGQFuODBz0gFaqMKfgltZnCfM/7xSdK8fdebNM2F/jDvrqzB30MecIpG2/SiCNv30U+WkvqXLfpl9RdLvqbwsUnLkn7mgf0caPD9+JhF67db03rW1Eg88/ly6+LWlWZeSmm8T5MWb8RHC8K1ZLsrq5Nj9LL/fJGsDUHlsU+X4q/vLrCm/x6vLgyLyFX7tvGJODDbI+pKb5OYf6IFmtssl77wuieC26u/6PYLA1M57t4PMfaFoCX5uudmoqq6Bifc+yHe81x67/tgEX7quaN9uXILDrvzvaQl5v156/H50vTzp15e23O7cfueZArewD7azdNjKYBwbfnrXyYEzpqaVJ2wMPx2bK+KReu3o7K6Bs98vjz0nXLmPz9Nzu2+Br9Ly0bG9vTrYHq/6DFFuyurcfTd7+PTRdHKPJz/wCSMuj1+PEw27K6sdmKNX7V5F/k9bJqPoyRKWLZxByn2ZfXmXTjszom4O0fWCPWZO+mvH2HkbYkyFL6l+LkiqB0Vhu1OZeNJY9vTZjUrpfgiForyzEMfL8E3W3bjra/XYBfRYmFizZbdiuYO+HDBeqzavAv/+iCYES5Tqs0wtocUjx3zt49x9r9065f5QXDtWxw22U5b/m2a+wb1sK6yRKlZeaprJK57bibma6b7het0y5r52LsrMy/SVm3elfXaOO7+cW/ryzNW4YEPE2MzqUmWwMcWk/zz01biN89/ifs/MGc5zIa1W3cnXe7+MXEhBvzuDWzOUPV8x54qXPnfaVi/bQ+27KzEgN+9gZtfCbpHVFbXYPysb5L+5Tb8+23TsAoUj0ufiv8IRX0Jz1yxOXKNi8T8k52lZNH67VjhKZN8gd+WXUmHkl2RGlu4Y08VNu3Yi3lrt+E3zycEpnET5mKCl+76L+/Mx8pvd+HzCO5jQMIC5SeRUS+9zX3ux49PxZVPTktqwr9YtinUKhyoV+Z9lz63pVzraqQMVaz4+PEsHy8wL4CFEHjgw8X4zfNf4n+WRSjVIqmfk2k+K9MsRYvX78CSDTsiFy+dqQjm2b4S9T7Z2F1ZjQG/ewN3vpkoWr1g7bZQixyFQzMkTdiyqxLTlieEB9NrdZM2r66w1I078q73cSHBrdt36ctHPUJVCX3nG5kLgatxfJlwbV2zHTfOGDQJumpbutCr7vMsMX67GGChqIDYXhY6T05ejlkrNwe+k0gtOFRBXNcMqS5FvsQ+8rZ3cOV/zS4gUfpmIo52IKyon6mVyuoanPXPT/GjR4OxFFKmYnVmLN8cuQ/ZsGj9dvzvi5XWawsoi8mQk6PIanur7K6Tlz72ecYXWVzivtevenoG/vh64mWSOkdpTTHtC7ybdqS7YoZeu4h9OnTce8maKS967o8btu+x3oNBN7+J8V9+g7+8Mx/rtyeek8cnBd0jZq7YjCufnEZ6efovxLDFZRiuYm2qayT5mCZSwq29T1JK/GPiwuRC6PR/fIJzM7gX54Jj//wBDv/TxMB3Ybf67a/X4l0vhbRa3+fVmcF4z/MfmITj7/0g8B3VVUZA5MTod9JfP8Ipf0+v92IrOLnSS0FfVS2xZVclzv7XJFzx32lp/fOFQgHa4irdZh/OpxaX0zKRcjW0pf29m+gB4Pdn6YYdiXnUclwgka00bNH61JTlqBg73hpfFjUVvBrftmTDjqyC1f1jP+sF6h9374dZvRNsFtWLH5mCs/75aaR3/l4Hgfg7NBf3D+avT3O3lJI+Z0opsXBd5lgk0tiXwDbi/ddjuPXzysTmnZWocTCfZ+L9EAu53/OXLLHwYTGDxUrBhCIhRHchxEQhxNdCiNlCiKu879sIId4WQizw/m9dqD7mhuivwddmrcYNL36J0/4vWMtDytTL5NpnZ2DphsSCY3zapJB+zA3b9yS3+9f7i3BOlhrYMOIIRdZaCdq73G9fjwmokRLTPGFogqXIoC2deLZkOveUz308BIBqy8z8zpx1GbWC+rigChQuLICqFomSmtwmpAgRfOlFcbdUX0b+p+3EVNASblzD/ulZk2xjFUi/Bm98tQZLI1g5dG56+SuMvucDa6KBTDFa/gI7k6Vo9uqtuOvNeQGBxPYCzxSgDyQWyE5iKkVCwfLYp0tRVV2Dyuoa/PjxqfjRY1OTffE31I/22eJNmL82twuRTOgWIDUgXn1WbQUn/a2EAPZ4AsDXq7emXV/f8klNxLN1VyVpXrEJRVICO71n0rYwXxzhWdi0Yy+Ouvt9/Ob5WcYxVC4EKqtrcMRdE/GLp6anLaz9a+Ff7+emrkizfupxY7bF+dtfr8Vx936Il2eswrptu3H03e/j969mDtA3CYq+J0Sm2F6qw4TNou+/g6tqasipzLP1lAGA7z4YjPO88OEpuCJEIbnA8oz+/tXZuOK/CZfVhz5egtH3fOgsNnXoLW+RttPfqW/OpsdaA4m5/B8TF2L0PR9Ykw0BMdcc2i1VlQR5qCWeVwppKaoCcK2UciCAgwBcKYQYCGAsgHellP0AvOv9XSuhTh43vJCe1QwIugts2L43Gcyps3xTcHGsa0LufGNuMijUJXEWz6FxG4ZmUjUzROj3mfrwbUgthjnfbA1daEZJtw2Ev6DfnL0mWRMijA/mr8euvdVk4eTxT4Ma6Uc+WUJy1/Jx5T43ce46jH0+czag1P6qAGOPCcrnhOune7/pZfM90qF0z4XwrR7HvyaXP/EFjvnz+7Hb/K9X+2uOIQMikBC8bPiPnvqc6dNajQTemRPtJf+fz5Zaf1+/bQ+G3vIW/jEx+yBeAYFHP1mKm1+Zjf98tsxYT8d15q9te6rcukSGNLbIG9N7qqrTsuhlbE6Yx3fCApR59N82fk7WbsoSQJOG5QCARvXLjW5XZM8yKXGf54774vRVgbNQlVlCiKQw9paSECiZbtzbs6pGYvH67fjV/2ZljJG1zWe+y/XcNduw1RNk9KQt+qWcOG8dht7yVmick5/1NM0F0kXGT61R/x1cU0O/D7qLeTbYDlkjJaq0gqUfL9iAa56dAQB45JOlyRg43w3P5tqXC0zjgqpY3ltdgy8898U1W3Zbn8xYiiRtF1+JUcvkIQAFFIqklN9IKad5n7cBmAOgK4DTATzmbfYYgDMK0sEcI6X5JUt9h+gV300DdOW3qQdcSlrMShRMD9k0outa3CA8fz99ElbnP5tQFObacNJfP8JRd7+f9j3FDQqwv/R+8p8v0l1rvB2uf+FLXPjwFFz9zHTS/RciPWPT71/9Oq2f1PSzkdDO8eJHPw+tpWBKN/7KzNUB90HS+SKhda0YO94aV0ChYux4VIwdb/w9SnFUyvvlnxOzj4dKxBSlX6iwR0dKiT+9MTfw3Ntws0gK/wwknsG/vBMtqcyGDPfAty6O/9IutFHYXVmddNPcttucCpxivYqCqtHV0x0DbhccO/dWJxvM9LylhCfz/Fkm6NciW2ve7srqZFp6KaXR7apMCNwxwXfPFZryJWgRVouTqt17RCm/UCaAKUvT47l8y+oKT9l43v2Tku6HNuVimBBQMXY87ng9rGi12QK7u7I62Zafrjws46UpTiVOYeZM+Ba8yUs2orw8fFmpz19UC6up/lqwcfug1ofg9x+aHJrd1U+gEqcsStoxIzzBpmekfj26QoH6mC0i1Hp0QdB7Iy+HdEJRxBQJISoA7AdgMoCOUkrf/2sNgI6GfS4TQkwVQkxdv95tmtlcMnlxYhJ7lJiKeP22PUZNm76WMS1uVEuKa22nEJlTR4e98FVUi5eUElXVNagYOx4ne7Eevl+uHsinF1BLfa9YiizyX5QHNZNJOir6fXjKS9f75uy1JM2qgLDG4vjY3FzSs8/RBgd1sjdlaVq/bU8gZa/NYqreS9+C99SU9JS6krrgczw7U6yh9b1Fwobte0gCyBtfrUmrbbXi25QAnKmFeWu34Z/vL8JPn7DHtaXay9yn3ZXVyeKOP39qerKgo59kRHWF2bY7XuKTKLgsDKjOxWHDR3Uti8IPHpocyYKq801YuvwMmFySWjaun4qNCvld9axL1WCxJCEQgnxfs3W3nb92G96dm5jrbC7BZUIEMuip7pl6im61ho06/lcqz5k+L/mnUVUjA8lYNu3YizZNGwAAKto2MfYvUXsrnfs/TC9aLVITZBpjn5+F4+/9EAvXbUelJ4yEZUWl4nJJ8ObsNeT2JhneD7rw+OpMe0p2IPM5RB2BUS3boceMcFDTa4Fq1VUTn+QiI4/NnZD0/giJFS9WCi4UCSGaAXgewNVSysBKQCZWMKFXXEr5gJRypJRyZPv27fPQUzq2BbTvVkUNiJsaoqny0V82JhcvdW6P+n5atXlXxuJ58y2BiZMXb8QBt78TWtjUxE7fp127jrprnb/A1YMZ1etii7uJgu7zft8Hi3DHhHQNH3XhJCyaQAoS0pjqVtUEWlMlK0d/N8JLgGpYUI9do7mlqNfJds38tPXrFMHav+9h3bjvg/QFhqlPNraGZF/U+XbHXjz4kf14QCImcN3W3Rh52zuh/u46lz/xRVptq0079gSsazZ8RUCm+jtROPru9zHE849/debqZEFHn2WKu4mepta1IAoA37k/WtrzTNhe7H6yFltNkjA+WrAhYzV625Xx3yMZi4ArrazaHD4nqBbqnaEWBEUq8thdWWMca6/MXE2O4zP9pLsoTZwbruSpUrJ7CpiFMX0eMbr+yeAiLzBPKX+UlZnPy5SFsEmDeoajBms72bC9QgREMqD90sc+tyq9xs/K3opqYp1B0VlVnX0amJdnBJWsJne8TFlCfVzPPrlIL53tHCmUNqhJUKKw2qKMoIQW/MOBt0S+KKhQJISoj4RA9F8p5Qve12uFEJ293zsDINhOi4tF62kCDzWmyAR14KvHsVkXwmKSjvzTRJyXRZYoX5Dx4xfCILthaH+b5iZVELJNYNnMG+MmzMX9IQtw6rlQF7gmXrGY97drQuLyjTtRMXY8Xp25OpmqV2fGis2BiXmNRUtNncCl4bMAcNtrqfo2tqfAL7Q7e3WqeKl+dHX/JRt2ZBAEMyMESLW+Zq3cEpqNR2fdtj3JRYQvTCxctw1jn58VaaFNnS58X3kqW3dVQUqJqUs3Ge9tJqtFdU2N0SKQixIVlMxVYZksTfh9XLV5F3bvDbbtF4qcv3Y72UrqMtvSjr1V1kVJkPBBsmtvNeatSbyXwuoRpfYW+NJLIb1lV6Xxni7buDPwnMXJJKZbfS7WsoiGtZ1YIGf2iLAKaZZ7GBCKLA+cSYNve0bLY7zv0+Y6pYktuyqtx5uylFZEOs7zaXo/VNdk72Naryy4LDWdo5qYxnppHc8/+rO93KCcnB4hWUOUsgBhzFy5JbnWkrC/v+Ngu74uY8OKgUJmnxMAHgIwR0p5j/LTKwAu9D5fCODlfPctW9Q5IVu3KwnzgPxQq+1gevbV2gbvzjELRXtCYo0yZRnKNM3XK8/8IlBfRHryA5NfOGAWeErJfzUMyrtzo6XGi65Ze3VWQoC64/U5QYFJu05fKYKATbCnXl71fq0IFBpOWfckaMqBhB90cDvf2vrAh4vJRfTUPplc2YQIFvg1JUrYtrsymakr83GDf9/62hw8/fmK0ALPmfa3Lep2V1aT2/S5+815eGXmapxz3yT0uv71wG97q2oCcRb6sXyqaxCqJADc1ytTsc2vNsWBjl/u4OnPV1gX+NRT8YvaxkUdp49PWkaqjwTY5w6qZl21krq4d6Y2qCKCup2tTk+58put17ZTUm99ueVY+k+Uy1RWRp87KdemvExY3atMruMunkZTG9WSbikybadbRtV3VhyLioTM6ZrgyidT1n/VAhklPfZPPHdknTh685oambW72uTFNIG6NlJIS9GhAH4A4BghxAzv38kAxgE4TgixAMBo7++SYrESyPbarOwC9rbsqjS6T6z6NrhYM1fmTn2uVy6SRdbywXRDsgVVQ26br9TA1bAA7jCoL3LXcUIA8JGlCGEYYbERVD9iEwEhQ6YW+Ku37A60rF+lPyjpX62KtxgvGHUM67JI1OxU+v5xq4pTT2PrrnBXOiEEdhDTyupLBb9a+9tfB90WTbEyNVImiwfarn+cIOpte6qMmsqHP1mCP7wWXqzyPcXdqaqmxiio6/3Va/3kCl3Y1i2oKqqCpUWjcBeoKMOUGpNgupf695RnzrZEFgBemG6O/QwmylAUBzGe9c+0BdXHYRlFY/LRgg0k97lvlMLmid9SP+qJWkxuvoE4jbSDZe5DYrPUF+Vl9jgs3yI5WXFXtwkBuhuynlihxqIA+njBBpz8149ix+aZ3rHVNTKZOS8us1cHvRleV5KpmBK6ZH403UlFekvq3KHHPVOhprgHEmsnF8lxbOiePfUNyTNslKpyupDZ5z6WUgop5VAp5XDv3+tSyo1SymOllP2klKOllNHKeRcBD3xI85+0vcB8/u+9hcZJW5+YbD7UPvXLy3CrYZETZxAvXLfdWivFX/zpfBvI/hM88KwVqUlR9SfXz9dkKfKTWRQCPQ4qDDXRwG3j56S9zCjmaGvdHuXzCmIGMiBzxi8f6qI2uChJfVaL623N4AISxswsakgEXPoMAz5tQWp01zEfJy2+wfBs6XE/938QPnfUSOCThYnFZjGmi33LUldDv87UGiDZvlT13U2lDXRMQvqOPVWBczGVQAASWewo/DE081j6XKcvFFVcLj7STt3mimpYoOp1r3ZHLGeQdhzl85xvthq7lCnhj48eD6M+33pqeaMApr29KfaRTBZxX5n6xbJvk2Nw6cadgTGntqAnMNLHnHouen2nsS/MwtffbI3tZmValO/cW42735ofvo/Xn69WbbFaLVULne6aFmeoS82j7wvH5Uek4bPOrr3VqBg7HkfdNTHttyjKrL6/nYALH5li/N1WyysuR+wTHrdfXSNzks2wkBQ80UJdZq3lpeqjF39T/bD1JAKmKfdzJVlD+2YNzdrJGFPO7qoa7IqR4lszZgT43JBcwqahUbn6mRmR++MMgub36LvfT2ZTAtIzRr1o0ej62KxJ6qLO6gan9Ok+fTFueX/rQfYmTNpE9aW0ccdeen0RIrZR7KooHxDdwhWGLjCsNixS1O3CslWltgv+rS569MKSFJo3tAeO+9iyacZVaupFqKMyV1NQ2OpFUQSL+Wu3B85l6tLsF1evGBQMeneuenpG4O9HP1mCirHj0+YO05i0JcOxHdtmdTe9Lz7TEvNk64JXT5sgTAkZ4hJMtJD6XFUtjYoTk9Ljq1VmpVh5mSCv6tXm1UVuuiUqxRtfBZ8Xhwka01BPQ1XSvJfh3ny9eitO+fvHOOtfnxrHxZCuLZOfL340uPgPplZXBVhbBtPg35OXhLuG5SIhjMq1z80AkBB0VeK8/0LrOXr8/tXZsXxN1PeDfiVMAv19HyxKKutqCywU5QCqS406gZo0NvrgDFqNgr/NWhmuTVQ1Sof1a0eyKNnQTcRxHsCAG5fluOqzuHOv2T0gG3bsqUJNjXSSVcZ4bZVftu+pCqR+zXTU7Xuq8Mzny4MaQ8tFp06yap8qq829SNPqES8T5XJW18g0AW/9tj3Y7w9vpSU7cJFO/tFPliY/Z3u3bd3RFySmY6W5EhK3o6IKgYs3pARk3dpkepT0zI4q1HGmP6em3XQFULZFb8sJ8Yw+QW2vRRCI5LITH7XuTNh1vuXVhLVfndt3V5oLP2/YFqX2VrjlxI+7Ct8n9VlP5GB2d6NdwWaaYP7E5GWGLWlcdEhF4G+T9VgIYL0hYUacJEmzV2+NpXi0zvXa4FizZXfy+u9V4kpsrqMqeu1DE6qlyGZ5UZ9pIYCT/5bIqrl4vTkhTu/2zZKf9Zo6pqtnd/eWViHCJ06yEJ0qy3vUJDC7UK6prN0aL8mLqkC1eYOoLpc2JePamK6EhYaFohxDXbfrWp5UA8E/awwvLCCV7ltHNUc/9PESWocsqObStVt2G4vEhfHs1BX4x8SFwYlAXxgqP6nTxd/eDRaAjOKHa2Lb7koMuvlN3P3WvKRPdy7IRn47/p4P8Jvnvwy8fNK8XIhZk+Kgv1CpL/aAK4rhtbWnqgZasiFMnLsO3+6sxMNagL+Ls1LdkEz3RC/eatpOF9JV9LSyRlc9YwtB9No/Jqi3XhdAVKgFf6nH0s/RtN997wetlXpsSlQaRPGDJ/rABLXTqe91l7FsURN92KzCEjLpbvuqUhRZ57B+7azHU09ZVdioU6xfrDTsN9ucYLoP5PIF2na22nOm/QLJGtLqD6X6rnpfvPP1Wtz08myEEWcu+sVT02O9B9T+ZspSdsGDn+HKJ6dhb1VNIGGGnnXUtz7p7b1myUyoslpRWNjuY6AUg+5yaHRNNEOJJ0vbBzSB54EM5RwofGtxC1wew+15s5Z4ynUsUaZyK2HoNb9MuKwll09YKMox1Do56gJfzQKmv2zUhSYlsxuQnkXHtEDT3dZMlhNVe7Zm6+5AYGgmfv2/WbjrzXmBiU93I1RdQmxalPeUTHqmVNOZ8AW8l2esjhUgSjW5W91QLL9t2VmZdKlSM1DpAuFyLbubCTVeKa6gRp2Xg7WJwreprqlJu8e2IpPZQrEI6Jm+1OukZuWxZQRboFVrN1tn9ec7fDv95WhCv6em627LrEW1mFI1nPqL3LTfPE2wUDWeVKFQRU/taxvvVEE/2EbqPOavpWeaoqAuKPTrovdn384tAABn7d816yQtQLAQqDo+ddnmrdnhAfA6jeqHLzOoyrT0xXSce6V8r91r9a+XlYyFVI8PvQ0besZYE89OTdW3Us9+t+aqHrgyQmClF0OaNp5VHaSUSQvjza8EhT7qtdX7YcI2lZh+sin1TM/phu17yYtwU1IRF7ExcfSRtrlYL4Aep+6i7Z5S46uCWYBpx3WhtC4ELBTlGJs5VUUtDqouznW3JvWvVo0bkNpO04wZtntLy4Rl8r3Vs97FQe2Snr5WjZmwZcpThbM3vsquUN2qzbtIBTszYZqAbFYF29yh3gO1aT2GQ71O6iJC747qRhB3ylLP0aYhp8yJe6pqzAlHciAV1cSY3NUX8QTiONtZqVnXlGMFMi9qffhy1ebQ9ly8X9RjubYmUo8LmJMQ2BYH97wdHrxtg6o00gPqbZeaGmOSLeRU7Uitd/VsZCo2pczarbtJbpu6MKtaVG3XzDR243otZPso6MIYeR5QtluoxWpShQmqlv2fitVU3UdXWOj1w/z1AlU4TrPCURVeMZSBZPd0m9VHhn9esmEH7nh9bsZ9bJjCD6K0F0cp0bRBufG3T7V4Heq5NG9UP/I+NijKRCBRf8+HuvYtNlgoyjHqxD/VkEAACErVtsWByd/bRmPLQ6dOuPphTZPYwC4tSMe1oU4eHxoy1AF2H2d1Qndiqo0xe5hcFnX+8Gp4xj/APsmoiTXsBVVTn/dUp176NkujDfX+LNDqLahWC5v/MuVYyzbuTFtsmbLgUS0T1sKNWc7T1HT26cdJfbHToiE31haJaZHMpcBJvZZ6n742ZFLTA+pVbAsqk0uJLQYmEOsA+kI7KCQon4n7u8bm6qi6Ri1eb56nPl6wwZhOXdVM6wVke7ZrkvxsG5+me0ddNPVo0yTwd7bP8FNTVgS/iNGeLUPoFotV1zbGjSi76Bnn3leLsRNjTtV5VN+MLOwo93SZoXgpEEwSQXUppips9L2/MM7NwS1Na4UplvWZiq4sjpOgIRhrZT7fK47uG/hbvT/Uwt8uRBP1GbadrloeI0rx7GKChaI8YkvXrAoGtgJ16vuFqnjRK2mrg3rTjtTDaRPGVOJqmeNMHnurzPsE3N1cLPJi7KMLbQGNinK+m2yFE4kH1rWCJlRXQj24MxAHQLwf+oJKFQRtL1GqVUa/dWo8hUqswn3aPnEWVOo+egptE9SU6Xu19Kmm/WzFelUes2SBU09drx0TzOrkls2aW4ravvritM0rtsdbdTVS0V3a1Oafm7pS+T7Yui39tRo8rO6VR8NbwNLxu5e+Sn7Wx7paKsEWEK16GaYtkrW6PSrDu7dKHdvS3zjJBdRzOah3m2CfHGcJq6IGKal9sLx8X1IW/9RxYXMlVBVUkxwX1UyPr6Ltpy6SbW5SqmJC95ZQj6Wmt6fGFOnu7qpheKMidOjnlCkuKxN6Jkj1vKhjXbWyphcCTrXRsJ7ZBXgNMZGBVUmI6PO+9flTfrKt3YoZForyCPW9adMmmfxhrcclHlifID83xAplSrtpQs0kQ62fY7MAqRq/uL702b5fbe/TbYFK3ObtqPWB9uvRitirFLqLClXjQ8XuNkOzaprG55qYWXSoZCsg2RjQKWhNDWQtU05Y16bFWVyr8wA1488dE4KuJjOJriPakUlb/fmtoJCrXosde1Lnb1PK2LSppphGvT01BkxdDFTXBFMv22ILVE1o3JiqbFEXodOWb06OmQc/WhK0Xlm6t1WJ0bLNnep80aCeeblgey5McyRZuNFORK8zlC13vxWuhNHRx0zwtxS2WMM/KQofdcztsGSHI88Jyob6pd1tcN+2JZ2woZ6+rnSlol7PJcrawJ40IbWPno5efd7VZCF/1RI0qaEKLt6BawKKEqqVK3Vg/f2v9qlF4/qB33QlGqV99V7Z1pa2epMmt8X046Zwkc23ELBQlE+Ik4dNY0pdaFLbU9Gzozz9ebgG9k1inZp0FMsJUfNtc1MY2Dm18MynO5CK7lseaC8wf5kbN8WR6NiKslEnrTgTld0dzWYpUj9HP67uVhlnitWDpVV3RPXFsdGSjS0O//simMlQ7bs6VNNTckcfyJ9b6uWoC/d5ljgVqlWvJoZQrY/bxcozEwzkp7kN65isaPoCwObqmf3r29z3SkUqoKZGtqEXtFTHTMA1yjIp7jZot3VvBlUAs2bzs42ZLFeeLoxw6qUY0bN14DdqLImK7vlnmn9t8XRqvRrb2Cd7ZigH09/lav0zW2kHk6eDjnpPbQ4mQWWQ+Tc1O5xVKFL20a1rZYGxn/pej8/TXRAp2NxUqYKKClWwaKKFPnzngUm0NtQxqLSop6On9mnV5p2k7dSMoUuJ6d2LDRaK8gjVnZguFGXboyDUl0PrJuYED/oLW+VbYgYtFWrAcVymK24lcdw8KrUJUb0n6gLcZg1yEkSvfra09/HCzPUa4h5XjzlQxyo11astVXScPtmy66jX6dbXLDFfxPuz1ZIhzRTIH2fM6dgys0nLQikO24npulX0tK/VhjmM6r6ro+41R1nU27K26cRZt1N7q7ZtKkwdBWr9JmrMgcoPHgoWy1TjQOprlqLJi1PnYhvHcYQiN1bs8Eb26dgs9PsoVBNd7qYus8QRK/fHLhTR++Vz40tfBv5WC95OX745+dkmOL8wzVxEXFWu2Vx7beNCjVVdqHy2Z59LobvtqbGuVOWSnvnWxJ4YBeptWBVPFgWVuh4yJawBgoqoud+k9mlqKcZte07//NZ80nbqdXJR/qUQsFCUR6gPqlUhl6X2PS6qhtN21JWbzQuvc++bZPwtDibtuw1dU/uLp6ZHPq5avNaWInMBsYo82YvE2oYykdKaIx/XqqlU2pijx8wpv9nqN6jYrGFxoLqDuPDVt7lJmRKk2F5sVH702NTkZ91qpArjh/a116pJYrlk6kiIO/uo6XzVRZPVUqR8ti32VY1ulOnRpFSwBQu3aZZSDuUzpogan2d1cyb2V1VS6JYi1S3JvsgzdIHYh55tm2TeKAM2600cTX96HE34SdqEYHWPuAqBAMoF1d9zqjJM/W3Vt+Yizjalgnr6eibUwHbKpbWVzbC5DwaPmzqwrvCKogTxoQo7VAtvnBp+OtQYJVtowetfppSQajxhfS0jp6rEHty1pbE99b1sLS+i9DdOrF4xwEJRHqHOe7YJstKSztdE66b1M2+UgZXK5GnLFqfXBjHhQpxTF5rvzFlr3E41l+vWjGB7tOOqk4yLWCHqREpdRFDTk7s4bsDHW3NncO2qR90ujv+z9VjU60RcaaoLAD1zk3qtdZ95Cqu08R3HEvXYpKWk7ezuG8TjKpvNUDTYtmNd+vjUwG9OBBLlAO/PS81vt2vlAlSaK1pXas0dW2YyKrYrGy8mzfyb+gzrCypqn0zoRZJV1MQ0ce+v6bz0RZ2eXdOEKszrChCTu1JapjsD9iQj5t9MZSRsRkK1f/r+geLE5iZipeSeZnm+1f7aBBD1sEf3b0/qgw3beagWWUrxV4C+hrAdVy1Sb40vt7VPfPeqIRJUwZz6rFdzSm4mE1TfYJtJW11o2xadqvBkc3dTOTxD1XMKVMHPdfCxrXgidXGubmVLBa5up09u6mJwriXboAq5fAPNYBO7kG2wvVSLj09aZtxOVQbpKXbV82rRKHvBnC7syNDP6e1RBTDSZvY2lM+2VMTqsRYSF2vW4yrtPW7R6Ko894V5IafOTfZrSzpUoAVbens1RksVWoB4MSd6/9Q/VYunbeyri2Q1C5yOOkdc/cwM43bUuDbdXVK1VgdqlJFas6NaRGxZUeNkhrS5Rv9Hue5xnz+Ty2rcBC53vpFKTkItpmxDVY5Y1wYxBrjr92vc9ls2ps376hj+7YvmZ0m9kbbxSMV2Fqf87ePkZ2oyCepVt2XsU5PllFuUzLZnTk0+Qy6S7GDtpv5UyYkWmIxQLUUOEi2ofsMfLaDFkejbxRnS1IxM974TvRijjgutjIkbLYscmwuj+rfNHB1sj2qxoUlFlUSzNfWy2FKYqk1s0zR86rWgZ1Sk9cmuJUt9tgogymebNpY8eogBwi7cXuP4a+8gxgOt2GS2plKXIdSaH9RLYcvoNdWSaEKFqvmmVo2/4cVU3Iat8PNjn5oFq2AfSJvhmmdnavspQpFykk6EeaUN23vJ9fKHao23oQrtao03m6eDDbWN/05eHvjtbcVTgdrfV2auTn7euMMsqFEXqy9MSykObGOYfD0tx6WO1S6tGpO2o8Zoqff0L+8ssGxJw3Yt1Fipz6ju1VQLmuUCqvG3trWBbT2gukuqyYbsrrfxEnKpqAJdHE+HYoCFojxCXVDodT1U1IepXwdzwOj2PTRNlm1yi5OlhWqCjZPxRyeO/24cs3/acdUFlDaXv/5lynWNWlvGRUaq3UrsQxzLWNpvxJfeCmWCfFhbqJMtMbRDkdv+dFHqhWBbTKtNuHDpt2nktuxKjQXb7Qm4r1j6ZEsMoaK24SJ+ScXuOkqbO5wkmiCmvo+RxMuKLZufCrX8QKzCngi+E9QaS7bEHwGLkuV81XnQNre7jm/9QBFc4rb8rOIa9JWl9hQV9Rz1eeUJxbJFHWdqAPyJf/kou84hqAi1xzfS2tPdnwYpRdupJRao7yKb5UTFfRg1rUHqu5zsWubAikJ+5ojbUYutPvyJWSGnDn0X65pCwEJRHqFaUV5VNEg6ag2NfZWU1DprttAWJXGCTG3kMd6YTEBLb/O1VrabucL8En1didm574NF2XQNAPCnN8x1MtQ+fbbIrK1S6zK4WKBQm1DTs+uaoUChWEsbeoE6ChPnmbW9quvoOK0eTwBi/1RscRW2Og8PfLg4+dn2QtSL7bqE6spiQw1uVs9Cvy6O39dkbDWG7DFQqc9k4Yk4alwI3DbUBeUqZR5Q3bOs6bQtqGPVnjKd1l5aMhYD6j2wWXZs93v26tSx4rj36dieW6o2XkVN7mI7jziucHHfAY3rp1JAP/6Z2cJJr2eU2m6klgo9sJ0DRZ4K9RnetZfqVeFWaLMp6wLtWX57bw6tXiT1PUy1FH2y0LwOceHSWGhYKCoxxitZRfSgahVbXv1cYtNOuob6rlAnZmuiBWXKsGk5dhI1IONnmYVbKuopTltOcxOiJn2hVrq2oS6U9GBUau0b+jSaasRmlVGPZbNYUM9RvU6N6pWbt7O0oQYZ5/PZVK/Fwb3bkrazoV539bpUalpl6uLFtfXKFrOjoi/CqAUOVfRzLhRq39UsUer9tgWK67VQgm3TXGCpi3DVLc6G2twrFiXhc1PN8W9qnI6L8IZCFaO84r/TIu9js7w0qm++3yq6wlQ9/y+o7yLlRrZpao5t/tSi8FMhZxMltve7ly3xS4HjkjYj989WKoJ6XKo79EfEMhwuEtaUvkjEQlFecTFggosS83ZUc7RrVL/rXEOdgLbuSk0eeuaqOIwe2JG0HTX7nA1JFCxitW35jboAUCdSPe222oStCG8c7K484Z91JigWP9uzqV4L2+KSen+oGalcY3vpURe1qobzqqdnGLejPpt/cRBbqEIVsvRFnWrBcP2cUbXRVBcdHdU6dJuSLa9Xu6ak/bu2Nsd9qAqWDywWG+rr5j+WxBVxoCY8cGE9p8aauU7PPtMiSHZvE37vvrG8h+euiWeNVtcUaup/PWW6evrquHjra3OGWFsmQhXqXXzra1oGVlu8rAp1fFP752J9Rh3StvGjst5xAfNShYWiPGJLG01FrcruelHrAif1FhQa1TcP0WHdW5HaoPr0U2c0m2ZVxVZUMw627gWFJ9qJfGLRIFGL5tqSJKja+HXEInk2NxJVHrHXtEkd1/YcXP9CKlDe5tqqCk+2lxnV8hSnqKYLbOdI1dTaEleoqLU2urRsZG4vj8ob9fT1DHYqcYUTE88rAfA2qFYUavs2a/dsYoyNKkz8/b2F5u3IsSOO3bUtrxs12Ufc5Aoq1BTDroXqHZaA9RE9wl3SbPOemobZRv+OzY1t2pJuqPNMY6JVynVMEdUVjPqupFr3qf0jJ27IY1HkTx0UdqdmWC5mWCjKIzZNCZXTh3dJfrY90IUy9bsWimyncTzRYvOIJTAwl9SL6cevEijkZrnfgRoaxFt/08uzjb+5iDWzZVRSUbv7hMWPXbVE2V7K6tiPG7yusidGEgsbVI2zCwrl4KUmaenexlx8820Hc6JrXMSfxMF1sgLbYlpN925PtEA7FtUdiIrJAqJDtcbHFThV9OyapQo1tq6hppBUBdpdFo+VOHMkNfvcl6s2k7bbvIs2Llwvk6jP8HRLzSYV2/iOM128P98ch+RCoKkFMhELRfnExYKqe+vUAsPWGjWTCBW65cmxUORiEeo4iJM6GVEX5K2amAPg73k75V5kO43/KMJEPhMt2HiHGAiq8vIMWhwWNRMW1arnAnKK+BKt3wDQX3ovTV+V/Hz68K456k3t4n9TaRYlKm6SC9AWq9RMpdShT12gPTVleeaNkF8lYT6fb9fvWxU9Q+zZ+3cL3c72vqG+i6j3h+oeu3ozzTOBnCGtQIt9a2mQGCovmzDmZiyVvlTEQlGJodag6WbxBX/mc7cvWNUSYcN18hEX7jXUJqiZkcjphonHpfrF5zLFtQ71ZeY6yxg1hfarliQW05ZtTn6m3ntb0hLXUOPzv16dfSa63Yq1oIfFYkPFFvSuohZiVev5lALfOijMGQdb/Y842BaawSK8ljaIY1WPJzRhe2epUN00qeTTTfPvE81uhq6JowCzrX1tcSVxFEzUy164lNw06O54Oe6Igush7aJYOFuKmLzz0EcpV7B9OjQ3btenPS3Ilv4QF592m6yZJ25IfRFTFwCu3WFcWLKGE+OwCuVCZCfVJ1uMgPqCzWetBNeWoqUbaUHANm5/PRV4Hyf1uY4tFqfYKcohrUDNJkXFNszUtYtNeKLOA00b1iNtZ8saqVLpOO6OqnhygesyFzaolnUqVIWfiloOQmfCV98Yf1MZ3KUlaTtqYhbX769XZqzKvBHiXb+4PKkUED5in/ZZt+ci5r041w3RYKGoxCAXESOOzR3EReOcb2iB9w8q9ViKBdfCyfNf0CZI1/NDM+LCo10zc+pTsmBF3i5/rnqq6T+fixzX95Fe2NQttSEINhuK/XXtOj25LaGHKggtsGSGpLo12ep3qXy2eFPmjSIcl4mO7U6pxcd14syDWy2Jc1RsLuQqSzfSrKmu4zZXE7Pq3l+g9U/f9s0KclwdFxl3Cw0LRY7JtaRMbZ+a5UfNOnV4v3bG7d6bS4sPman5IecS6pWmWoCowtOarbQJ0vXETE1r3aKR+QUzj5iOlXotqGuXBQ5M86p534XVg8oeoua3kvjMTV5CWxi6FubLiQvX2kpt0GJG4a/vLjD+piZw2WSxfK8jxgq5vrT5TEZS14grb95hK4RtgCrcukhCpVLXZGoXykkmAQtFtRSqS/b/vnAbe5RPHvt0KWk7qr8ydbFaKKhaGDUVrQ41Noz8UnEwF1Mn9HcVwdyWWcu1QYT6jDz6yVK3B3b9nuP3Zp1ip+UZmbosNUf86Y15xu2ocQauhxY1/TUTnTguXicMomV61SlUvcR8ujAWA6xDcAcLRSWGOslc+9xM43ZxtKKuNdO5hirEuAggjEPTPGY+cw05gQKvtJPYaizF4aMF2deNYFLkM74sX8RVAFDdpqm4fnUUajFdDFCL7uaTJg1orts6LsZFc6LbeF2G3U3dkVEoEkJ0EEKcKYS4UghxiRBilBCChSkDuZYrqHEBejpNE8Gin7TtGBqdW9IyLRUjVGFnk+NCl6VMZ0uR0jh8TcyGyNCgWklLiZ8e2SfWfq4NMa6VI3V5kdemqTkmtFC8OJ0WR6vjYt1QW+pD5RIXCm0XNf1qA0bhRghxtBDiTQDjAZwEoDOAgQBuBPClEOL3QogW2RxcCPGwEGKdEOIr5bs2Qoi3hRALvP/DSzbXUVxbc+qyRi7XlLJffKN6NCvXovXZZ0hzbWzq0Lyh2waJZJvIwJYgwwVqmmymbuNayeV6qttrSRLhukB4sVGbFJC8vMgPLtaFjXPo2dK2CAV9EzaLz8kAfiylPEBKeZmU8kYp5XVSytMADAMwHcBxWR7/UQAnat+NBfCulLIfgHe9v0uGXM8BrudL1aWk1NznCkVvontDKRfpzGvRU8ft1S8vjCE72+cn14/fvW/T0tkypUPcIVPKc31ttyLVprMb/yUtJTeTHU6eiRwOvI079mJLgeq/RcW4epBS/kpKGVouWkpZJaV8SUr5fDYHl1J+CEAPDDkdwGPe58cAnJHNMRg7ajCu7T1pcrdoVL/ueVKS6x6V2Mv7tGFdkp/z2XX3WuvCXPfKLH2Scq9QKa3xSMVFUdq6hmvXXmrqZSYzaumBUqe2C7DFwkYHqbBz7aa4dhsta2+hsbnPXSOE+FHI9z8SQlydwz51lFL66oU1AELTngghLhNCTBVCTF2/vngKCuY8JXcOl062rpuKZbZtWhhXpUJCdYsrZW1sPjmwd1un7X28sDAJCrItfldbhZZc07qEXDNcE3fIuHbVLFR9FqY0cR1/Wdd5l1gyhcmMTc3/PQCPh3z/HwCX5KY7QWRilRA67UspH5BSjpRSjmzfPvtqvqUCr5sKD7EcTUm7z+VToLPVVYpDsaRjPbRvNGEv55aiHLdfKGau2FzoLhSMpz8PdebIyN6q2joamFKgtseFMemUytrVJhTVk1Km2cSllHthL4qcLWuFEJ0BwPu/pETgXN93aiHJOMSxQtVF7Tb1nEst0YLa23ymMa+tab0/Wbgx80YKuRaiS2w4MgQ2x/TTr7QkMig2hnZrWegulARdW5VOtlOei+oepfKetwlFZUKINNe1sO8c8wqAC73PFwJ4OcfHYzxK2LCRV1ZvofnGlrI/ddwUrHFw/YIUrqu35olcj5ZdleZinkzdoopq7i4CqOUl6jq92xdffSOG8SkWD45M2ISiuwCMF0IcKYRo7v07CsBrAO52cXAhxFMAJgHoL4RY6cUwjQNwnBBiAYDR3t8lQylrQOJYfUr4dHNOKQtF+eTRT5cWugvFAQ8XJk9kmxSEKT5KqdhzXfQwqevc9ea8QneBhLFUsJTycSHEegB/ADAYiVf2bAA3SSknuDi4lPICw0/HumifiUYh1/ADOjXH3DXbCteBHFBq2ecKxRfLvnXa3qpvdzltL1/waGHyRacWHOjOFA6e6+oeLjLk5QNrPmUp5QQp5ZFSyrZSynbeZycCUW2lkH6To3q1yWr/GTECll0pfNrmuHBlIWBlWGFYs7U0Un/qsPbULUO6ciyKiW+ILsAMkwt4/NU9ykqkeostJfeNQgjjKlsIcYwQ4pTcdIuJRQmvqWrjenB7jvP+u+br1ey7X0hq4SNQUL7i8Wwk2/TxDMMwUSgrkVhfo/scgC8BvCqE2A1gGoD1ABoB6AdgOIB3APwx1x0sNQq5uC9EXRxXlrHaKBSVGovW7yh0F+o0/Ay4ha8nwzBMcVAqCVNsMUUvA3hZCNEPwKEAOgPYCuAJAJdJKUvTcb8WU4g1wNqte5y0UyrpGhkmV/AzwDAMwzCFw2YpAgBIKRcAWJCHvjBZUsoxCSXcdYZxwu7K0khZyjAMwzC1kRIJfWIolLJcMXnJpkJ3gWEYhmGYOkr3NqVTAJfJDSwUOaYQcT0+bG1hGIZhGIaJDq+hGBaKHPPh/MIVUOPnmWEYhmEYJjosFDEZhSIhxD5CiHeFEF95fw8VQtyY+66VJnurCxcXMDNGnSGGYRiGYZi6TqmV0WDcQ7EUPQjgegCVACClnAXg/Fx2qpQp5WQHDMMwDMMwdZFChj8wxQFFKGoipZyifcfiNMMwDMMwDFMrKI3yokwuoQhFG4QQfeCFrAghzgHwTU57xTAMwzAMwzB5Yhu7z9V5MtYpAnAlgAcADBBCrAKwBMD3ctqrEoatrwzDMAzDMKUFr98Yq1AkhCgHcIWUcrQQoimAMinltvx0rTThqvQMwzAMwzAMU1pYhSIpZbUQ4jDv8478dKm0YU0DwzAMUyiE4PcQwzBMHCjuc9OFEK8AeA5AUjCSUr6Qs16VMDX8MmIYhmEKBAtEDMMw8aAIRY0AbARwjPKdBMBCEcMwDMMwDMMwJU9GoUhKeXE+OlJb4DpFDMMwDMMwDFNaZBSKhBCPAOnZA6SUl+SkRyUOi0QMwzB2ygS7GjMJfnx4Lzz40ZJCdyNvDOnaEl+u2lLobjAMEwLFfe415XMjAGcCWJ2b7tQC+EXPMAxjhQUixqdR/fJCdyGvCK4QyjBFC8V97nn1byHEUwA+zlmPShxOyc0wDMMwNEQdkxLq2vkyTClRFmOffgA6uO5IbYFDihiGYRiGRl0TEWau2FzoLjAMY4ASU7QNQaewNQB+k7MelTivzmLPQoZhGIah8L8vVha6CwzDMABo7nPN89GR2sInCzcWugsMwzAMUxJUVtcUugsMwzAACO5zQoh3Kd8xDMMwDMNE4fwDuhe6CwzDMAAsliIhRCMATQC0E0K0Rsr1twWArnnoG8MwDMMwtZj12/cUugsMwzAA7O5zPwFwNYAuAL5ASijaCuD/ctsthmEYhmFqO5yNjWGYYsHoPiel/KuUsheA66SUvaWUvbx/w6SULBQxDMMwDMMUKb3bNS10F5wxpGvLQneBicGoXm0K3YVIZIwpklL+XQgxWAhxnhDih/6/XHdMCHGiEGKeEGKhEGJsro/HMAzDMEx+mfPNVqftdW3V2Gl7pUxZWe2xwjVuULeK/NYWfnhwz0J3IRKURAs3A/i79+9oAH8CcFouOyWEKAfwDwAnARgI4AIhxMBcHpNhGIZhmPyyZVel0/ZaN63vtL1SpnmjjAmGGSanlJWYeyyleOs5AI4FsEZKeTGAYQBybcccBWChlHKxlHIvgKcBnJ7jYzIMwzAMk0dcp+SOU0B9ePdWTvtQLAzq0qLQXXDGlCWbCt2FAI3r123LVS+ia2ZpiUQ0oWiXlLIGQJUQogWAdQBynUOzK4AVyt8roWW8E0JcJoSYKoSYun79+hx3h8mG2jQxMwzDMO4QRbBsKjFlNpm9VVwDKldIxJC+axE92zYhbVdqzxZFKJoqhGgF4EEkstBNAzApl52iIKV8QEo5Uko5sn379oXuDmMhjuaOoXFARetCd4FhmBxx45h9C92F2DSoR1leMHUNF+Pi6P685is09HVdaUlF1tEpErky75BSbpZS3gfgOAAXem50uWQVgtaobt53TAlSapqCUqJji0aBv284eUCBesIw+aUuWKAb1gEXHdfvh6YNo8fR1NZXVDG6eJ0ypHPWbfRp38xBT5hsaN2EFrtXaus/q1AkpZQAXlf+XiqlnJXzXgGfA+gnhOglhGgA4HwAr+ThuHln3861/8XO5A69xkf75g0L1BOGyS+lFsAbhwbltHPs0rJR5o2KiHNGdEt+dn0Xf3JE78j71FZnhsYNii/Rwun7dc28UQZaNi58Mo1i9IDp37F53o7VumkD0nalNk9T7JjThBAH5LwnClLKKgA/A/AmgDkAnpVSzs5nH/JFaQ2XeBTj5FEocp0htRj8811wWYyFjY1ieIkybimxd20shnZrVegu5ISRPXPn9tuwHs06UoxWFNcUY0ZuF32iPvtN61ga72KMc/Jjj+oTFTyFhiIUHQhgkhBikRBilhDiSyFEzq1FUsrXpZT7SCn7SClvz/XxCkUborRdylAf0wGd8qflKBTljt9Sugm7tiwUOzi2eNWW68LukSlqyS21Ql24F99SCLj3vOHG3w7t2y75Wbd2Z0uPNrQA8OMHdUz1wWkPioc4WvoWDtJ4XzCqh/G3cgf3mzpmqnOokS3GdOfFqIAWALq3aYxTh3YpdFdIUISiEwD0AXAMgFMBnOL9zzigGDXYrovfyWJ8UgtEvTK3wcdXj97HaXs6xTg+VXKpcS5G3pu7rtBdyDnFqByhpp91reSqIB63GDl6gDkYvpEi7B3dv4PT45aXiEY6GxqU094jcXRwLgq+2gTTfBaUza07WfGNs3yutKgCd0tPcVsqq8CMT5aUchkSSQ+O8T7vpOzH0CjGitPUuBTXi5cflFjl4zi4uN2H9Gmb/NxEcw9QJyoXC7T6xJdvoWhFDPasLUxfvrnQXYgNdSE3kJhAwbWFwQZ1cTWwQDGixfcWsaPeuo4tHFuFLb/p82UuyWX2vbP2p8XlxHlGXMSA1FgUofmMMWnfPBVrd81xuVUgxmG/Hq2ctpfP+Yd6Fzs0b1RSbv0Zn1ohxM0AfgPgeu+r+gCeyGWn6hL1i1AoonaJakWwTZAqtbWAnooLIfgnR/Yx/qa+b1yMrFy+v0ZVtDH+5tq46Po0msXIcOWCQmnbbAqQhsTF3/49W5G2s71A1cVgPqfO3VXVpO16ty9dy45r9lSmauSM3tdsDXI9pm1zlmqhUueYaTGVDUfsY7aGXXVsv1htUmhEdKuMM39v2rE3+k4aeyz1kVzo2ejnlbrJVY6LBLt4N1KbOExxN7Vx86kD43eGAUCz+JwJ4DQAOwBASrkaQPH5N5Qo+dR2UqHGvVBfZtQFrm27IrxMsaC+zOKyYO325GfqNbPF7+Tysjesn/3bsc55Zhbh+T754wNJ21E1xLbNvtm8W9mu+CYF167HpYx6v1s1CVqtTXfu/AOyrwtvE6o374y+4LfFjhSqXs55I1PX6dRh5liNQmnon56y3PKrg5giYhvq+8H1fHGMxe2TagGiTucdLNbUnx3dN/k511a4OpGchLDNXi81twQAIQSrwhziYgw3crC4VMnnYkNdkOfT5H6Wg7SgKu2a0VxAXEwqK7/dafxt/JffJD9T4yDaWvqey0n2jOHZ3wNq91zLEtRgbtfkM7vQqF4pS55tThjR02zxU6HeK9tmkxZvJG3nmmJPK9vXQeyE63T+Qnkt2fRs6k9HWiwv+3TMvjaNGqNFvaW2e9+5pVkIDljtHQ+florb8NkWV7pCeT/vqjRbVl1YeKnzoFrLzPUzfNuZg5Ofda+Zpy87KPn5glE0Qf/XJ/aP1Y84p/XIRfESSndSUv8X+ZQYG8oj86wQ4n4ArYQQPwbwDoAHc9utuoOLcTVmiNusHq7dUmzT1wM/HJn8XGOzFLnrDoD8umyouLi2i9btIB2X6t5YqEQYw7q3NP6mvvRsrmqFshSNGZp9AcI45PN81RSqzR24C1K1u9TFSz4FFepzS709B/dum3mjCFx1bN/MG+UZEfhMtRKat+vemqaIsA2L04dFV8TY2mvakKbk+s2JbrNGUkd+oaypUpoX+S4ysFLHkyrou17XqPG2Y08K3l81LfwxAzrChDqfX3FU8BkOCFOWiSXOO2FwV/O7d8JVh5Pa6NC8tGqjUaEkWrgbwP8APA9gHwA3SSn/nuuO1RVcvNhPcbxAI2cc0x7GIZYHzYTqmpDPxTk1zsk1Ll5StgDewEKEeCxb8HFu36nmxqm3x4X1oZRwPWptz7o6N+3TKXstPTWejnxP83pT3R7MdYKQcmJWS1sMTC5dwfJ5T10Pi6YxC6CqC/fLLXGg2VKMbqT7dGyGPu3D5wwXax5yE8qG1H2OivEc2BISubGM2X6L/lawXYt6SocP7GX2ArjwkIrIxy0FqMbVLwF8BOBD7zPjiCKcz3DjmHjBeqrJWMUmgKg1C1o3MWdLUyfSMUPyp6Wn1suJMUfH5vB+5qDLOIkWbIVS43SX6rZnQz0Pm2ZRj1UwUYShOLGgZnyk+rRTX44uYhNcPyNDu0VXwsTFtZa5UFlH1WzVeheu0tL7m9yyrx4dPYGAfk/VhXyZ4bMO+Rm2ueoRL/vFh1YkP193gjlrme25yOUt3rGnirRdHKuMPn/HOY8RPVtjmKHwsOtafTbURFZU4fG2MwZn3kjD1rLtsCbBUce1Epd6B3Rhr62S0TbKffzn9/bPaeIRl1Cyz10KYAqAswCcA+AzIcQlue4YUziaxnSVMe1XVW0RipQHy1qTQ3n+XMdV2IQCataXfFosgoJPsMV9lNgCap9sWq44Wsg/njmEtB3V9e93p5iF9G6taYHtNTbfzBLiIqJ2jpq623Z3DyWOfSr0oUTb8NrjzT741HFBxUVSmZ8fk3KPiVPA0hYHSV2fHDMgFRyuL2r0Nlo0CrdmUd1mmiv72+aRkxVPB9tpUD0JTP2OgtpGo3rx4kDjKMCoiTq27q5MHcfWh+hdSOu3LebURuum4ffBhWJw2cYdmTdCvLTocWoJ2s7JNvap87k9tCB3QmaLxsE1nXo91aNmKmQ7uGvLkqm5Rrn7vwKwn5TyIinlhQBGIJGim3FAMVqKqF3atzNNa22bmKjaBnWz5g2zf+mp79cfHdYr8FvTPNWyqBdXY2aZILsoL1XqZGmbcE0vNhsussqpfW/ruCBmsRAnsN21q4ytvcALMI9uTVQtuC2T47ED3BYEpS7Izx5hFlzUhUOc1N3dLMk9qM+66manz71UZXSceUvfQ/2bWr+KKpjq40LtLrXn1GMNtcRFxkmqc8PJ+xK3zN4V1fTutd0rKlKax2R7RciyeT3YmLx4E2k79fz7daBZZeLMdVYXdMt+Q6zW7tSePR0n9qG6MO7fo3Xg71tOGxS63c2nhn9filBmo40Atil/b/O+Y5xQfFIRdVKo56Cqtmlirq9VJVcn2MuONFt2qMxfu834m/pCzKWbSy4E4ngvMPMS4PqTUi9p19XBnVjNivD5odIig3YtDNdxd9asYKo/voNjUQW6PZaaQCN7tjb+pvKDgytI21HRL3trQ0xQq8Y0Ad51UWR6FsbUiejPjj6yzvQsU3r8Uxz3J30RZsrMNkK5v7r7XtyhXx5woYrXhgmbQBfH0kq1bFDdXuPE76RbELO7aDbLk80V0zbMqoiWf3WMH9THnNxEzSZqO1t9XeJz/MBOxn26aQlC4hQQ7qsIdIMsxa2p48d2T9WfqrXrbPJEqU2puilXcCGAyUKIW7xCrp8BmC+EuEYIcU1uu1f7yWd6SipxagDE3c70cO6jLcDVzaiaRRu7LSlD1f5SH/Y4i3N9n8Fdo1ejTrt8hsWGDdv7pbEygeczHXQ+j1VKvDJztdP2bM+m6uKVz2Bu27NEde2N012bkKr79B9sWGC5SPNswvUdyPTu8d1dTtAWfP201NiUU9G3UWMB1Z9aK1bhrq0aBwSjuDOCMIxj29jv2ormIhjXbcoEVelha7kv1SJi+F5P2hHnWVLPwh5vY/7VdiXUxbottlCNCdaPdMKgVFa4bNdhNuWpLtzv25n6nk+d42mWWlQq5NAHy/mqQ9AmfAbjAmmHLQUoq8tFAF5C6g69DGAJEgVcuYirgVGWrB1FD3GA92xLM+naJjeT1lF/N7h+5qgv2JMGmzVAKi7WjOSsf5ZjLVmf8rWmLrwa1LNojZTPBQvLsZxGy8bURXLtmLU3bs++2nxDRZu40VK93kVdmDjYXPqpVoo4d/viQ4NutKP3TbngDdGCxtXxRK1ZpS4w4gxHF0P4aKXgpL6Q0xfk/p9CBBc9ak22Zg3rkeYZ230zPZvfPbAnvn9gT2P/qJgObXMDVIujxoV6u9RrQz3DoKAX/O0SZRzHSVyh6xzpLn1K2zHfFWoiGVsbway15u0OsVjrVItVYAwSBYa4dLQUYjXhuuYVWWFKfOnripJShpKS+/e2f/noZCmSS//VXEOV+l24lpkCjnXNbJnlJRCHfh1o8rxtUnWNizou789frzZIwl6AMNUIdYKkvjjIGXUsm53jYPFCpXPLwtdlcDH2fzuGtsjpQVR6UKF23fYcUNtQLRFUy7Ie56NqXQdrLivqvDV6X3MdEhX1+XE97VPHhRpvo88jpgQKQphdwVo3rU96X1jddYz7BB/9uBm4zj+gR/KzmpWxhUUJRVWiuHDfzXZe0fuQrbvgoM5By0sXS/IHm0IgzrGvOS6V6e+4gebn6gcH9yRtF+wPbQy6dslOcx2N4YnjuoKI2oMrjgqmi1e7S3VT7NWuDglFQoiRQogXhRDThBCz/H/56FwpQ89Glj+piGqJyKdWnRyUb9BURkF1Twu4heXRAqIuoFQXsWuPM6d91VF9/PU79dMc1sOgL0po263btid+ZzziZPGKi+r/7iK2R12gmnzVbeixHtSEFHGumBvtJK2R0QPNSRKo/WijXAtqgc2GWpaxwKJE2zYQvE+d6x0rdgJtx7irujCjxyOk5icR6LtaOqFMCNKx4+jPEsH6wb/joC7c42Smi++2R9vOtSul2lycto8fFBQybE30Vyw7qgUkELsWoQ/qtrZyGOXE7egHpm0WZyykCZVZuyO6nTxstyfsnR9WlLeuuc/9F8AjAM4GcKryj7GQz2rr1JcFNf9+tj3/7oE9An/bFpCmDFL6Lur1tGWdstGmqTJpW/q0yxJvZIJ6zdRYKbULrZrUdyJIq24F1D7Zxs82JfVra8dZ4MjPiGUzcoC5AyFG7W9zB2l/1UQlPdsGrRQUwb+Ndj+o12J499a0DR1ArU1xppJuun9Hs899HIWNbZ/jLVrmg3qn4obSEi0YngVb76j1eExYa+JE1y1ldEVU3ec6t0hZM1T3SylBmmhsRWOpxLUUmQrlupgT8unKpBZHt8cyhX/W033rQfQmXK5loiQZsM2BrvWYVE8UF1ciThuuE+xQ59GwMXLFUX2xdNyYWO2VApSpdL2U8hUp5RIp5TL/X857VoLs2ptaTJNdRRyMJerz4iKzTWC7kO8W3n4SbteErziTqh5o7+I6qcr4QIa5PGrBbZs5N5ET+2RbbCzbuDP5+ULHGb3sLjVuJ1lViDm4tzkLETVV8qF9zW2onDeyW/LzuSO6BX6rrKpJfu7UIuhCQ7p1McfLPp2Irg5K+3HvRyfFNcgWw6G6uNkW+HGeVdsuQfef4AUdEch0F/xNfS7I/chySNuy8tnujzmGIYNQpHwO0w77UO4Jtd6brQ9x58cjDQLZtt201O+5hjosXvnZoco+5kV84Dfl+2GW9OE2qP07cVAq/lYG5o4UUQTbnyl1vXTixOfZFRapz3HHxX3fHxH4++1fHoEXrjgkvR/EDlMvFaW5X2qFmanzKFVwrk1QVsk3CyH+LYS4QAhxlv8v5z0rQQqVMcv1UakPo+oL3a5ZQnNar7ws7aHvqhVSpLj55CLRgtov1Y2iQ4vcxoqYXG0GdY33klLRr3VQGx3ehyiot2GgJRVoHGx9cv0sqRY0m4bc5o4XvNa0C6pmgjrvgGD809ffbE1+1uPzTF20vwCJgnkeXXbVI3W2ZPRS77dNWI5lYcmB4um9ueuSn9WYBtuoDYyeGJ2qrK4x/lZVY/7NdL8zdsE7aQFzzSrqcxpXk5xtXMX5B3Q3HrvahaVI+dxMy/zlIkY00F4MxVswJpS0e1p/dIu0inoJVU8MKrYzsqWtf3fO2ujHshxMPeede81Cka0NvWB0v47Nk3V+ju6fEszjPAm28iemYdy9Tao/urKvSQPVoyTYI9Xdj4WicC4GMBzAiUi5zp2Swz7VClyYE7s4Dux2bYlQC3vp/vgqenptCnpXqYUubZld1IVmnODWC0b1yLxRCAdUpDIRDuqSEoTGnjggsB09NsH8m6lQoZ6mtRexurRqtm9FzY5HxMUz4tpqb82SleVx9UWTin5Y0/2xulA5vhYBP3YHbdvqXFHnJlvQt4mrRpvj9Y7Z1xy/pC741e7pVeh7E5+lYKwHaZcAtsXz3G/MdddM7lS2gpDDu7dKRRQJPR4q9dlWpJOK6dbrpxvXfc7UO9frvbguTup5UpOC2N3nwq1INiHwJ0ekav/pbXe3ZldUn5Hw7IWZvovD1l2VmTfScFHKI+5YV+O5yZnfDBfrHM3jwKSYUIVKa3FZrT+qwORCcVBqUEbJAVLKkVLKC6WUF3v/Lsl5z2oxFx9akfxsL6JlcTchusLFQT2sza9X3e6o/maf8Y6aJYbymOkTwilDaXn6bZmgqDUqTNxx1pDoO2moi6E4wfWAtjjX2y8LX7zoqC9w27WIc52o++j1G0zYrlIuMwXtr2Sq0iG7Nij9s9Wn0OeBv52/X8a29S7EFarV+SjQvuPsR7rFOHAsw3F14gjmav2hEVrx10P6hLt1jejZOtAPNY5mZEWwjWAQtBl1LMSzeJn3sQkMgXgJpQ9tm5ktAOr52p6xHm2ahAp4UU7PJkyoC744C7Qrjza7YMUVstT4N2tGM/LzqHgwEEsMBPbP8LeP7TqriYds5zSQWGNHSpm8d7kIN4lz51RrS8cWDZ0riRta1mRxDqUL7f77Mk66eCmB//xolPH3doa5gC1F4XwqhBiY857UMtSJQC8ASrVSWINnY41VtwNcnVSaaYUPf+bgZaTGbVA1qzahaJNSk6Vd8+AkcJmiKYtDnBdgLo4V0BKq32uvSvUFoS489MkxjvaTuod9sUXTvsfB5vJDDWB2cSwVveYXJZGDq+Db3xrqkKjzVtxhe6SiLMln8hkV9TLpsVsm9PinYwaYLUqBY1l+M1lsqOQzw5MQwUQLJiraNQ3c14N6J6ziruIPVXfWY4n3QKV7mybJ/qfFtMV4fA7s1YaczZBKnNtKdQVTcZEchvru7t8pJTyp83ymvalzWpSEDWG8eMWhgb/7KVZs/b0UUEBbrns/B5bwwD4O12sSQKvGZiXIx785JvR7ForCOQjADCHEPC8d95eckjszQa2g+TdqGyE/JnGxODK99OOuY+rFtIIk0WOKHCQy2LA9lQJa91cmF041UFVN9K3X/m7RKFwzOEpxuYuCMPyhX5frjk+5FKnD56j+wXEQZ2Q1N5yTjs1V7eA+5kQGcRaX6kKhUwuzxSLOwssF+ks+znNHn1e0vw0Ha2nI2hUFtQaWrdq6y6DitLaJo1jvg+ruqF4jekV6M5ssRXNN6M+LmkDAVk8t7hzuv1cy7a66Nrf3ah3tZ7Gy0o8PnDIs5SHQl1hbzoT+jMVZ8P3qhP4BDb56beK+hYNFg6PfLP00AvOj0p6eujqg9LCsV1ROGBQsZq4+M6qy94JR3VHP0+pecbRSJsLRGlu9d3GWP7pVR00SYSpK//51R8X2S1CFSXIb2nmZzpMy70spjfOAgDmjb1xrailDEYpOBNAPwPFIxRNxSu4M7NiTCtaLqyGlpoakDlvb+DZNhLZ9RMw3wk+OSEySoy3+/DVSWjPsxCHQhONnPTDxa6iH0lMvnzY83C3Qlu0JluticpXRURNNqP3TEw3EURTZ4svUxVIm90FTGl89ixsF9bRsQtvQbq0it61zYK+UQGsTBIL70LLZqcR1n4uDPg9Qi1OrdLe6z9EG2uQlmyIfN857XQhzLEWf9tkXKrQlTaByrDJ/2hOERG97ePfWZLdAahHvAzS3Qx9bTJF6XuSadhZUV26qO14gk5owKyHjrh/1EhYU1EK76dnnaJiSZ2yxxOscYFHWqW5dQgiUlwksHTcGVysxfX4GPKrizEQuDRim69mpZSMnc2xbap1F7Vh+xr14iiHbccwNVhKVvbWJjLOMl367O4BjvM87KfvVRQLaFtXiqj9kWbpR6PvlU5gnp/U2pAUFUi5aLUPMuX86eyiA9IfYJlje+51hpD7l0n1HfUldqQlIw7qlkiuYqo3r52uqrZGJOEUl1YWHSUhzwaWH9YqUgSts8XH5kX1ymj3N5rJKfW4rFMH3pMGdjdupmlpdADRq9ZTvmzYILiyo9bviuHDqQsv1JyeShJjSHcc4AIkVm6Knws71/Ki2b0s7rqLORaoQTT0OENTak92piO+NAypaJ63pmcYV1a3P5L5l2l0gKLhUx1ygqfOFatWK52Eh0oQkH2qMpLV1w8XQlRCmGJBEGzRlomFYYI6SFVNHdzsPJmPJPBD85Ex+chJ1Hz3MwEouhSLDiMxmHvn5MYl6bTefOhDXHW9TeKbQr4dvHdMtnCaFUkBnHbPvNew+l44Q4mYAvwFwvfdVfQBP5LJTtQN1Yoq3iHO9iG/novKzAzcXWxOjvAVClJTc6nXSs6yphLlr+e5SLi91ubay/uVx5uxXrglailLo7oHq5R3cNeUOpKcVVRcOLYguhqbFRqP65bGeBXWfsScNsGxJbY92rLjPrWmxoXPCIEtSEILg94tjg3F7V4+mFUpNc58j7RPcyr82cV+Zp+dQ+C4k9sD78LH16MWjSPOPrpBSrR623YOKiNTnTNk0zxvZHVcc1Qe/yFCAV51zbILGDSdHe3bLykTAfSfb5Zm+f9z1nsntjmoVtmG6j+lW4eiWQZui0eRyp9OttS0TXWb0PqjjpUG9MvI9VsdFBTH7o603qmBhVWLHVMj179QcS8eNwcWH9rImZKDyqxNSglWnluEW+OAYiTfYOftcOGcCOA3ADgCQUq4GkJ1zbx1AHY9+8GnodpaHzPb4xRmrNtN38LjR3dbSJm3lc1q8jrdxmIaxLLnYCvrAHkDUpra11EpQM0/5k6BfgyHOZHeq4u+uL4SbKv7rTRqYXpbmY1Kz/ukvR5M1wyYsBpMzmPtEtUTkGvW8qJp5lYq25peoTRGhuhzmOmkApfkTNSuUOs6aZhmInIlsz97XnPrIwGfz5KbHNFAItJaD2xYnIFodto2J98oW90gVxlSOtsTPVdVINKhXhl+fOCBjLFjYs+Af85ShqTHawmApMrrPIbhojmRJ0BsKOVCmeImTh4SPNb1mjCklu+mW2BQCpnklSmwHdYjHq4WWHdZMgxHOUb0eB1mKcZvYGCOmT0KmWcrioJ/l2fuHu4Pr2/njX4hgTNTRlsy/ybZsYRCW/aprpDHuubZCEYr2ysRolQAghMhdWqhahDrQbPECcSegMgdaAK0nod+m5fY3aaEsT52awhRILSLCzt3/Tm9OrYmkY9J46QxR3Nj8uBf/he/6RXDm/l0zb6ShLl5aNbG4RxDbsAk4w7q3Mv52y6mpZJNxAi1te7h2MYmTgMMWA2GTsdRkJLnOBKaOadWSZ0N9Bi9UaunoqeRdJCtIWooijA/b4p+aIj5OKQK1bauiKXLLfvu07dRjd4+gcY8j+JuOS21pd2V1sA3LjqphXL8Ufzt/P8y/7aTQ3zL1qUmDegFrTtyYIlPfM1mKfn5MP3Rv0ziQBVUIYN/OSqYyIfDwRQeE7q+XovAxK8ksVp4Ii1p1TlSHjouETPqxoraZ5gES88Ubxcr3qxP6p61B0q3l5n74iph6ZWW47Ahz7HBc7jpnaPIZUXHpuha3peoaiR6GxBO1Fcos86wQ4n4ArYQQPwbwDoB/57ZbpY+TRbbVzYfWhCn9N0W7EEoM9zl9EUqZR6PMtdSgTXWheeqwLrjmuH0CZmgfcjFGw/cvzVhF2j9OfARgf5GUBa67uk9wO1MhUSGCGuQRPcMtdLqbHYURFa2DwbiRW3DDEf3MmbpM7ocA/QVuijnQsbWnunraguhNqNrsTG5SceYqyi56Io0mDeolM4DpxxzYhSb4ZSukx1kc2AT5ds0akPuknrO+wLddT0rRaOs9zOGDJkTwmfE/+9+UlYmMgqz+HPjvpmaN6pGzjNlcR33F3v5ajapMi859O7fAR78+xqig6t0+8Z4wWXf0DKc+qpBFxTbG+mheAMG40ugDw0XZCBNNHLgYApkKyga58ui+uPc7wwPfCRGMDbNZe+86Zxg+u/5YNKhXllFBMeOm4zDrluOt2+iCpOkZocYOUY4TVx7u2KJRTmN4ixFKooW7AfwPwPMA+gO4SUr5t2wOKoQ4VwgxWwhRI4QYqf12vRBioZcC/IRsjlNIqNaL4wea4wqoxMuBT8OUnjITlIk17GHz3dm+e2AP8sKbHFiqfC4vE/jFsf1CXUNsqaIpbW/dVUmaSPZW1TifcFo3VV/gNKuRin79OhmEattCp70Wu9bfq9/QqUUjY6IJa59om2VoI9WKngEwsJ1yMP1FSoWeApq6mE516ihiYgP9ml16WK/Q9nJJmOBtqhPURnF7tcYjGi6ZLU32acPixy+9e+2Rxhoefn/izL/6Qtrm0ulDndsyHcslUgbH002nDMQFo3rEcnP0UWMyAzFFlgtti3VpVL8cr/38MPzze/sHvo8jYAsA547ojvMP6I4Xf3qo136iv5R7mKmvpnk6LI7Jd6HS3Sptip3AsQzCE3WfKPjpwId2TXhrhF35KHfDFo9JoV6ZICWzARLvOtN7UKdVkwZGN9GomGR2fYzYsr366OEIgfYs9/SQPm2TiaNs3iW1CUqihTullG9LKX8lpbxOSvm2EOLOLI/7FYCzAHyoHWsggPMBDEIiFfg/hRDFEchAwDjo0rZLfaP7J9v287niqD7Gyu661eQnhqKk6e+D8CfwX98bYeyfvT0zJw7uhIGdW+CnR6Wbops2rIcld5yMK4/ui5tPHYTvHdgDU244lt64BdviwOWygbwIEalYqUy1T9RgZ1vrh/QJunr4jDSkw03rkhCBSde0ELH1oUWj+sk4uj7tzQsFam0oJ86hxFui3jtVG+nLcq/87FC8c80RDnpER5XRdW23eZ/gCedqXWxP2Z9+0OM8JVDrJuYiwbY2TT99Z2S6X/7ScWOw5I6TA7Fw1MvgPwN92jezxvc1aVgey31O17vcde4w434UIVu/1ocr1lBh2c5EFIFBPZf2zRvijrOGhCpNosogAiA//GdncFce3LVlmgLM9u419kkING5QjnFnD03W8erQohEeunAk/qEIXfY44nQGeZbSOO5ztgOo9zsXMfPUJgd7wpB1+EXon+lcWhOztsZxw7UdNxdUEBXSuhIyDFu/B1rWHjVSJrNGNimSmOJcQxkZx4V8l+4AGQEp5Rwp5byQn04H8LSUco+UcgmAhQBGZXOsYsc2SZgWyucf0AN/Oif8Jao3Z/IHTc8CE94HFwUcdVo1aYDXrzrcmDXGn8gb1S/H7WcOQQdiFXogg0XEgTtitvsE9kdCiz3lt8dmTIJxtSIU2YW7cI3f6cOjxzjZyLS4+s4BCTe5wV1bGq+TLW4qw9Ej79HPK/x4mFfk0mQNzCTQDu3WKmMRSXohUtp5qH3Vi+ua26YfK15GwPDvM1m+f33iAEy9cXTSIhyVqNp9/dyoCotMm53j1cq69LDesRIt6P1SrWqPXRL+yoviCPXvC0fiyR8fiPu+PyJonY3aUQKuLVG+26UQIpD9Sr3KN47ZN7BPnDGsxgZly7H7dgwoeaxzdMhPmYY11aqsZzazWxBN39PeL9mQK9sldRy0baYrZZQ2LL2L86zrUD1RyjPU8ctEQCAO+d1PoGCLeQ8UKq4jXnRGoUgI8VMhxJcA+gshZin/lgCYlaP+dAWwQvl7pfddWP8uE0JMFUJMXb9+fY66Ex+bdk79a7ilWOQPD64I/V5CBurY2B7TuuYPql5qXRuUzysRRbvr1ziyvsCUibR7G7NboQtBzcV2/ktGaN+ZxqPNxcnFffMXsTecnFhMXW1IM6y/r4ohdXScRad+HtmOC9OaTB/nvkYYCL9v5WXCankB7JpPcz/s+Mkq1IBrPd4yEGOQoUF/4V6vXJCDvoMB8GZLXhdLv8xtB/9uWK8ch/RphxMHdwrck7jY3iNRvY07ZNBs33rGYPzosF44un97Y/prWzZNMnnU+quEPc+ZuhIl5j649jAfw5RltnMruhKSii7UmU4nW0sMVWlCcTnLFXFiU7NFSpn2DFOar66RebWOFQM2S9GTAE4F8Ir3v/9vhJTy+5kaFkK8I4T4KuTf6S46LqV8QEo5Uko5sn17RwUEHWIb+M0UFzdqNXCbdiHOoG2jWYCoi6azR4RbHAr53AjDZx3bNQy4jGXbH0ETRvVAdHr78bTdeoHQMMqE2dfa1rZOUigi9jVKLac4C/yD+7TF0nFjMgb068/jnw1uTV1b5U4w1YlTmymuhYTcPmF8U+ta6diEprjpYX0tvhr8nqUeNvmJHhuW+hwroVxMa59+rFHE8gY0ZGRXpExDsV2zhvjdKQNRr7zMKKi6eN/EaSNXijV/DJkz5dl729yzNJ40uBM5nlkfF76V1xYTo7enF5A24fc+zYJt/CMecRfwwfgq83bZZoKMgkkhQEXvq/G8LKekjrs6bymSUm6RUi6VUl4gpVym/NtEaVhKOVpKOTjk38uW3VYB6K783c37ruSwPWSmvPQ2DlZy8cfxude59YzBwf2IO952xpBQ4aIUtAlRXRoyYZxjiIJFtoXwQo8d+BzshG0hn9xH67fpvpITN5C2yrzdFUf1Sbq+5XJuTn+RhB/NFo/g+lkYarEmq3S1JCZxfc38OSAtZT9S89vPju6b9puJI4kJJH5MiJHMFJ9nQj2VehkVFqkDmtYuNmEhzVJkOdIPDu6JBvXKMHpfs+tk2H1ItZ1qvVH9cjzxowMx+/eJHEajPLddff/01Mnm1tt7Qmym4qz+o6XXO7Odu2qJdOG6FGhbO0nbNYxK1PeJf01MirtMZ97Gcwf7xbH9QrMBhvcx+1nhtIiWdFeeKybhJJOC4oh92ifjrKNYhn3863lGHjwIdEE4an/VOSyREEXbgNAG5TiZLL+lhrtZwA2vADhfCNFQCNELQD8AUwrcp6zRx2Kc7Ga2F4LpN90NQ6W5pg2ivm7Ky0TS/70YBSFTjYbEb8Q2Yhwrzv7p7cXcMdBGqpFTs8i6lfk49t+TQ0MAAzolfPdNacBN7anj69cnDsATlx5oPeYIYhICG9TkDzaiPhbfOzBDymxiO4O6KK5rxJ10y8tQr5aXf89MHNirDX52dN/Q2MabThmIy4/sE8n10BQ3qAesmxau6jW/WKnRZEOv1j563444aXAia9rxEbKnmRZiE687yrwTYW7y5+8BnVpg/m0nobOhcj1gF8DUtsu99L9+0gE/nfNvtRgd/ZT09NIHhlibKG6RvzqhPx73Yqb8NNq24rANyhUByvH7Rsqgtb6bxS3Zx8UcHSao/PN7++OqY/slM3XqZEof7t+vMiGCiS+aNQw8Q00MtcKCwkqUJBvBczn/gO4kK+hF3jOant02eOywcQakErboqHuHKUcev2QUrvdcqM0KPzO+lfWcEd0tW7nBdM+pY1DN4igh0bG55pZLaK9GSuva89Oxx+Dta46kdahEKIhQJIQ4UwixEsDBAMYLId4EACnlbADPAvgawBsArpRSVptbKl5cu6v0bhfdh7pNswZ5C6TRHxwXheKy5dShwUWZy1TEB1uqaAsBDCH48VOtMlFQm4zjJuPqCiXdQSBwx1lD8fRlB8UuAkd1A8y0kCcdy7sCceow2dqzYStMHJcO2gvQnI41+MNvTkxo+/XscDplZQLXndA/Lf5HykRylrEnDYiV3UvnlKFd8MIVhxj7e/GhFbHbXrt1T+DveuVlSaE4s5tM6nfTelW3zFLdfP1TbGQpdhsFyrSnK+r0U9J/Vy0EdHdegSuP7ptMiX/16H2wdNwYq0BHjZ2Ng0R0y4ULS0eoANyqMX553D7Ga0k9dyGAkUrSnkP6tsPofRMChJTBLKZhNfqyZdzZQ7H4jjFp3+vvtrP274al48YEk+2EnKRJkWaaW/7zo5Ti7Luj7IJLHMtjz7ZNsXTcGBxmqXXnioMsawy9ztmEqw7HpOuDpQP0OcykfAgbcZ9dfyxOGtwJJw7upGyXvmWXVo2dKBKLiYIIRVLKF6WU3aSUDaWUHaWUJyi/3S6l7COl7C+lnFCI/rlAHY8uFgejFc2ILXOcMHyficAL2/tDz2STtk+R+JgGXBWV7y/TXG16RCj4lgndKqEXk8smuPn2Mwdn3shA1vdE0NqIImA2blBuneCBcOupr9XUf/Nf8j5/OH0QAODyI+nVxs1CQuL/bARUalFAukUyeh8oaVrjtm0jbqpbE0LQhEaqEibTQsh3YzIV3ozTZhLrxVaFcdcTawzPhAzXs2/7hJJuePfUPJdXPZiDY8mEVOQU35JpC+SP8sz5LpNqghCfe78zHAM6NU+zntqeQXWh3FGxzgb7RO9gZOVnxqZ19+XE/9RaY8Mj1NJRu+67ZieOmfuFzX9+NArvXWu3sBzStx0uOqQCZ3np5lXvHl/pdYBXamPfzi3SLMmqEFRTE6aENd+7Ti0b4V/fH4EmDerFeq5PHhK/TlmhcVNemAmlaYNy7NhbjUP7ZK9VsPncS8NnILcWm6g1SvKN3gWbJcHW3yYNyrFzb9BgKSExpGtLvDg9EfKmmuoFiMkKDP3tYnGTyTWuLJy+EHRuSP2YMMKu/7izh2JI12VpVjl9yx8eXGHM1BiVlFBUeEvn9N8dh7IyEetZOrxvvDnHP1Lc+I2zMtSLcU2Y9jKs71QN/3Un9EfLxvUjxQzEGSqmexpY0BLafePqwzFj+Wary5J9+IQH+GcK7D+wd1t88Kuj0KNNE0xeTAoztnLS4E5YsmGHdRu1S1U1Eh2aN8S6bXvMO2RAQgZHRYwsfzp3njMEv3xmJhpbarpEsTb1aJOwqumZEgHg5CGdcfKQzgCAnx3TF7/+36xQZcjRAzrgtvFzcNrwLpi6lHKvEtltN++sTO97Ll/roQq5xBdjhnbGKzNX5+zQrWOWCIjL4f1oMZS3nDYo+fl/lx+M9+etC8TkhVn09+nYDPPXbsfPj+mLD+cnMjPb5H9/LppxU1j1HXU7UpcBIBlnWIoUW0xRrcI3DcedSEwLsygLtpqazNscHtEUHHY+1PopucZ2ra2/ef9fdEhFQIMGAB/86mi8/ctgwU4pgQ4twh/8bBPUZBNQnK0wKhB0+/GHmu5Oluko3ds0wdJxYzJaiGy0adoAPz+2X04E7EmLN4Z+7wuFMvl34v8LiXEqiX2j3T/T1q2bNgh1TaBcDmpWy/TGw78+P4Mrik+ceEkb+S4p0KxhPfzyuH0iWfd1AeInR/RGu2bpixWS+1xYQLSFAZ1a4PxRPazPCKU5/ToP757ZOtezbdOMtVCo/Ov7I/DG1faiyOpzJRDM4hqHXOg96pWZx81vvViWjob3RhhUy/V5I7tj6bgxaBKSDa5P+2ZYOm5MmhWll1InUCA47qiL2lypjkwxQy4x9b3w6txwKto1xUWH9gp8F3YO/hi0CeYA8ANPkehbGls1aRBaO7Dw6sH8wkJRjoircbdlCOtlKHZqE5Ioeft1ISAOuiWrGDTtOrYFlnq7fL/rYd5LpH3zhuhnCIANb0vE0x5H3yUnhC2w9K8s7/4MbRu+j9dcbPR4kmQ/vI74z40QAov+eDJuOmWgsS1bgHkuFvUf/upoPPlje9IJaj/Ub08YpLjoauO3EbGuR5SzvTZCGnbj8SJeXlfTUrOGievRsF55mnb++pP3xdQb07WutoykfjHbYwaklEtxu6pXqLddI9P1MMmE6YHxyNvDa4vR0rn73GEZCwkDwWvTpGHmMZ45K6HfcPpXlx7eC4v+eHKkotW+jsFV5r3GSpxaJ8X6dMZ+XYNu+MZ5OvgD1V3W1vtD+yYUZz8+POXuno/lQxEuUZK4jtORUobEj/bHoj+e7NzludThq5EriLEZOiMrCP7zEdqjCjzhGofECeiWJF8TUcRzSijU+0GpHxQnSDe9P25WE43qUx/jzHeMHDRdNCKcW5KWIuVSlWdwYYtyG/34p8D+9N0BJKxwh0R0yTX10fdDn3rjaPz9gv3zOqZ9YYKyeM1EpnS1ro2N1xzXH786oT/O3K9rcj5s3ST+QqZN0waYcsOxuP7kfa13oE/7cMWYiq6wsBZe9eZ43cAXdg1n3HQc3rjKbs3JJb3bB5MN2cbaOSO64YEfjrS2pxe0vPiQhBbeNh5N2eHSG0//SggR2ZLqn6OfzOPQvm0xZmjnSG2onDcy3OKrp1WmzgNHEt3AUu2m41ulKto1TboJ+vXkcumuZxI0i8DznzxOwrbKlMk1tV308VgX4Jgih7h+mPRxnPT3t61tZaJOyPPTVkLKlLXDht7tRvXL8Ytj+yWD5fSEC0/9+EC8MnO1dRFQKC1Mtm4kVAtX26YNYrvqmThz/26YOG89+nfKXGdlYOcW+GbLLgDA704ZiN+++FVSQ3ztcfvg6AHR3BlbNq6PLbsq0xdHRNG3d7umWJwhJgAoHu2c6T77p59N3bzmWpafT8cekxwPPzy4Aje9PDvYl/iHio0QiXvhK2F0a1dabGKO+gAEM4zpZLJ0R33MXJ1H4wbluNKrw9TUszBcrLm2qFyvFeANW3TqacnDxuivThiAy5/4wto3eo0h4Ncn9Ee5EDhTiwULu05RLByuoLg8u2rf15jXt6Y3z+8i8tgBHfDAh4txSJ+ENeW/lx6UVXv1y8vwydhjQrMr2iyZpu9ju+kq/O6UgWjRuD5OHNQJDeqV4eUrD01LVBTrvRHzXhVDPLTr7MVp8XNR9i2Wl3aeYEtRHnA2poijOmqa2rDuXXPcPhjgLc51bUK/js1x7fH9i2LyAOharWwFJiC1gDt9eFdL4CKtLX2z04Z1wdJxY0hFVl+/6nBMv+l4r51ES8O8TFA/P7YfKfvdR78+Gi9deSiAYArt8L4Gv9ffhVGydYW2XxxDKRmncEoEbez/XbBf4G/V1VKUJdKWhtaYMZyzrZ5TXPRD3ey5A+rfJ+9DzDkrzm20zY9+ApMxQzvjoQvNmv8o7kX/+t7+ABI1VVzQsF45lo4bE0h3rHPJYb1w+vCU4NHdUhPHX5y3DXHL3K9HKwDp9aVU0oQi45YJQefWMwYns6Xt0zFhjaG4XacfN3+LJxHTEwMA/vHdxP2/8phgcWGnvXcwn504qBMO7N0WS8eNIRdwptC1VeM0D5JCvsvbNmuIP5w+ODnuh3Vv5cSCMdkQN5qkiNf6xwyIZoHLB1HGSBFf2oywpShHmDKQ6Vpkexs0Au+iGHNJkaxHYxGlQKntPP0HXiKlNR8RkgpY1bD591evNF8sC/xMdG/TJJlK3DSJGdc52kn6PtDnZcg2R/VVz5ZRvdpgyhJaVqyz9u+KF6Ylsgg2aVAPM246Lq24sY0DLckkWkRox+ePZw2JvE9UenmuSANCChzmC8o991Pf+wtZHX8hpWpWM72QTxzcCbecOhDnGlyJcoFAUNj1a/WE0a11E9x59hAcM8DsxtUoQxC1ygmDO+GxScuI/Yz+HObSldbUdjby15ihnTFm6Biv/bBjFgeFeo9IaV4Ax+1Sg3LfTTN/J7V8007r78W8cL9Uia+Ki+5SHDvhV9Y9KS1YKMoRvntK+g8uWpfaX4YsdSHfTb1xdFql5ERf3Q79jTv2Om3PRBSFEsXdTcqEsPD2L49ARWhiC194Sl0vfaIvIyZayDRJHdS7DT6LkO6Wegv/eGbIotvfl+g2oR/M1+yp2vAoRMnIROHHh/e2CkXtmzfEovUJdz/dlSQbN6FbTjUnZKBiswLERruBR+7THhOuOpxc8JY6P0R58R7gFReOotjw8WM7rjy6L/ZW1eD7B/XEs1NXYP7a7aHbXzCqBz5asAEDOjWHECIti9MPDuoZuQ9RiKqJ/84BPay/2+5GOy0+pHvr6PXZ4rwO8rl4cuZ8EXJfnLSdRSOnDeuCV2audmodiopr0eWOs4ai78dLcGjEUgHZ9CNTncVidgvrFJKCnUpoTFEWfUm2G2HbIr60GWH3uSLGFFOkM7BzZlcpn3bNGqb5rmcyVcfRBGaakLLFL+aW6eHzqzy3b94w0sKkX8fmdpcwCaQEpNxAiQcD3GgUkzJRWkxROLqWPds+RLk3Ls73CCVboosJfFi3xDM4vEfrrMdDlGtx3/dHAAB6ZwjAvygkpfi+nVukHct05FyM8V7tEtXhj7DUYAvj+Z8ejKcvS8RWNG1YDzeeMhCN6pdbi7yePKQzlo4bE5p4Zum4Mbj1jPgFk4uN35+WnsyDCjUFdNg+ucCkLDEdMmp5CUqb2TT27rVHZizSqeMviAtlKcrGNdFE++YNMfakAUUV2F/M6/Y4HgY+Yc+uzfqXiYN7t8XxAzuS5xVyMpIihYWiHCEQPrFkGpZxFmhxJxp/kJcJ4VwrFVYvwSVq6lrbs+5fG2qcRqbYBEowaqbfkttkGA2utS229vxgcZN7g/6tKWVopj4XzyvRMcmsdbl71Y6qaJP23YmDO2HurSfizQw1XtpELE7oPweDuybc6/Lp9pKJET3bhBZb9F3KwoLIC43rHtnaM5VuILWbzHZGH8e+8iab45oIi6sCgAGdm6fVYZl764l45KIDIrX//RxbCPu0b5aWNa/YsblaFUscsc7cW09MKz5aihlS7zlvGPp1cDNe1FuVTUr3RvXL8cAPRxo8Z8KP6yqFfCFg97kcYZrMXUwqmbLPUQ+hZo45d2Q3/PXdBdl1rABkOtcOzRvh+pMGJCt/G9uJeFwJYJgnSH53lNnVJRu3MN3N0cTBXkzLmfvRXNfCrtkzlx2Md+aszUmQv0q+pspMwkmuKm4nUrVH3Efra9j+n449JrR6ORAtviQTydg6r0sP/GAkXpy+ChVh9WmKjOtO6I9mDevhDOJzwKQT5+30/QN74NA+bfO6+G/aoB4uOawXrnp6RvK7OM8BJcV5ocj3kl4VIqIIFPXLBSqrcz2z29tvVL888v3XXxFzbz0xb27/Js7avxvO2t8el0tFPb+2EZVidRkWihyiTiSqFitQiTvCTFehBeOaBarsJyRXdViy2cc1/qTwkyP7ZNy2pbfgbNvUvlhOJueSCTeHpePGpG2za2918nOrxqnJ6JwR0SY76l2t8NyQyO2GNFzRrqmT4M5sGNa9FWau2OykrUyWDd+SefKQTk79raWk3zfTwqNpiGDahZCR0AX6ZevSqnEy9TRp/wJqZ5s1rIfrTuhfsOPbcDUfZmOI7NY6N2NICFEQa0hDYkFhG+o80cKzfus1e3LBsG4tMXPlltDfrjiqD9Zv24PvZWHFevLSAzGZmGgmjChFtj/5zTH4dmdl7GPF6YcL9EepUf1yUubXYke9ZuN/cRiueWYmjh/YKb99KEErnQ8LRTkkbGBEGSqmYDvqezGTtvykwZ3w4IeL8aPDelm3izMx5TqmiEKUfp86tDMqq2pw2nB70HfS595yF4Z1b4WKtk0xoFNz3HxqwkVxwe0noTzihXTtiZXLF4yLtk8a3MmZUNSQXNDWDanzl5FvnL61n3GtkBTa+eEXx/bDhu17CtyL3DCcGCvoik4tG2Fg5xa4/uQBGbf1C7+WQqC0izlHLXR7RL92uOe8YRm9ClxwZP8ORqGoVZMGuPc7w7Nq/5C+7XBIxKQGV43uh3lrt+GQPu1w34eLyft1aNEoLU65FIiTdr7UGNSlJd78Zf4LLrP7HJNGwJ8zwviwbapqo8N/8f+ivS3aNWuID399NABg1eZdpH2oHD+oE+6YMNdpm2FI6cbNQAiBswmWHMq1PWFQJzSqX443lDiPsKQNmV7qrieWWBmlIi/w4xfbdCmzRem2X5slG/w4liiWolzz48N74bVZ30Tax/eojR2W4+gmXnPcPm4aKhJ8S/zUG0dn5aIaRxCoX16G1686nNY+oscUFQon877qMiZE1q5LnT1FZikGm+/buQUmXncUAPO1LWSa8MhkDODO3MQfTo+ftKSuonodnTgovxYqF7BQlENcTyCm9nS/6CYNEm4FPQsYBxDVKkJh3FlDIgeM5wrbJO0qzjtX65J47pDBnfT4FhfmcpdDhm5NBS49rDf++Hp2Avxfzt8PD364GPv1aI3Zq7dat/31if0xqqINnpqyAkDuYgd+O2YgfjsmWorw4d1b46JDKnDp4XbrMROPdlnGsuVaVikGt+d84vp8R1a0wQtXHJKMNy1VimUcZPNeySwTZX6YaoM7Xb6RUibnqUP7mmv4FSuF93GqpTSuXx7rBfbL0eaq6D76w6wvWCvaNcW/fzgSd587LHoHHJGLSfX8UT1wvKZ5yPfkTcoq56hPLrS1L195aOSUsBQaNwj68x/ppVXuFqMmSi6IYuEqcyDFdm3VGLecNgjlZSLjsa84qi9GKpnkikknX14mcMtpg2Lfx2JZTNV2cn2di2lM5hJqVsUoRdf379E6Y0bYIkyQGMBsKcpvx/0sp1HcoZt7dd6G92hl3S7fbqz54vYzhuCAitbYp1MRZD0swRcCW4pyxKnDuuCet+dH3s8WsErRmtTzKkePHpiqhn7kPu3RPovg0dINmstdv+1ujm6O66R+TpYTv6kL+lx36eG9cMZ+XTOOM1vCAOp1s72Yu7ZqjFWbd9GTHeRgiBTy2AyTDfv3aI1ZK7egTRYFjPOFiwW6qbSAzmu/OAzTln+b9fFKhWJJvf27UweiX8dmOLp/h8wbe3x2/bH4+3sL8esMSVcuGNUjo4dACXiRpjGseys8d/khBe3DgM6JUg492xSHkjQKLBQ5RJ1HystEeJ2iiJPN45eMwtqtu9O+N2USCgvQfOySUZGOWXLkcf5OxXWZZ0vqLc60XTH59Wc6JSEESfC2CWku3sN9OzRLxsft36MVpi3fnH2jDJlsbuF/Lz0QK7/d6awvTHR+O2ZfnD+qO3qUQAp2F9N+B69kQqYaSz3bNkXPtsWbvts1xSESJTJKRs2K2rRhPYw9KXNSEb3OVSnh149zlb7bJVIm0vTv170VBndtWejuRIaFojwTdbIJq/YuZSJDTRimjHXZMKhrC4z/MlrAtskikIt0p/nM1pVPDVoxiEQUuewXx2Z2+aTg4trefOpA/OG1r3Fw77b458SFDnoVHaos27pJQkvdNMeFjkuFQyNmy6qLtG/eECcP6ZSz9Pn1y8swoFOLnLTtGhfzY4fmifflacPsWUfrGmFlAWob9UKSH5UK3Vo3iVSGI98IIUpSIAJYKMoL6uSdzbqPFM+SAx3P0K6tAEQLmjP5THd0lLrT12QO7dYqcr2Kod2yf1htC1/q4j7TvdKP8cvR+2Dyko2ktintRUKY/9zPkW921Ex3YfRu3wyPXlxYyyj1LK49vj96tGmCkwaXXoYenaYNyrFDqc/F5IbyMoF/fm9E6G8vXXko9lbV5LlHhcPFm65N0waYdcvxaJZnxUSxu6TfefZQHHTHu3jhisK6YWWifnlxX8e6xCWH9sLDnywpdDeyhoUih+hruvDH1fwQjxma+/oIJmxTSzHmnN+/R2u8c80R6BOxaODHvzk65xnsqNN01wzFFHUh4arR/QBkb5WJWC0p6+MVigtG9cDnS/MfB0AV7hrVL8cPDq7IbWfyTLHEIuSC135+GKYXcVxJbQ0cN+FqqLVoRIsrqkuYCpOruChlkA1TbjjWSQFfxg3nHdAND3+ypCjXi1EoXfthERNXezEygxvY6cO7AsiNCxplGGej3frX9/ZPtOFwzdS3Q/PIi7BurZugSRZaQb+WUasm2b9IMwX5llJMkZNjOF5QHzMgEZwbdp2beRmKsk2RXErcevqgnCleimek5o7BXVvWOiGWKQy1QXdATVKRKzq0aISWDt7DjBuK3fpJhS1FOcBfy/7h9MH4/auz0aWVG5exy4/sjYsPrUCjPAcIulibd64l+f5/ObofrjiqT17uQa5kIhfNBgQYR3NhPtPUHtGvHe46ZyhOzUEsQRHJsgF+cHBFzhf1teO1mB/Y5TA+LRrXR4N6pavTrQ3PSW1ZBNs4oFcb6+9CFO98byLn6fxL7HrosFCUQ47Ypz3evfaowHe2AZlpMAkh8i4QBY8fZduozoPuycXDn897UAxzSz4nONe3K1Pc17kjuzs+onfcAt+5KDVVXFHqL8JC8NkNx6Kymi9cHMrLRLLG0CF9Sq9AZKnd9WHdWmLmyi3BL2u/TJTRGjbz5uNRXULP8B1nDcnokRSX2mD9BFgoygm2wZHrcRN3QWaPKcotk284Fjsdakx7t2uKxRt2OGsvKq4mh4N7t8X/vliJAyrcTmJxuqcLuU3V4q2l807IC4UUEN655ghjZsp8EDb2G9cvR+ccZMUsdZpzLEtkzhvZDc9OXVnobmRNqa0f/3PpgVixKZguv9TOIReUWjzaBaN65Kztvu2b4aJDKnDhIRU5O0Y+YKEoz1gtRfnrRiQaeKkrW+TIh9hFRrrXfn5YxiripYZfiLdTy8K5HprGZL+OzfPajzgUSnNVyOe4b4fC3BebMubrP5yQx54wtZk7zx6KcWcNLXQ3sqasxN5VLRrVx6AuiaytR/dvj4nz1uPGMQPz2odc1J07Y3gXHNi79CyNxUhZmcAtpw0qdDeyhoUih1CsNDYtsouUxHGxHfmg3m1w45h9ce6I3LgbuUDNiX/N8fvgZ09OR5cCCRNlRWpHjmJFfPTiAwK1KvJxRqW2UDBRl13JwuIManNGOib3PP/Tg7F1dxWAxFjSh1Ndft4Kwf0/GIltuyvRNs9Jap6+7GDsc+MEp7Gnfzl/P3eNMbUCFopyQNQAxGLP7y6EyLpYYLOGCXerigyVw11wytAuOGVo4YrxHVwLNE9H9U9kbpu/dpvztv93+cGYsWJz2ve1ZelcTFkD80UdPGUmT4zoaQ92L0WaNyrdpVeDemV5F4gA1DpPEKY4KciTKYS4C8CpAPYCWATgYinlZu+36wH8CEA1gF9IKd8sRB/j4AtDHVqYJ4y6qjTt26E5Hr5oJA6qBQKDieaN6mHb7irnFg9XrcXJFtSrXVMc1b89fjl6H0e9AEZWtMHIitwvdHihnn/q6vzGFI5SHHM92yaUgyNyFPReG/Fv85n7dStoP5jaTaFyWr4NYLCUciiA+QCuBwAhxEAA5wMYBOBEAP8UQpRMda4G9crwl+8Mx7M/Odi4Tbh7SeL/Qi7i8vFeOWZAx6xqBBU9Rb4Ij5OEo355GR69eBSGhRSGPKp/+9jthlGvPDfTUSkumkqNP545BO2bN0zGHzJMvihF5YevN2tcwGyypUZZmcDMm4/HnWcPKXRXmFpMQd5gUsq3pJRV3p+fAfBF/9MBPC2l3COlXAJgIYBRhehjXM7Yryu6WGryhC3Q/K+iLi4fufgA/OO7+0fah8k9rhfhrt/52fTv9V8cjt+dkgiwdS1r5KJmUCEoZGxgLrGNm7NHdMPnvx1da+LCXHHZEdm5HTO1E185WhddbbOhZeP6OVOeMQxQHDFFlwB4xvvcFQkhyWel910aQojLAFwGAD165C7NoGvClgxxF6lHe3EfLsjV1HxghuJnTGkxsEsLDOzSIidtN21QjvMP6I5zRpS2e0RNLV3ndGjeEGu37inpopn55oaT98UNJ+9b6G7UakrRElwM3iEMw6STM6FICPEOgE4hP/1WSvmyt81vAVQB+G/U9qWUDwB4AABGjhzJU4tHRdvcJzKgMvfWE1GPNcdpNKhXhr1VNeTtXV1B31WjXllxLmqFEBh3dumn262t3HbGEPz48anYL8SVkmEYOr5QxJYihikuciYUSSlH234XQlwE4BQAx8qUv8kqAGre527ed7WGsPS0pwztggc/WuLE8tMopo9yXJef6b87zqipi9uX2s7rvzgMkxZtzPtxf3XiALRsXB+nDy8eN7VXfnYo5q/dnpO2/ZTiLpNE1GWaehkkS1EzzzDFhF+2gWUihikuCpV97kQAvwZwpJRSLZP8CoAnhRD3AOgCoB+AKQXoYl4Z1r0Vlo4bU9A+xJ2cWzdt4LYjJUzPdk3w1aqtKM+wauzboTmpyKbrF2azhvVwzfH9nbXnF5Vt1jB+Ud+h3VphaLdWjnoUpEG9soI8V728tPP9Ixa4ff6nB+P9eetz0SUnNPOEzM4FLCbMMLWBuHHEDMPklkLFFP0fgIYA3vYsJ59JKS+XUs4WQjwL4Gsk3OqulFJWF6iPDBOJRy8ehenLNweKnrqgWDXzN50yEAf1boNRHDcWwNcC9+kQzZV1RM82RV2TZWi3VvjbBfvh2AHuYhkZpi7iJyRhSxHDFBcFEYqklH0tv90O4PY8dodhnNCuWUMcN7Cj83aL9cXZuEE5Th8emgel5DhuYEdUVdPjvGx0atkIANC/Y24SUhSS02pJhkCm9lCs86MNX8/FMUUMU1wUQ/a5OoWv9X/8klFYtmmnfeM8wnNz8ZHMUFTYbtQJHvzhSGdtjejZGi9deSiGdG3prE2GYWoPfmwxz+0MU1ywUJQnzt6/G56fthLHeK4nR+zTvsA9CsK+zcVHPy/u6NA+bQvcEyYqwzlDG8PkhWJ1L7aRyj5X2H4wDBOEhaI80bt9Ir6gmeN4E1ewpaj4GNilBabeOBptOZlFGu2aNcRVo/sVuhsMwzCRKSuSQkVvXH04lm8sHo8Vhik0xblCZ/IOy0TFSbtmDQvdhaJk6o3WjP8MwzBFSyqmqKDdwIBOLTCgU+2LfWSYuBRnFUcm7/Ro06TQXWAYhmGYWk/nVolkLCcNCatvzzBMoWBLUZ6IWxw1X5SXlaBjNsMwDMOUGB2aN8KXtxxftO70DFNX4Scyz5RiUCjDMAzDMO5o3ih+0WuGYXIDu88xDMMwDMMwDFOnYaGIYRiGYRiGYZg6DQtFDMMwDMMwDMPUaVgoYhiGYRimpPBr/50xvGuBe8IwTG2BEy0wDMPE4O5zh+HD+esL3Q2GqZN0btkYS+44GYKzFzGOOX5gR7z19dpCd4MpACwU5YmTh3TG3W/Nx+lErdagLtEKql14cE/MXLklTtcYhonBOSO64ZwR3QrdDYaps7BAxOSC//vu/tixp6rQ3WAKAAtFeaJ3+2ZYOm4Madv3rj0S7Zs3jNT+708fHKdbDMMwDMMwjEeDemVoUK9BobvBFAAWioqQ3u2bFboLDMMwDMMwDFNn4EQLDMMwDMMwDMPUadhSxCS5+dSBOLBX20J3g2EYhmEYhmHyCgtFTJKLD+1V6C4wDMMwDMMwTN5h9zmGYRiGYRiGYeo0LBQxDMMwDMMwDFOnYaGIYRiGYRiGYZg6DQtFDMMwDMMwDMPUaVgoYhiGYRiGYRimTsNCEcMwDMMwDMMwdRoWihiGYRiGYRiGqdOwUMQwDMMwDMMwTJ1GSCkL3YesEUKsB7Cs0P3waAdgQ6E7wTAGeHwyxQqPTaaY4fHJFCs8NqPRU0rZPuyHWiEUFRNCiKlSypGF7gfDhMHjkylWeGwyxQyPT6ZY4bHpDnafYxiGYRiGYRimTsNCEcMwDMMwDMMwdRoWitzzQKE7wDAWeHwyxQqPTaaY4fHJFCs8Nh3BMUUMwzAMwzAMw9Rp2FLEMAzDMAzDMEydhoUihmEYhmEYhmHqNCwUERBCPCyEWCeE+Er5brgQ4jMhxAwhxFQhxCjveyGE+JsQYqEQYpYQYn9lnwuFEAu8fxcW4lyY2kXEsXmUEGKL9/0MIcRNyj4nCiHmeeN2bCHOhal9GMbnMCHEJCHEl0KIV4UQLZTfrvfG4DwhxAnK9zw+GadEGZtCiAohxC5l7rxP2WeEt/1C790vCnE+TO1CCNFdCDFRCPG1EGK2EOIq7/s2Qoi3vXXk20KI1t73vPZ0gZSS/2X4B+AIAPsD+Er57i0AJ3mfTwbwvvJ5AgAB4CAAk73v2wBY7P3f2vvcutDnxv9K+1/EsXkUgNdC2igHsAhAbwANAMwEMLDQ58b/Sv+fYXx+DuBI7/MlAG71Pg/0xl5DAL28MVnO45P/5eJfxLFZoW6ntTPFe9cL791/UqHPjf+V/j8AnQHs731uDmC+N0f+CcBY7/uxAO70PvPa08E/thQRkFJ+CGCT/jUAX8PZEsBq7/PpAB6XCT4D0EoI0RnACQDellJuklJ+C+BtACfmvvdMbSbi2DQxCsBCKeViKeVeAE8jMY4ZJisM43MfAB96n98GcLb3+XQAT0sp90gplwBYiMTY5PHJOCfi2AzFe7e3kFJ+JhMr0McBnOG4q0wdREr5jZRymvd5G4A5ALoiMfc95m32GFLjjdeeDmChKD5XA7hLCLECwN0Arve+7wpghbLdSu870/cM45qrET42AeBgIcRMIcQEIcQg7zsem0w+mY2UUHMugO7eZ547mUJjGpsA0EsIMV0I8YEQ4nDvu65IjEcfHpuMc4QQFQD2AzAZQEcp5TfeT2sAdPQ+8/zpABaK4vNTAL+UUnYH8EsADxW4PwzjYxqb0wD0lFIOA/B3AC8VpntMHecSAFcIIb5Awi1kb4H7wzA+prH5DYAeUsr9AFwD4Ek1Fo5hcoUQohmA5wFcLaXcqv7mWSe5ro5DWCiKz4UAXvA+P4eEiwcArEJQu9TN+870PcO4JnRsSim3Sim3e59fB1BfCNEOPDaZPCKlnCulPF5KOQLAU0jECwE8dzIFxjQ2PZfOjd7nL7zv90FiHHZTmuCxyThDCFEfCYHov1JK/52+1nOL890313nf8/zpABaK4rMawJHe52MALPA+vwLgh14mkIMAbPFMnW8COF4I0drLFnK89x3DuCZ0bAohOvmZkbyMdGUANiIRXNxPCNFLCNEAwPlIjGOGcY4QooP3fxmAGwH4mbxeAXC+EKKhEKIXgH5IBLHz+GTygmlsCiHaCyHKvc+9kRibi713+1YhxEHe3PpDAC8XpPNMrcIbTw8BmCOlvEf56RUkFJ/w/n9Z+Z7XnllSr9AdKAWEEE8hkbmrnRBiJYCbAfwYwF+FEPUA7AZwmbf560hkAVkIYCeAiwFASrlJCHErEi94APiDlFIP8mSYSEQcm+cA+KkQogrALgDne+b3KiHEz5CYKMsBPCylnJ3fM2FqI4bx2UwIcaW3yQsAHgEAKeVsIcSzAL4GUAXgSilltdcOj0/GKVHGJhKZ6v4ghKgEUAPgcuX9fQWARwE0RiL714S8nABT2zkUwA8AfCmEmOF9dwOAcQCeFUL8CMAyAOd5v/Ha0wEisSZiGIZhGIZhGIapm7D7HMMwDMMwDMMwdRoWihiGYRiGYRiGqdOwUMQwDMMwDMMwTJ2GhSKGYRiGYRiGYeo0LBQxDMMwDMMwDFOnYaGIYRiGYRiGYZg6DQtFDMMwTJ3GL8zJMAzD1F1YKGIYhmFKBiHEH4QQVyt/3y6EuEoI8SshxOdCiFlCiN8rv78khPhCCDFbCHGZ8v12IcSfhRAzARyc37NgGIZhig0WihiGYZhS4mEAPwQAIUQZgPMBrAHQD8AoAMMBjBBCHOFtf4mUcgSAkQB+IYRo633fFMBkKeUwKeXHeew/wzAMU4TUK3QHGIZhGIaKlHKpEGKjEGI/AB0BTAdwAIDjvc8A0AwJIelDJAShM73vu3vfbwRQDeD5fPadYRiGKV5YKGIYhmFKjX8DuAhAJyQsR8cCuENKeb+6kRDiKACjARwspdwphHgfQCPv591Syuo89ZdhGIYpcth9jmEYhik1XgRwIhIWoje9f5cIIZoBgBCiqxCiA4CWAL71BKIBAA4qVIcZhmGY4oYtRQzDMExJIaXcK4SYCGCzZ+15SwixL4BJQggA2A7g+wDeAHC5EGIOgHkAPitUnxmGYZjiRkgpC90HhmEYhiHjJViYBuBcKeWCQveHYRiGKX3YfY5hGIYpGYQQAwEsBPAuC0QMwzCMK9hSxDAMwzAMwzBMnYYtRQzDMAzDMAzD1GlYKGIYhmEYhmEYpk7DQhHDMAzDMAzDMHUaFooYhmEYhmEYhqnTsFDEMAzDMAzDMEyd5v8BgT8yOH4j7u4AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAAEWCAYAAACpAjzFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd5xkRdX3f7WBXRYWWDJIWFAEBAV0BXkA9UFRMYA8hgdRHxSzr4/6GBcERUVARVEEUXLOGXYXlk1szjnnnGfT7OzkqfeP7jt9bnXX6dO3q9PM+X4+sD19b1fVvbduVZ1TJxhrLRRFURRFURRFUborPSrdAEVRFEVRFEVRlEqiQpGiKIqiKIqiKN0aFYoURVEURVEURenWqFCkKIqiKIqiKEq3RoUiRVEURVEURVG6NSoUKYqiKIqiKIrSrVGhSFEURenSGGOGGWOurnQ7OIwxq40xHy30mKBca4x5R3GtUxRF6fqoUKQoilLFFLMgriTGmBuNMY9Vuh0AYK291Fr7cJLfGmMuNMZMNMbsNsbsMMZMMMa8P33sa8aY8WFbqyiKolSCXpVugKIoiqK4GGN6WWvbKtyGgwC8BuB7AJ4BsB+AiwA0V7JdiqIoSnh0p0hRFKVKMcY8CuAEAK8aY/YaY36R/v4D6d2LXcaYOcaYD5PfjDHG3JQ+vtcY86ox5jBjzOPGmD3GmGnGmIHkfGuM+aExZqUxZrsx5s/GmB7k+DXGmEXGmJ3GmDeMMSeSY383xqxLlzvDGHNR+vtPALgOwH+n2zAn/X1s14vuJhljBqbb8g1jzFoAo7j6TYrbjTFb07s4c40xZ3ru4xhjzDfTn79mjBlvjLktXeYqY8ylnkfwTgCw1j5prW231jZaa4dba+caY04H8C8A56evcVe6/IONMY8YY7YZY9YYY6537ue30tdTb4xZaIx5b472npZu15Xk67PT17jbGPO0MaavU+by9E7WK8aYYz334SFjzD/T5oR707teRxtj/pa+F4uNMed47oWiKEqXRoUiRVGUKsVa+1UAawF8xlp7oLX2T8aYtwEYAuAmAIcC+BmA540xR5CfXgngqwDeBuDtACYBeDB9/iIAv3GqugLAIADvBXA5gGsAwBjzWaSEm/8CcASAcQCeJL+bBuDsdLlPAHjWGNPXWvs6gJsBPJ1u91kFXPaHAJwO4ON56v8YgA8iJbgcAuC/AdQJ6zgPwBIAhwP4E4D7jTEmx3lLAbQbYx42xlxqjBkQHbDWLgLwXQCT0td4SPrQPwAcDODk9LX8D4CvA4Ax5gsAbkx/dxCAy9w2p4Wk4QD+11r7FDn0RQCfAHASgPcA+Fr6/IsB3JI+fgyANQDo71y+COD69LU3I9U3Zqb/fg7AX5nfKoqidFlUKFIURaktvgJgqLV2qLW2w1r7JoDpAD5JznnQWrvCWrsbwDAAK6y1I9LmaM8CcHcD/mit3WGtXQvgbwC+lP7+OwBusdYuSv/2ZqR2LE4EAGvtY9baOmttm7X2LwD6ADi1yOu70VrbYK1tzFN/K4D+AE4DYNLnbBLWscZae6+1th3Aw0gJE0e5J1lr9wC4EIAFcC+AbemdmKxzAcAY0xMp4exaa229tXY1gL8gJaACwDcB/MlaO82mWG6tXUOKuAjAKwCutta+5hR/h7V2o7V2B4BXkRJGAeDLAB6w1s601jYDuBap3auBnmt/0Vo7w1rbBOBFAE3W2kfS9+JpZPcNRVGUboEKRYqiKLXFiQC+kDad25U227oQqYV9xBbyuTHH3wc6Za4jn9cAiMyvTgTwd1LPDgAGqR0oGGN+mjYF250+fjBSOw7FQNvird9aOwrAnQDuArDFGHOPSfkASdgcfbDW7kt/dO9JdHyRtfZr1trjAJyJ1L35m6fcw5HyO6KCzhqk7xeA4wGsYNr1XQATrbWjuTYD2Efaeyytz1q7F6ndp7chN4X2DUVRlG6BCkWKoijVjXX+XgfgUWvtIeS/A6y1txZRx/Hk8wkANpK6vuPUtb+1dmLaf+iXSJljDUibj+1GSmjJ1W4AaADQj/x9dI5z6O+89QOAtfYOa+37AJyBlBndzwu66gKx1i4G8BBSwpHbVgDYjtQO1onkuxMAbEh/XoeUOaOP7wI4wRhzewHN2kjrM8YcAOAwUqeiKIoiQIUiRVGU6mYLUv4pEY8B+Iwx5uPGmJ7GmL7GmA8bY44roo6fG2MGGGOOB/AjpMyogFQggWuNMWcAnUEEvpA+1h9AG4BtAHoZY36NlJ8MbfdAGmQAwGwAVxpjehtjBgH4fJ52ees3xrzfGHOeMaY3UsJWE4D2RFfvIR3w4KfRvU3fny8BmJw+ZQuA44wx+wFA2gTtGQB/MMb0T5v5/QSpZwYA9wH4mTHmfelAEe8wJHAFgHqk/IY+aIyRCrlPAPi6MeZsY0wfpEwMp6RN9xRFURQhKhQpiqJUN7cAuD5tQvYza+06pIIhXIeUQLIOqR2SYsbzlwHMQEpoGQLgfgCw1r4I4I8AnjLG7AEwH0AUqe0NpPyVliJlvtWEuOnbs+l/64wxM9Ofb0Bqp2QngN8itaD3kqf+g5Dy89mZrr8OwG0FXnc+6pEKyjDFGNOAlDA0H8BP08dHAVgAYLMxZnv6u/9FSkhbCWA8Utf4QPp6ngXwh/R39QBeQipIRSfW2l0ALgFwqTHm9/kaaK0didR9fR7AJqTu75XsjxRFUZQsjLW5LBwURVGU7oAxxgI4xVq7vNJtURRFUZRKoTtFiqIoiqIoiqJ0a1QoUhRFURRFURSlW1MxoSjtHDzVpLKxLzDG/Db9/aHGmDeNMcvS/w7IV5aiKIqSDGutUdM5RVEUpbtTMZ+idPbwA6y1e9PRg8YjFfXovwDssNbeaowZjFSo119WpJGKoiiKoiiKonR5elWqYpuSxvam/+yd/s8iFVXpw+nvHwYwBqlcGF4OP/xwO3DgwFI0U1EURVEURVGULsKMGTO2W2uPcL+vmFAEAMaYnkiFgX0HgLustVOMMUdZazcBgLV2kzHmSM9vvw3g2wBwwgknYPr06eVqtqIoiqIoiqIoNYgxZk2u7ysaaMFa226tPRvAcQDONcacme835Lf3WGsHWWsHHXFElrCnKIqiKIqiKIoioiqiz6WT1Y1BKpP3FmPMMQCQ/ndrBZumKIqiKIqiKEoXp5LR544wxhyS/rw/gI8CWAzgFQBXp0+7GqlM64qiKIqiKIqiKCWhkj5FxwB4OO1X1APAM9ba14wxkwA8Y4z5BoC1AL5QwTYqiqIoiqIoitLFqWT0ubkAzsnxfR2Aj5S/RYqiKIqiKIqidEeqwqdIURRFURRFURSlUqhQpCiKoiiKoihKt0aFIkVRFEVRFKWsLN1Sj2mrd1S6GYrSSUWTtyqKoiiKoijdj4/dPhYAsPrWT1W4JYqSQneKFEVRFEVRFEXp1qhQpCiKoiiKonRZ6ptaYa2tdDOUKkeFom5CU2s73lq6rdLNUBRFURRFKRubdjfi3TcOx33jVlW6KUqVo0JRN+G3ry7A1Q9MxcKNeyrdFEVRFEUpK+0dFos26fzXHdmwsxEA8PqCzRVuSYYdDS0YOHgInpm+rtJNUQgqFHUTlm3ZCwDYtre5wi1Rqpnd+1rR0tZR6WYoilJjNLW2o76ptdLN8PL3kctw6d/H5VQMjl26DbPW7qxAq5Tuypq6BgDA41PWVrglCkWFom7C9DWpAf+Okcsq3JLaYuSiLdjb3FbpZpSNs343HN9/fEalm6EoSo1x+Z0T8O4bh1e6GV7mrNsFANhS35R17H8emIor/jmx3E1SykQ1ehJ1pBvV0VGNrUvO41PW4MZXFlS6GYlRoaibsbep+yzwi2XV9gZ84+Hp+MVzcyrdFC+n3/A6LrtzfNAyRyzaGrS8UjF+2XYMHDwECzburnRTlBLxzPR1GF5FJi+KnyVb6stW17od+7B1T7Zww1EtS8/V2xtQpxYbFcFUugGE52asBwDM29C15q9fvTgfD01cXelmJEaFIiUIU1ftwKjFWyrdjKA0pHeIVm/fV+GW+Glsbcfc9V1rUJXy5sLUYnnaKk3+11X5xXNz8e1HdedSiXPRn0bj3JtH5j1v9OKtmOqMD5VeGH/4tjG48I+jK9yKrk9LWwfuHLUMzW3tlW5KTrbl2LGsNMPmbcLAwUOq2gy21KhQVIMMnbcJV94zqaTl724s7KX44r8n4ZqHppeoRXFa2zs0tKbSifYEpZaw1qK1Xf32ysHXH5qGL/67dHNlUhpbq3Oh3pV4ZNJq3DZ8Ke4du7Ik5Q9fsBk7GloS/74arebuGLUcALCmrnoVwaVGhaIa5PuPz8TklaXRjq+pa8D3H5+J/3t6dknKL5adDS045VfDcO+40gx0SljW1u3Duh3dd4BVFJeHJq7GKb8ahm314UyoZqzZgSZdaCtVyIiFW3D/+PKHwo7eByqAhpJDdu9rxbcfnYFrHpqWuIyZVRjYI1I2m0pvp1YQFYrKwLcemY6P3f5W3vP2tbRh8+7Sbqnm6+zRABKFsKw2NqXvzwszN1S4JbXL7sZW/PXNpWgvg6rqg38ejYv+VFpTkVxdemt9U6cJwN7mNvx1+BLVzislpbGlHT94YmZec51o7Nq4K8wYu6auAZ+7exJueGl+3nPvH7+qM+pVd0NqXdDeYfHXN5diTzc2IQrJNx+Zjt+/trDSzQAQznSyJT2XFKPw27Wv+P71tQenYuDgIVhb4M7OaTcMw015nom1FneNXl6w716to0JRGXhz4RYsTYfE5vjSPZPxgVtSdtK79rXgxVnrS920ktFQoohtFpEmI3t4m7B8Oy64dRQaW1RjyvH71xbijpHLOn1yJLS0deCJKWtrJlLOuX8YiY/8JaWIuO2NJbhj1HK8NEsFaaV0fOexGXht7iZc+rdx7HmZMSxMvZGp86LNfA6e3Y2t+P1rC3HVvVPCVFyj5Jo7KMPmb8IdI5fh5iGLytQipdbI7KhUdktlzJJtAIDJq+oK+l1TawfuY3bvDAwWbNyDP7+xBP/75Kyi2lhrqFBURcwhDvM/fGo2/u/pOVi5Lb8wVQjlcMV5bsZ6nPGbN7B8q7ztq7c34HuPzcirZY3a39iSLXTdNGQRNuxqxIrA96yrEQmNbQUIOHePWYHrXpyHFwSCxS3DFmHEwsoH3diaNk+KrrcY+2+lcO4btxJPTa39HBzWWvziuTmYsYY3d5m3PhXyeeV2ficmGsNMmV3+I4VGNacYWLdjH5ZsLl8Uu1w0t6Z2AZo1X1uXIXrnNgWyxImmzp5VvIL+24ileHXOxs6/xy3bljMH4eSVdbj+pXkAyNhk0GlJsq+bKZmr+JF2b7akX96WPCY/izfvwcDBQzB9tczHqByKjZ89mwphXcjkdt2L8zBs/mZMW8UvPLanQ5muzrFd3CN9bdGLvXRLvQZkyIFNYFld15C673sFJiX/fmslvvlIeYJuSIgE7VuGLa5wS7oXNw1ZhMEvzKt0M4qmoaUdz0xfj8/dzeexkb5VdOFRahqa2/CHIQvR1Nre2b6o3p0NLdhSBtOYxpZ2DBw8BA8LwvRe9KfR+Pjfxpa8TRwdVehXsXDjnor45bic+4cR+NqDUyvdjMRsCGSy2tlHAio29ja3BfW//duIZZ27PDPX7sRX75+KP72+OMuK58p7JuOxyXHllTHV1f/LiQpFVU6+Nf3Ypant09fnV18uj44CBBLpQoEzjeuZlorarcXMtTvxsdvH4r5xlZ9Iqo0kmuroWfZI3+OBg4dg4OAhwduWhHy9LJ9iwcfn7p6I37yc309DqS5a2zuChpRdtIk3S4uQDnelUtPkep/vGr0c945bhcenrM2Y/KSPDfrDCJwnCGs9ZslWzCe5VHbtaynIjDZSZN2TjgLW1Npe1SbO0ZX1qKJV4SfvGIffv7aw4kq+rfXNnSZboZm1dicmLt9ekrJDk+kj4cr8r39O8Prfjly0BZNX+k3k8jWjbm/KSmLV9oZOC4pcUIVplOx4e46cWut27MM7rhuKZWXMTVYuVCiqUoyz6+GjnFpHl7eWbmMXHwUJRUI7e67EyL63w9pOjcvcLpYYLSSF9JlMP6uehYKU1vZkC4kZa3bi4UlrArcmOdZavD5/c1kCRuxpasVbS0uz+HHZ0dCCiSvCLYa+//hMvPvG4cHKG9Bvv2BlARl/hFCLbm6YjcxlOjos2SlKK4+Egs3XHpyGT/8jlSB6a30Tzv7dm/hHOnRvIe3rkV5tnPO7N3H6r18X/77cRAnOqzEgRamirv7f07PxZoVNnq/450RcdV9t+LtFSoGQ8yH1O9/T1Ir//vekznXMNx6ejivvmez9bb43OUoQ29phvYK1tTamMI12JnOZHA6dtwltHRbPzqhdv3cfKhTVOO5EVy42727C1Q9MxY+e8ofuLkSp1SHcveAErYz5XNc1mVu2pR5/Hb6kqGtMYiPcuX6qwnubr+e3dZGoc6MWb8V3H5tR0II0KT94YhaufmBqQWGjOzosbhm6qGATkPf+/k1cde+UokJKf+qOcRh00wgAiC3urLV4dc7GovzJeqUHlhMO7ceeV+g7WY4hu4MozTILnuRs2Z3qD8PzBGlZsrkeAwcPwbhl2zrH7HU7UqZLlc7Rk+/6Ry/ZCgCYtrr6QiaPXLQ1eJnWWrw4awO+Fcjk2VqL//fETMxO7zSEYPve5oLHlXJMVaV6h4fN24Qpq3bgjpHLgvhI3zFyGQBgxda93vxILe0dWSa2+bDWJh73qxUVimqYuGSfTWNLO3YHCPuYi33pQAdcIIhd+wpYiDA7XvVNrbhn7Ap0dFg24VnPzp0ivqqG5jYMHDwEw+ZtEjUt3wAxYfl2DBw8BHU5tpk5tuxpKngh9aV7J+OOUcuxpzG5s3S0A1BIpu/n0xqhG15ekLhejmsemobvPTajoN9I71whASWqmbr0wr7QcPlfvX8KfvRUYRGEVqSDpBTSRxZt3oN/j12J//fEzNj30j5eTACABRv35DTzeGn2Bvzvk7Pw3t+/mbhsKYX6FJUDqkTiIncWWl60y/XSrA05A+pMS/u4Dpu/ueaSKxdi4VBuSrEIf3RyfDe8pa2j4LmMsrpuH4bM3YTP3jWh2KZ1MuimEUWldgitKHXfg827m/BY+j6+uXALBg4egiemJA8yQ5XD0c5lCLbVN3eu3VysRczE1r1j2/c2d1op0H64cFNq3P+BE6WumD5USVQoqkIK0Zh2GkXkGCwv/ftYnPW7uBlJ6B0lrry/DF8qLqdzws5x7PevLcTNQxdjzNKt2M5orqMBKp+9+9q0RuNvI5bJ2pZnPI1s5eesl2vG5m/YjfNuHoknp67z1Jl7mztkRKTWdou9zW14fX5+4TCpX46UUYu3YlhCvziT57mv3FZ9ZjBJ4N7cfS1tGOoR8sct246XZ6eiEEWavXwkWUREP2lzzBWlZlo9S7DiyxcBsxIh5kOH5I7IVV6Ua6e1nSjQiqg3sxhM/f3jp2fjo3/NzsGXMf+2eYUM7hl0MOY+Pn7wxEw8Mz17XJUW0xFgqOvokL1nhVKKiIVuQKT/e3o23pfedZ24Yjs+f/fEnLvtP392Dh6ZtDpHG0uLb2502VfCHcno0UbvwdcenIrrX5qPrfVN+NWLqeAy170YRXQrvA9TXgyYSqKlvYNVGtOdojUkmFVLWwcG3TQCv3x+btZvove73XlxatV1QYWiErFy215R0qsbXpqPZ50B/JahmfwIXKQwqgHPNVjmitCWjygySYiwrfUFlMH5rER5OJpbO/AyCTHpEv20PbBWaGEeR+uotmseyjY/aGpt73RYpERb4j7nyZOuHYrP3Dm+sIYm4JfPzcV3H5sZzGGykISUs9ftKspkKsJai+Vb9+Lk64bm3P0LFXGoEuxoaMl6NrnGhF+9OB/ff3xmzCE+FzcPXYSTrxtaVmEgn09XtLDo1dOgobkNl905vizPbMnmepx83dC8vhSuScmyLfW5zfGkgRbKGJL7wD69AAD79+7htSooZMHWeWYeySpSUKW0z/7zJizfjpOvG5pzjNyypwknXzfUqzjy8drcTfjFc9mLt0jLzUXca2xpDzJ/fOi20VkKyRCUYqfILXMIGUOvuncKpq/Zia31zVlj9bMz1uPXOSwHSh2g4qRrh+JywS7U3WNWAEjtIofG3SmKxoNcAvVJ1w5l/YHyMU0YWViK36fI/5u29IUNm+dXXLrjmQGwtm4ffv3y/LIkig+FCkUl4uK/vIVz80T26eiweHTyGvzcGcClsfQnr6wr2BQj3wT4wITVAPIvJKNBoBgNyIKNuzvNsiTRXIxBzskzgnN7WbW9odNMIKmj+if+NhY/cEyDUvX578FpN7yOy++agE275Yu8qLz5G7IH85DTjQGwbmdKcM7lZ/TA+FUYOHhIQQvoXJqkXGze3YTP3jUB1wYK2TxvQ6pfvL6gNFEYr31hLi7846i8501ZWVdwJEhrLf45ZnlO868P3DwSl9w+FsPmbWJ3ZSN77nz+YtH7HcpEKDIV4Xx2JuSJKNWnV08Aqff34r+Mwdz1u/HV+8M4XHNdd/a6lM9IviTGbtS2S24fi4/dnr07wt3RLXuacM/YFbGdk9UFOvLf+MqCTr+pQqF9x+1GhQignUET8gxE0WFqkpOLMWn/nSk5kk9GkfFuG76ErWvltr2dpkscU1alFpe/eskfUbKlrSOIwmDdjkbUp82eWts7ClIWlRupcP7CTNmORTl85eaSnI5b9jSxyrV9zckVb/Sda25rx+b02izq05F/HFWc5Lr+qO+VjAK6bGjxxPd6G2Pw46dn4ZFJawqyoqk0KhSVmZ0NLbjg1lFYuHEPRiwqLtoLTZBpTMqh/OO3j8VIpty85nPMG7OmrqHTH+Unz6RyESXZjYr41B3j8dN0TiMuN4R0/TY1PfDkWlx+9q4JuOGl+ejosPhh2vY1X76e1+bGdx0Wb67P+k7Kiq25F0C5WjBzrX8AiczYkuQacsnXF24ZltqxbC3AnsT3rNyF0d7m1O7fnPW78gZCeHn2hs7dwlyENAn1Ta5PTl2H9R5fnua29s6F1H/fMxnfFSQhpsxatwt/en1JZ34vSvS876FRp3LcY6mDbOHBAPgC7x+fatdiZjc1n+a909SqA9iyJ/Xu1jt29B0dFmvqGjpTEEjhfB6jJKtciFof2/dmC4Hcvf3+4zNx89DFWL51b+ez+s6jKR+6r94/pVNh8/LsDbg8vUO8eXcTzr9lJFan2/nQxNU5xzaxL5PnzJ49DJpa2/HM9HV5+4c0cl7kZL+3uY0VTKNyuCFgR0MLrLV4bsb6nP4Ql985Adczgk4WeTTinMLg83dPxHMFRtz69cvz8R+3juo0ZSyGfAmEXZrb2vNq6X2PkvaFJVvqxXOOr7xCwm1v39vsNQd2Oe/mkZ3vUu4GiavNgr5zP3pyNj5wy8iYb/OmTiGp6KrKBvuOZ7aCPYf9v+WGBDc3UjWjQlGZGbtsGzbsasTdb61gzUokC735G/eQSSo1eSzZUp+VMPGFmZlBPN8ClPNZ+dCfx+DqB1KJ20JnRZeFfM4+tnDjniwzxV05gkvQRXUkyOXTkC3YKLOJdbNE3zx0UVaI4dfm+s3+XLhn1JTOtj5EOGFw5OthUf8MYeZjbWrHIGMaGq2EgZ1MMJDlW/fiR0/Nxk+e9kc5LIbd+1oxa21qoTF8wWacdsPrmLfe/9z3tbShvcPi58/O6bTFP/X613HFP+PmHIs31WPyyjrc9NrCvG2IfHC4iaOjw7JPwd3N8J6X/jeUiUvUN7jlUq5JeMnm+s7d01xztPtdU1s7PvTnMfifBwpLHOkuCDfsauw0R3xkYkoQKSTvStJdhCh1QS4Bcdyy7bghvaj/0VOzMSfd/16dsxGbiAO3lIbmtk6TG1qdz2yvpzG47Y0l+MVzczujm83fsDtn5EHXl8LHU9NSJm+z1+1iF1KRQPrQxFVseZNX7sDPnp2D3+d4nyIzbU7okCoD2vIE85m+ZmdO5QXHqMWpe1rMjkVEoTu8p17/Or7x8DQAqd3kQiKZ0aq+/uA09tyWto7OOa+np3MsLcBE+xsPT8f3H5+JncKokeVIHxBFXLRADpPbykpFGwuwRPEtLzqs9SrXfGsA2kfWOtHnDDIK3t++mn8erBZUKKoghaxLhs7blFNLGg3gza2Znu5qu+kLHA1YX/zXJHwiR+bwKBxpPkJHc4nKyzVxcDV98o5xuPCPo2PftXfYTiHoVccHqZBWSxeObujRe8auxFX38uY/kfCX6z5KBGJXk+5y89BFVZNcNeLL903Bv9NBKUxGJsLWer+5aNSXc5mU5uqChc5JX3toKq7450R0dNjOiXU2s9W/t6kNP39uDp6dsT4WLW+OI0g9MmkNrrxnMu4TZKGPFu7TGS3wok2ZBUWuPizfKYqf5/Mlk74nknxq0Rj12OQ1nT5PH//bWJx/y6h0XflrC2WSfsGto3DJ7WPz1jtt9Y4s015jTJap2XUvzsMpvxoKILwvY1J++OQsfOFfk7JMGn0myj16mE7hJFJ2ffof43FJDhPByLegoMTPjB4uciKPdgh9RO3iQsR/8+HCQkpv2NWYpYhICUXx57hpd2POfHyTVtRh4OAh7G7kqu2FmUiu3La3Uym2fuc+b6SwQoiE/ov+NBof+UuOoBie37m9meveNw9dhKvunYL5G3YHUaJtSJt154sc6iok56zbVVTUNyA1JnLzcnuH9Qpr7rUnVaIUGthoWTrHka/tFG7nMJ9yram1I6tPRqXlUkZHbKpi81GXiglFxpjjjTGjjTGLjDELjDE/Sn9/qDHmTWPMsvS/AyrVxmph1tqd+P7jM7O0pB3W4smpqQHgvvGrOjunu2DO9Y5MXb0Di9Oa7lfmbMQFt44qyBkuuF1q+t+vML4EvgWfO4B0WIvV2/Ob9S3Jo7nyabxckvhndNrcF/zL+O99RBHx2DKMzDSxEFM9rymGex75LMmbxC32pdeRiwVpvy1qIrhlNx8qPbKt58wKaXvzBZP465spnwneqsFm3YOJy7d3ChmZ38oXJC/P3oBLbh+LV3IEL4mE0LvH8DmROh3qmT7S3mHR3mFx/UvzO5OAUnJfd/zLXO9YQ3Nb3ouQe6gAACAASURBVJ3vNYx5Lx3ubHosjXYbvvCvSfjps3PQ1t4RM41xm/HElLWdO6pNrcKFTODB013IRI7lbr/zJZzsYUxOoTrXIufOdI6spVtlWv+NuxuDmPpGi1/OjHZBgdGuLrh1FD7uKAbb2juy5sHzbxmFT/xtXNbvX5yVEpojs+3X52/CWqe/Tc3hKxXhLujX1u3DxX95C39+IzUeXPjH0fiyIJnpnqbWopSUUvPjmWv9SptoB6quoSXvLmJIoghvEZffNSHru3zNuW/cSlyWNlmduHw7Lrl9bOdOJyW6rg5rsxQgvtv/s+cK21WM+O2rqQAWdQ0tIuX5kHmbMGrxFlxy+1i8NJv3/fL1lR7GZKxonErpnzsaWmJWTr7yajDPO4DK7hS1AfiptfZ0AB8A8P+MMe8CMBjASGvtKQBGpv/utlibiaLisqexVRSUYewyfmv5h0/OwoZdjWhsbRctqXbtawmea4NdEBZYV4e13oE53+Sxpq4BC9OLCnou97t80bVSv09NKt9/fIZX+Jy6agd2CAdBY7LNEV6bu7FzMJVA6+HqzHf/52/YjW89Mp1doNL7R/1trM1nFsbXXSy9eqZqb223nYuUO0cvD1pvvuhmkiSR1lnAA8BV903pFDIiu/dCJqIo8bJvfAGAxybzWtdcO0VuGzqsFZnb0sWz67OTS+N6xm/ewI8Ys0prLZZxIblJkTPX7sK1L8zDr16M+6bEFEzGL/xxu50UAxPc9DhTePZC5ul0ZFMuNHkhodCnp/sqpxWmcNHnClHCRe/pwfvv5z2HW9y7bYiUCa6f4L6W9ixhGcgdjCIqM3qe331sJj7459He81zB3t3J25Z+h6eSaGOzHP9SdydiTV0D3nPjcDwySW5iKd19cuc8bteDpsMoZyL5fEFcfCzdUo9rHpqG5rZ23DRkUWfghmi8mJdDwM5Yd2T3XapUoM+oUB+wiGhNsVkYdAsAlqZ3ixZv4hUWvh1tTnnhmslFgju3k1eO6JqloGJCkbV2k7V2ZvpzPYBFAN4G4HIAD6dPexjAZyvTwtLSwjhip16s/Kxw8q/4Jh+JJr4Q2hPkjuDYvLspaMK89g7/Lk++Wj705zH45B0prSB9319NGGCB8t1HZ2DovM1xZ+l0Ha/N3Ygv/nsSLrh1lOjZG5iYySQA/OCJWXgwHV0sggvnSQetYm7/j56ahTcXbsmKpkW1urT4Pw5bkplgINNURqcMHDwEtw5bnLyx6TIi08Kon7Tlyd9QDD95pnh/KF9Uowh3cXfP2BVseG56zxsDmOjQW+f2pQ5rMS6PYiYfvmczhHkv85mg0OON6TGSTTjILPC35jH/ip0rCOxQt7c58Q7LZuJjGQn6y7bWe/MUmQJWAUnGad9PConIGY0lbdzuLIBncmj4U78jCi5Yr+/s4OfnxuY2btEXvXM3DVnkPQfIPO/nnQANFhbv/NUwfOMh3l8nhkkJK9G7HWn2qd9wPt4S+tC5V87di8j0+KlpfiXKHseChUvuTpUinHmiBGOyr+Vjt4/FqMVbs/xHIwsLzgTPwmYLRWS3lr5fxS5rCspZKazLZ0Xi/n5Av945z6Ov4Lod/p143SkqAmPMQADnAJgC4Chr7SYgJTgBONLzm28bY6YbY6Zv21Z6J7tQRLaobyzYwi5+16dtahdu2lPWztVDsPdtiLkFACzKk8enbm8zq2VavHlP1gtJF67RYnuuMKxjh/VrqwoZpOgCoFibWLrAsTZ7wPjBE6mIeI2t7eLn7XNcpdolzlE1NnjLqsyJL0iGLwztGws2x0L2Fmpu8a+3snc2ZIE6sol2Atx+IbkfnK8EbUWkRd21ryXLZCYXE5dv7zTJiYiZKzC/jeq9eejinKZquZBca0tbB3andwf+9PpifPLvKcVBtKsajVdAtolTewdwx0h/omRJ/e4iJJ/ZHJBsQZK7+xD7uQK49oV5+PJ9kxO1Zc2OfdjbHA/3m4QL33E4AGDQiYd6k8b2MEas5EoiFIVQeEWKkHxBMR6fmnsxO9wJu77Ns7O3fOvenMEpXKau2pHlWJ6PbTkE7pb2DoxcHPnxyu7T/eNX4dP/GI+niQDi+jSGwL12znQx4o0F/l1xdz7w3b83SFqFptZ2drclpDIV4MPT0znLv1MUdrFWSLJ2Kxynxi2T7a7Ra2kgijP3EiVPoCGwYr6UVFwoMsYcCOB5AD+21oqzbFlr77HWDrLWDjriiCNK18AENDIdgIu0RYm0Kj7NVz6SOPhZa7MWbbv2tWQFXzBA7E3YzCTD2763Ge+7aUROs4LOesEPbpHpRz5TnoiODouegXv2G07+m5dmbcCPn5pVUBmZ4AKWRO3Kdd35B9aW9g4879EO0kkkXy+IJoF/MSZU+eadqK/2MCa+O8QsLuKme/7rHTY/tROQK2dTrnuXNPu3W5JkkbhhV6NoBySa2M7+3Zu4QJDr6Kr7puCL/56U9X1nn2GalmRS5pzXI7772IzOZJT/HLOiM6FxXVropukB3IVFR4ftNO3IiWCocp/HDS/nD8FcyIKJ25XZsCs1vkkVDBFPTl2LCcvr8p6XszxkBMl8wW+4q4wSld45OuMbVueYJvaM+RTxDUyym+p7Dm7EMC7ap0SZAMbCwm33dx/LzjcXnScJmLFh176CrSXcwD2+n3NPwCDjM/bL5/kcb9Job34/0HgD+/QqblJ1n6Hv+n/nRCrzBTyS7iBJzbjymXNG4/ieplZM8iRdz6o7gIyUa+7LhS+6pOjdQXwccZtNhTPX7D5JP65mKioUGWN6IyUQPW6tfSH99RZjzDHp48cAkIVDqyIaPOYo7R1WZDpBO3FSPUiTxzwvCq6QiygcK+WbD0/H1x+clqUlkrYrWkj4crwUUph0Emq31msnX4hJCq2u0TFV+/HTs/HSbHmYbSCe5V0StYvjz28s8fomuBq4lrYODBw8BH91kiAaYzrt2kc5C6+YP1WeexaZA67e3hBLqhfbHSOfe/QAnk4L+1v28EEN3B2TXIQYfK2Nm4R6taJOZVwy4VxEAsi2+mb85JnZIu1rZ9USXzOkBPZCiMxrZ6/b5U1sPGoxPwxzbnXSqGySCHYRrwjeve31snC+FNecxpiUIzaQUmhJX9dCzF5yQevhTFTYMmx8MRPdX9ecOrbIgXyc9Z3ni3rn4r47NNy2m49J0qYQYeY7rI0pFH1jn4ER9Wu6w+uadCcZ+o2RK35WcP50BF+y6azdc+k87bky6a5H5D8G8GbDfx+5LKjvJ2fORxm5aGssgMvuxlavj500P4+v7kK6dGRCudkxS+WU9BTuHaPNyF5bdS2pqJLR5wyA+wEsstb+lRx6BcDV6c9XA3i53G0rFtq3sjO9Zw76OjxdYKQc0WW9q9goPztzvJhRVBnXXEU6cUrM8Tqs9Qpr0iSY9LwO6683qflcCDq33/OdJxxM5npMJtxdsjVp88M7RsUjibnV0B0DGklLehvcZ0V/N5yYVRiYzgSI+SZKuvBw+1y0c3jDywsw3uNwmzRh4rceKSy8r0u+Z/jIpNV4YeaGgnwBIrjHsXlPE+4dl9tmnGP51np89q4JOOVXw7IcsUctzm0Ss5qEG67b2+w1y8j3HslCcsfPkZhj/GGoPDdGVLzr92BgYosK6bhXqGDKIQnkIiF0yHBfca6ZlDc6lTMCzVyTEZJcQVDSdm4BLfUTsjbe17xacBMfL33XSOdNaTTTUE/J71AfRxKsKQiM2RUNVEIFjlymar4yvNUGXpy7df6DmAY/OXVt7DJzJXnOxd9G+M2LpUQ+5q6vuXQNRa/ruRnrvX1a2o810ELhXADgqwAuNsbMTv/3SQC3ArjEGLMMwCXpv2uK3Y2ZF4GaBBjyfw7aGWeu3SV+qaVznk/zmGvsyWXuZwzQKrSj2MDtEKXh2v3A+NWZ85gy9jRmFjOW2SkqhFhELc857gLS50eTK3oYgJya+WJb7gZQ+N8nZ5G/fQuUjKkaEHdolk7SnKaW7l65We45k52Y1pZpiE97ukYQmh3IvsZCbLmTECkBbn9zabwdzEVGEyx3zjTBzhpXNpC9SLp37Kqcv/ne4xkTpL3NbV7bf3eoWOIoQCTjViGRynz1Jl1ccfmjItwFgOtnGUW1kipaEvlD5fiOmjZzUQaTmDD6fvLIpNWxv/cKk5ZygTHEuxSi6/Afa7fZ4ZZzYYxxotTlPq8X0VBlm8/FfxSZxbkR52L1MrPD4s3xPsf19+Vb6/HhP4/OobSl7fMeiuGaZ/nq3dfspgrJnLeH2TGnZuLtznxQrJyfaJngVEovt5DkuPEy5BcSpTiQIl2rUe4cvTz2ftO+687XnOKgFulVqYqttePhX/99pJxtCc3oxX4/g1J2FGnXf2zKmpzfF+KHJLVTlYQKdWulEaCkZij0vt41ejl++rFTRb/j25V/V8+19+X8M6LBZN2Oxs6OP2LR1qwEfxIfDw7a1gnLt4tNtJ6amvFfo88ke/L27VD5B0s3z0H8PH+/i+0Uec8qHmvju0q+ZJLuosQn0OXTkkX+FO7OxMQVflv1yLxoCiP4uNpyqZYwVobzt28nh0bQXFO3z5sTyH2+rnmn5LkmEYpc0xV3sS4igVMxADzsGfdc07Vnpuf2GXXvWZLFqzHxcdoXvlgamt8XccvFDTHf7olIUshcmC+JJ5AKE95ycHHKjA5rsW5HfkWe0IAoNia6Cnb39v365dzpFFo8/hypMjKFzFq7C6cdfVDn39xC+19vrcTqun0YscgfGEFqeeJGEfRFN4uCQSzfuhcH9OkZO7bNY+o6a92umIIqe5OicCWDL3x+rjDcuXC7onuffHNCR4fF6b9+Hc1tHVh966dix+qY99vlPTe+gQP79sKU6z6a83ghJtkUTi6jz4v26X0t7bHnI10XVjMVD7TQnfFpo0NYObCLMk/53CCYNKqKJOCBO7l6t/OZ+0I1GR3Wv2tRmPmc/NzO8pljUZO+dO/kWP6UxY5W+Q9D+RCv+aDPasLy7bGe4BNUmts6xNqq2R4/GtdkMUTSxgITe2fhtsEnZFtYjCA+da5PQ2h8kwenMY3IJ3jTd7+BaOnzRYn04esWUh8OqUDjnkXN85KYfrkCJidYSClaM+38PWyeLNT/Ff+cEPt74vLtGDh4SFayUA5f26VKmOzFYG5cJY/vHS5kSqF9aDmTOLZYpaPUj4YTTih0SOzFKI04Jq6QRQu77Y24z2ixYyf3vOk46grBnMnY1j1N+Ohf38L5t4wSzQ4/fHKWfy4X/D4XPv/mEL43XKP+PXald83X6vl+QL/svFwNLe1epR2QQ+kk7Gju/OD7GbXCmbiiDr95JSPM093eJMG+qgEVikoAF41tFbH3HEyix9BBxl2cDvM4QrqMIlofNhGX53tpH+a02S4Su1KJIAEA9YzToqtB8iZvzVFbY0t7zhC/IXMxWcSvhTqu56ulrb0Dj01ew4YhpgOQe+3S3QyqjaXlScyHUvUmm/Td01raOnDBraMwctEWx3yu8Ofh/sQrGAQevxsTOtoX2wz3SdPdkpFkfBjpaIi5W+vToCYVitxfRcdd8x+aOLXUE2ylsrL7Qim7kSXpLty2+mZcdd8UAMCTJCxzPkHeJ1i6igJfX3ja2dWSvo4+ZUtSRRsXljuw25RXieL2fV/3pEO2O49LlUb0PuW7Y3ub2/D0tLWw1sZMs6VjJ1XWcAI3VTC8Mice9MTXRgPg3JtHkjblPu+CdxyG/XtndibofCY13XKRmLVJ/U+5oYjb8Vm13d8G31jq7qiVkhFMkvGYKZ0jNfgSQ0vXrdVGxcznujL3j1/V+dl9aWkoRxohjia+TOrgf4Nn+12KtF43qg0btcR510cv3oq3lm7DjZedQX7vr0vqrOcOlj5NfK66Tv/16/jIaUfi2k+elvfcpHQwATNcvyu33sEvzMNzM9aLM5HTAXZPUyv69MoMrLRo99nQXQrq3L1KmCQ4yzxE1NpsNu9uwoZdjfjNKwvQt3futielWKdi957R3Qz6HrgLBSlJ+lzs/WOdzTOfuRDZbrhZX/JnX4RLF3dciSc3zBy76t4psfOoWU7oIAEuvtKly3Y3ZL8U3+7Vk1P9qRjqyeJt8+4mNKcX7myET3DjtIkt0H3Kp/mOACdd1HN+jKEJHRznT87uS4TUxHRvc+ZZLXPmTamcT8fVfAFGfv3yfLwwcwNOOvxAXPtCRulK69pW39w5Fkx3kntvIQpdboeXvsNcqHrKoQfs5wgNhQuFLtLn/Qdvgt1M2flCnEdwNU5Yvh1HHdQ35zFup9p3iZNXJvMRpXC3aAujwPeVwSnD6LtebATOSqE7RRUkZvJF1vClfhF8k5Q0J5Kr3dzZILdh/fpD0/DQxNWx7yY55gFSc5ut5IV2zVD+4jiw52Pk4q2xiGsAL0AUinvLaXn57OWjSG2+sJ9AfIFKy3Z/QxdUB/aJ60RouHiq/eFaRwc+zpG4kEg0NMkkdc4t5brYLXrgYf1ynnfjK3HFQ+iADElMDlcSwcwwd5qWzJm1SkNZc6Z+9Nm73Zt2E87+neY78vkrFUKSMTHHmTm/lZo4Jd0doT+j75m1Fv3S7/GpR/Vny5Be4suzcwctcZsuCaID+Bf/pTZRDYGvjW46BKmJKfWX5Rb0U4hiQio80Yh47k417d8bdzd2mjk9M90f/dIdi3zvu9T8cj8nzxG9/BPIeLtfzx4xMyzOT4W2kHuH6f0odh4pRAlM4cwKKxWUgCbddolFbGynfl1CC4ESK7JKhQpFJSamFXWOUdvMJA7RSfH11dXOwsMnnMxYIxfaJO+F65R805BMKF1fUAggbr/qc1LNao/orBQhtY5b9jRl5QOJcBeodDKi5k8rnR0bCl1cukMWrZcuNN1JytcGbhJ4fIo/oa54memz24fBxsDhYn11ud/7FiKvzY0L3/FdD67ezME6ZjGYpMu5AQWokO1rHzexHbS/zICAXayQurLN5wpfAXzn0Rmi85KavHpiAeQoP/f3oTPZZ5VPPrvpC6JjfXrz07lvPFuwcXdWxMpcuM/RVSL58M0jbyyQmesUQuh1GO1PdOfy0cn5AwgB2e9Zm9AcmI4zrqkrxVXKREoqNhCEBV4V7GS7j42aUdOmuwF2fKbrrs9OTOlIPxsT6zP1HrO2VG65zN/yxN3W81lGPkWY7z2jPmVu1NlSjh9Jzdjp37vI+oKLyE2VsOpTpOSE2lU+MdVZQDICUzVz5bkniM99PYFZCXXc5LRQvYhxKxfOlVLIoomeSkN+U7gJizJxRV3WwB/hOkZS6E4Mp42mbaUmClkDXYKO5toGU63RMpI1PWsiTtipff44SXZRsgf6zDex8K7OmfRYkshnWe0gRfhCV6faURxNre2doX2BeD+LC7r+MqSawH59/MITLZ6bHLl2cFrsJOVRlm5xwoL7ysvzd0SpFb0xvxJSGefDwPneUB6dtAa7SBoJ3xg5xNmNl/o7JFEuJfVXCxHcJVYeKY4u+Og7BsSvkS543cugAkRvZrvWt1vnsokouazNzJ3ZgSDIZ6eM/p73mJsr6ZENnjQULiu3y8yws5V6/kAL1A9oyRZ/AA4fSeaof4yK5xRyy/CZaNPTpjlmi0nGD6kPFP9O0ABVznnkz9HEB5oT4GgQJknEyGpEhaISM5WEzx2/zJmkSJ+RmiKEoFgBwo2ik4TNAXYAkkyA3Hvq+jrQ6/cJLlOdwS1mNiTUrGZF+fFMYG74Zh/PTo/ndaDXJV6gMIt4d0dRUsh8NtxpvE3XvzgfQK4oOsJqhVAb7+yoU5kvxHbXwmPcpJJkp4Nq+V3TVFoeLfr2EYWZl+biqIP6eI/RelfVOYshcjfWMAoBqQ+dNKoeve2uj0H8PjFmOB6fDm4NH0JjSoun4y9NmOs2e6Y0QEoPgwnLU+ZaDc1t3n7sarcPIItp7p4lEYq4GSYuqMSFQp+vXFLTSZ9/VVbOJvInp+Siz476S652BAbqOyQVECncbqzbH70+iEz50nGKFayEwU18y40hczfFd6zID+cRE//QmzDcDqm0qy/Y4BeqpVEyhzM7rfI2ZQ5yO/9HH5zxk5LezxDKxEqgQlGJoYMgN1C5NsrFwnVHydY5AGzx7NL8Y9TyBC2K88qc4jO+j18ms+OnSAfzDbsaRbbcyxiHddfMxReVcJmrtSb17iWC0IXvODx/gwAcc3Dc0ZPm3ZAkHAT4/uPNa8JoJ6VaLSA7pG8uQjtxutcrtuOXlh/zrwpLS3vhGct9wRMKgV0ckM8vzIy/67RfcLlBfItB11yQRqnjF3K525fvd5SnpuU2F+XepW3EXDLps6f3wjVXig659zJrt4B8pgsgOke1dVjvtfTq4fcJccc6SpLQ0NzCa1tgXyR3B4xClZr0ens5uzwxgyxmjKVzLz0213l2dJHMOraTz9J8U+7j9Wn03R2kfD5rmbozlXP9wtd29y2RCoX0vaBWFZHAH7GaJPQOsWx3k1FLcE0CqYBDFeSHHxhXPCVRmkmVEq75If0VfQbc86CHVChS8pI9SYU10ZEirYs6e65MmKnZRwjH6f33KzxcpfQ2b9/bIkrmxgmzbN4n8tnN8xA7j5w4d70/0zmt6Yj+fg1+CD8pcT4H8rkQIcZnEkSbLnXSdh1JfTuUrjkVFWC5ObmfUFvuXwA45yV4PPeNWyU677W5MmWIdOLl+gFXRFww95/Y7OkznCY+af/2tcP92jd2crXSXVJXoKOw7wjpM24SVqmPFjX/8iWmfnPhlpggQOnVM1kUsCQ7Zdw1zVqbGS9D+GK40TV90Ht2wqHxQCy+63f7ywpSV+wZuHXRHRDhKo3+xk3wTOtyd/zeceSBOctzzfsO75+dMycX9Fq4fkEPcbsjdBHO+V7T87huQRPWSoeLhRv9u9G+ZLAudIxxdzTbPKbcpx0dF0RvHxE33RPVSz737+s3eXaFY9peqkTj3jiqbHFNBGsFFYrKiCth07DHoUOJcouNJLaenCBFj3CDltQcRkoSh233OnyLZGmYURdaOhdFkBu0feaN0ufGaq3J7h+by4opY4bH4XbaKr9wxwl+pQxSc/eYFbG/nyR+ffQZfP3BaYnKp49xApO/i14ja2qV4Ga4oX4pdNHIBeqgSFtw7CG5Q8+mypCZUyVRBnH36GlhBM3sMjOfeVMr3wHZbx53/UoJzczOG+0yC4Xmgly0St91jFmyLeYHuoaYPrqLZKpI4O5ZkihU9B3pwwSEEe/UBtgToJfhCnq+S3xgQlxhQfuuNPCJmxRbwh0j44vnFVszz/ERJ7CRz2zqm49M95bPPlJh8Jl1RGH1r7dWZn7O+GHRNZNLzJdL2DOGC32e19TJx84jPUpJ7pZxpsgU97l620Fu/OvEJ/h9Jw5wzst8dsdiasI5WphXkZaxkxl/qhkVispJie3OY1Uxg6zUdEaqhKOnvckkAPvhk7MKLputN0EZ7o7XZXeO9xTuL2POOv+ODWXsUpmjswsVXOjgHiIUZkwbzXQ5LgKZTyN315i4WWXwSFDCQAGcr1ASuAmWFu+LkpQ6T9aQJMOAL3keAPQmC4ovCQOkSAWV/n17e49JBQuuKl/kQW5HpY4Je0tpd8LN+dq7jtmVkiIVCjhh7/RjDur83NMxY/MNC8OZsVgKnStcX9Iv35fJK8UKRUXObddceJL3WBJ/m6TEFpCMU3o8Yl28D/sT2frr7ckclCpbOJ9On4kbN65I4fr0L56b2/mZ+gVmB1qA9xjln44CzEfMJ41JCUBxfYcpKxxlk69PSoPbbN0jU1xy94JaOlCh6GgnhxKNWvuV8/zzAzUxlVpE1CoqFJUYKpy4SU8pjAIkhnSSThqa1odrQx2ri57HaLWmBMi/REkyHb7lCCo0N09sgmHKeHm2zAxp8WZuy11m/iW1E6dwgmk84pqffoxpoq8drsZR7IwrOstdTPt/RW283bPcCaxY3hJG+KJIAy3QEMCJSfCS3ORNdBgn+RhDhdvCy/jc3ZOYkrkJO7c5CBDvTzSa1qf/4VGaFFAvhQsKwfVpGtUpRKAb344FB1cvaz5HjknNXumCvG8vZixKYFrm4obZ90EFIfd6Y/eTK4MMkdKe7/qQJSF0VD4OqkSSysN0XnJ9b0sp9nL9liq5uBxDLkkCV1C+/8TMzs/HHZI7X16+8lrbZLXd+GomlckBTDRRab1dQSpSoahKcDWXPlzfBx8h+iYd3I4/dH/mvAxSzV1jS9ikl1K4QZpuv89ay/nvyO7ulj3+BUASnyo+IpOsTVKtLVcc9eVKGqzBBxu+mZ4nLJyPfiQrg+vSdAHN7igJBW563r1jV/lPTMCTjOlWEqRmFC5SU7VS4prN0sUR5yMQ64PkQjjzUApnwii9Fa7PXZJ7KP0NF1yA0sbMX7QvcIpByo+fnt35mQsvLZ1vuNM2CpUPrxBlGA1eA8ifHe0zm2Jjh58QflMhfHgp0v6zVRi5k/aRuevdgCEyX6H4b2Tncdfxy+fn+g8y+EJyLyC7dZwwRpWLPn+vfEwggSa49cq+ZpLUVlg2d8986TRqCRWKSswGJmMwRRqhp5wBPZKMxZwzLuX5mYXnIHFJ0j6p8PB3xnZXahrUW3gvygkNLy11hnehAiNXRptw+5OWsYmZRKVhk6VmdqEtb0KURyfLjUz+D6kJZ6U0dw+M9wt0NIx0CF/KjU6uFh9SoVX6fj88aXX+xgGYuVYmMEnvhfjZM4gXQOTMEw/za625+YsueDmTS28bAvRhTsklvRk79/l3C6QRyOii8ZZhizs/T1rp90fkzOco3G7G/r0LD0rkcsj+skALFC6PFoVTovQURvCVQiOhcvMIVZxII/ZyUJ9g93J9ghQHdyeufWFe52dubEuyYzyZ6avD5st2XasZFYpKjDS3jHRClGr6pbb1bp6H+DFibyt8Ycpp451kY527f4s2ySY2zqdh1OKM6RrnFBoaad6nPbHwxTLBgoPTqidZ2UxnfQAAIABJREFU8PYWmopwGil633cw/bte+G5KexknxIg18+QzZzYzlAkjnATp86a7qdw1cfmHqEIkhJKHmpZJi8uK9iX8JT2Pi4JH2V4vG4up1rYQaJukUR6liyF6zA0P7CvPZeSijJP2gUITnVgbnGcjnWKoH42bgJoiHae4QDejl5DklkwZr5DFNQ1Y4wY/oEijz3HsxwSroLgJVinnnXyoqAz6vPr2ltXLzcsBrAdj0PeWG3+SDE1HMO8IV3qS96KZySsUq4m5EBo9l0sOT7n+pfmi82oVFYqqBGmgBTecpo8pjDRPmcVoHX/zygLvMR9uLotSkkT+4m6z1ITxKSbClS95YAg4AXskiQ7DwSVoo0gX8ZyJIF1sSHfNuEhLtEl/Z0KT0nq3Mb5bfELZwuEc28cskUXvoSHEuXuxKEFuDBbh876OaiC54tiDmY+ho25OXcVEAEwYbdEppODfSBd1SR3baTvkibkLr4cT0rn5a4nQ5NvHczP8VgVcVLANjJKC0iqce9uYe3vP2Ez0tNCqsBMPO6DoMqTKB+45xv1R/edRwVxqLcCZXybZHeJMDuk1ShOlSuHSYVDcXb1DDyh8F04ciS72Of48qAJR+qw4yqsULw0qFFUJ0nDL63cGcL4OzMtE+8X5PFXIkifG1NX+RVMIrXXoABehfS6kmn5pvdxCiRZxZH8mfLNQa013dpqEwh2H2O5cWh5zbCIJ183t4tIgHpwcyS3QKAnW+ix0EeHLI5Qqj1lckYfs5pFKAu0/XBh8irvTSN99TuCkVyX175QSQkC00teC7gAJ85pxCzcuwh7tM3e/VXjib27O+/7jM73HaGAI7tZKFY1JUlmE4IaXi9fMS5Nnczs29Jg0GIu0T3Omf0n0rE9M8e+80ec4fnnhCeA5pDvOs4UmsFx5u4WR89YKw4krKVQoqhKki2m6iODMGUIP31x5NPQ0NQmoRuZv8Ed/CiHQVHsS55hQJDyPg09EmqlBHuDBf14rEYQOP9C/QJOaIUlN0KQh7DkenZyZpG9kdmCpyaobepnCOb1TpF2aSypKmUt219wEkRSpxvnJqcnyChWLm0ODmj9x/lAUqfmldEyQ5h9yaSD53657KbOTd/nZxzJtyjTqE2cc7T2PJnLlxnbp+83tsieBCyAQ32ktfpdQeo3SsVMKl2/qSGF+my1C82pOiKHCBBfhlO7ShLgVVPEmFTq4KKMhgg2F/A2QLDqg9DcNwvmLc6XoTqhQVEZ8+QAA+cQ5hoQA5heksvJCb3ZKbZdD0F9oh8v5elCkwxJnJ706sFYmdChVukV+5yj/9rs0Utl2xjxNGkKbwpn/0EUoFx5YugM0dJ4scd9tbywRnSetl1s00SI4uUeqJZTy8+dkkZY4c0RKaA0sR4g3ZAgJy7yK8atIojgZuViWL2gik/yX40+vZ/rnGGJGe+wh/oih1JdA2m85oShJUJWkSM2phhGlRyEhlX1Id4qEVthBkJpdyXNlMWUIr58+nSSJe7PLKzzEN4c0+MNeoaKIklgoKpMAxv3GlxeuELqA9ZwKRdWCdNH4rmMzSfz46GGVMeMqZ8Q1aSSj1xknW4o8zLP/GBdyNwnSiUgcqIOcx4URlmqXuNwG1H+JFeDJ50cZh+OxyzIKgRC5O6TUCydH6WKtNyftkCK4a5RGIJMK1aGFrMYAu2tSpIscKVKnZ+k719wq9fNJNmbTZ0eHi3eRhK8udMEXwoz2gQmy3TUpB/Ut3PHcRRomXYo0kmw5cwJJCbFTLxV8aZS+EEnpD+iTiZz32GT//BCaJD5+odddG3fJ0gNIeXHWhuSNERAiOmClUaGoSpAuSuITdvkGX6mGmNspSqJ54ZBHDZItSqRmD+Wc8u4aLcvS/e+3VuY/CWEmx9h5zLHvMfb+Pv49VnYdXPOkwSSkSId5qZZsfyYxbry8AEkbK7Q+o0L16cziPAStgZ+3dFwJfW+TLuJ97eWaJ2279F5IfSSkHLR/4aG7XaTRAaWETvwcBOFzlC7wueLefqQs4MOE5ZkdzxB+WMccnNnx5CwTuiIPTVztP5jg1pbaL053ipRgSHcY6CR15tsO9p63eLPMPl268Jq7QTbp7dez+HwIoZEOBE9MkZmMhV50c4R25pYiT+4oNakofrSkWkfON0GaPyY00sg70ntLk0UmhY4X72bGi1KyKKGvjBTpPM9FSqRwPmTV6DNIFWrxHF1SxQbjbyNsg9Tv7uLTjhSdF8bMrjJw/jahkfZHznSfMokx4UwSWayxpXhFKK22Gt8/SjnN56SRJpXCUKGoSpBqtaaQ6Eqffo/fkTb0wl06GEnDWodAOo60tsnOrMZszFweoCQM6CezQRfnbQkwSYkdnaV+SWUUWinyLOqy6wixs/pH4m9yzMH+CIC1jDSCXd3e4rXM9MlJd1FKPa5QR3w6Toc25eHgfPwo+4SLZG53X55TqjLMWR821D/HV+6fErS80AqM24YvDVpeaDPN0CzdWhkl5n4hklkpAFQoqhqkORWk2gGpELNCuK0+fIHML+dhxickNKHN5yplasTBRRhMglSwSJJsNCnSRQ6X4JAS2t9Ieo3SXdfQPjAcNBO71Aev1pDusof2m6rG8YJ21ibGl2nLnoyyJYRP0VEHyQRuach0bpqT7jqXUyikzKzyCKwc05m2V6q/15KfStJ7JF3/+fjwqUcU9ftQhMh1VGlUKKoxYuEpmTdQ6uD4OhF2vnTuCd7zxi0rXzQpKVIHZqkfDZd3pVKEXuCPESZ55RYUVCssXXhs3sM4jArHUWmivRC+OJSd0mhFwlwgHPv3Lp356dknHFKysmuBENO1NHR5paDv47Uk0a7LzLWZxS9npSA1w5aOsVJCWBxUahEf2ne2WqjULk1X8FMpNdUiikxamSyCZjWhQlGNEToa2dz11FeoWl4tGV+6d7LoPGkABWmUsVpGGnaT62bUR6uc5nNSQgdAnLdBZg4zc23xzuZ9mHDvSYiFra/KrY3yEeLyRxGlwpIK+ftxSP0n7xuXWeD+mQk5/7LQry1E6OVYeWV0HiljIMuaplI5CPXx5Cd00vjujApFNQb1l+ByiySZU8qZX6Gc3DuuMhquI5hM8VIqNdbJzeeKb2DoELZJHIKrha76DlYDxx7SNX2qkhDazyn0oqycQtHxh/YrW121yvsHDqhY3aGjCHZFakEmqhXBLa9QZIw50hhzhTHm/xljrjHGnGuMUWGqQkjNqWatk2l1aD+txvwKtQyXKV5KpezipbuGIYIahL7EEMJopQg9cXSH3c93HyeLqleNJsDFctlZ/mA75SS4+RzzHoQWYsopgNUqoXM+FcLwMkbzq1Uqt06QUwNNBMAIRcaY/zTGvAFgCIBLARwD4F0ArgcwzxjzW2NMUQkojDEPGGO2GmPmk+8ONca8aYxZlv63ciqKKkTa+dftkDnu0dJqpdNWGmlyxxBCZqXma2lfkIY5ZusquoQ4/3mqLOxvKRjQr7hgBiGyivuQOrnXGtKE0br4LR2h7y0XJEIa6U6KzntKrVMLXbgW2gjwO0WfBPAta+37rbXfttZeb639mbX2MgBnAZgF4JIi638IwCec7wYDGGmtPQXAyPTfSkTgnkU1/bpmkPGFQceJzguRRqBSW87l1DyFruvIg2p3p6iUDJm3qdJNKAnS7iPNpVNLVMuQXc65Y+Pu4iJ1uaiwrNQ6tdCFS52vLhReocha+3Nrbc5sltbaNmvtS9ba54up3Fo7FoCrvrwcwMPpzw8D+GwxdXQ1Stn31XxOhjREaK1FUDrt6P6dn8s5yIYW/JorlKcIAHbuCxv2uVj6Bg7cUI1cdMrhlW5Ct6eciSSXCBORSuEiYypKLbC1BvrwlFW1YanAmc/9xBjzjRzf/68x5sclbNNR1tpNAJD+N6ctjDHm28aY6caY6du2bSthc6qLUmrw1YxAhvQZhBAsasFWuFj67SczR5Ry95gVQctLyvGH7l/pJrBmSF2FPr1KF8a82qkW5+VyJkzeWl+8ya6idCUWB1YUlIJqGavywakRrwHwaI7v70kfqyjW2nustYOstYOOOKI6EleVg1L2q1rptLWCNFcUxzJhct3QlFMYCx0trqlK8k39x8m6g1EOJneB3BhJeW1u1zSJVBRFqQScUGSttVlZC621zSht6PgtxphjACD9ryzbZDchdChViopEMqTCY+jcHeWknDkpdu6TJUetNZ6evq7STegWjF/e9aLKKUqhHH6g+lIq1Uut+O6xBufGmKMk3wXmFQBXpz9fDeDlEtenpKmRPltxpMk8pYkUqwU6aJXTKX3FtrC7YaaG8xQphVNbb5milIYPnHxopZugKF7qGmpD+ckJRX8GMMQY8yFjTP/0fx8G8CqA20JUbox5EsAkAKcaY9anfZhuBXCJMWYZUtHtbg1Rl5Kf7uC/EoKZa3eJzgthPldOKtXaCYE1/SoSdS/U7FdRgBGLNJ+PUr3cM3ZlpZsgwuvhbK19xBizDcDvAJyJ1JppAYDfWGuHhajcWvslz6GPhChfKYxKLi5OP+agmgnZKKXWdoqOG7A/llfAh2nC8rA+IQ0tXT9hqZKhtb223jNFKQXdIaiKopQaNuxTWvgJIgAp1c/QeZsrVnf/vmEjkFUDqsGuDGvq9lW6CUoV8I4jD6yIkF8LDOjXu+rCx3c3Tju6f01EDVOU7gQXkvt6Y4zXSNUYc7Ex5tOlaZbS3eiKJk+1tiAbs6T7hLZXuj619v6VExWIKo8KRIpSfXDq+XkAXjXGNAGYCWAbgL4ATgFwNoARAG4ueQsVpUZZrTsWFaF/n16ob1YTOkVRFEVR5HA+RS8DeNkYcwqACwAcA2APgMcAfNta21ieJiqKosjRgCGKoiiKohRKXkcOa+0yAMvK0BalG6PrWEVRFEVRKsVhB+xXM6GjldLA5ilSaov9etXu45y6ekelm6B0ERrKmGNJURRF6RpoijuldlfRShYDD+tX6SYoiqIoiqLUHOVMWq5UJyoUBaZBHbwVRVEURVEUpabIKxQZY95pjBlpjJmf/vs9xpjrS9+02qSSTt5Lt2gIWkVRFEVRlELRnSJFslN0L4BrAbQCgLV2LoArS9moWkbjBSiKoiiKoihKbSERivpZa6c636mNmKIoiqIoiqIoXQKJULTdGPN2pDdBjDGfB7CppK1SFEVRFEVRFEUpE3nzFAH4fwDuAXCaMWYDgFUAvlzSVtUwmm9HURRFURRFUWoLVigyxvQE8D1r7UeNMQcA6GGtrS9P0xRFURRFURRFUUoPKxRZa9uNMe9Lf24oT5NqHN0pUhRFURRFUZSaQmI+N8sY8wqAZwF0CkbW2hdK1qoaxqpUpCiKoiiKoig1hUQoOhRAHYCLyXcWgApFiqIoiqIoiqLUPHmFImvt18vREEVRFKW8HDdgf6zf2VjpZiiKoihKxckrFBljHkQOTxlr7TUlaVGNo9HnFEWpFYypdAuU7s7X/mMgHpq4utLNKBsDD+uH1XX7Kt0MRVFyIDGfe4187gvgCgAbS9McRVEUpVys26G7REpl6d9XsgzpOtQ1tFS6CYqieJCYzz1P/zbGPAlgRMlaVOPoRpGiKIqiyDDdbLtSrUkUpXrpkeA3pwA4IXRDugpWRzxFUZQsBh7Wr9JNUKqQ1vaOSjehrOxtbqt0ExRF8SDxKapHfANkM4BflqxFNc745dsr3QRFUZSqo7vtCCgy7h6zotJNUBRFASAzn+tfjoZ0FX701OxKN0FRFKXqUJFIURRFqWbyms8ZY0ZKvlMURVEUHyu3N+Q/Sel2fPuDJ1e6CYqiKACYnSJjTF8A/QAcbowZgIyi7yAAx5ahbYqiKIqidGGO7N+n0k1QFEUBwJvPfQfAj5ESgGYgIxTtAXBXidulKIqiKEoXR33NFEWpFrzmc9bav1trTwLwM2vtydbak9L/nWWtvbOMbVQURVEUpQvSoNHYSsYh/XpXugnB+NS7j6l0E5RuQF6fImvtP4wxZxpjvmiM+Z/ov1I3zBjzCWPMEmPMcmPM4FLXpyiKoihKebl//KpKNyExl59d3Z4EPbrQLlyf3kkyyCiV5n0nDqh0EwpCEpL7NwA+DOBdAIYCuBTAeACPlKpRxpieSJnoXQJgPYBpxphXrLULS1WnoiiKoijlZXdja6WbkJieVS50VHfrlFrmqIP6YMue5rzn9aixTigRvT8P4CMANltrvw7gLACl9ow8F8Bya+1Ka20LgKcAXF7iOhVFURRFUURUuz9UtbevEEYt3hq0vP598u4JKAxXnHOc6Lxa262UCEWN1toOAG3GmIMAbAVQ6hiabwOwjvy9Pv1dJ8aYbxtjphtjpm/btq3EzVEURVEURclQ7eu9am9fIezaF3ZH8ciDNOphMUj7Voe1pW1IYCRC0XRjzCEA7kUqCt1MAFNL2qrcu76xO2utvcdaO8haO+iII44ocXMURalGevfsQrO+ojicdfwhlW5CSTjtaFlO+AFVHihg3Y59lW4CS9LRsdoDNHzhfbJdCqXy1NpuJSsUmdTV3GKt3WWt/RdSPj5Xp83oSsl6AMeTv48DsLHEdSpKzdHTMdh98Ovvr1BLKkOfXj0r3QRFKRn7dXOhv2eP6nauX7hxT6WbwJJ0PVrKXnfhOw4vuoxzTzq06DJqbbFeq1S7350LO+JYay2Al8jfq621c0veKmAagFOMMScZY/YDcCWAV8pQr6LUFNbZmj6wi9hJDwocseYoNZVQapBeCYWCat9B/bxQ098zweX//OOneo8dfVBfURlnvu0g0XlcRLTDD9xPVIaUJGN7Nfpz/OijpxRdxnuO65o7qNXA/r3DKhpdxW21IxlyJhtjyqp+tta2AfgBgDcALALwjLV2QTnboCi1SLUPP+cOlGn4vvuht4vOk17vV847UXimolQPvRIKN0cfLFv8V4oPn3qk6Lwki/pDD/ALIxcIdynkbhD+9oXeiUhSWtIW7Azsv0MJ4WIivbUH9e0aSsJy0ksoxEifY48uKBT9J1KC0QpjzFxjzDxjTMl3i6y1Q62177TWvt1a+4dS16cotciR/eOLn9CKwf6BJ5VjD5Et1vr1kWmrDjlAZvveN7D2S1HKwUH7V7dvB8c3LjzJe+wA4fudRCj61Hv8ST4PFY4X0gXf9r3+kMS9Ay8Gk8gS1WgiNnLRlko3AUD1KxClhM4DdGDgOb+HAc4/+TCxQrTSSISiS5GKNncxgM8A+HT6X6WLUiudVwH+cdU5zjeZof47Hyw+SOT5Jx9WdBmU0Foj6Y6SohTDyUccIDpPGkBAymfPflv+k6oUzu+DCjufe6/flC7Jmv6gvn7Bp5fQHi9EvKzevcL6Q7mm0hIqJROdepT/PTiif/lMmb91UakDJVee0BsxUvM5rm99+bwTOj+fcuSBAAAb5K0qPXnfWmvtGqSCHlyc/rxP8juldpEuAEJz8Wkyk4ruzgdOziw23OhMdIAMMfmEnlSNUD8nPW8/4SIn9HUcfqD6KHUnVm9vEJ13xTl+ISaJn0+NWZ7EkK7hzzjW778T2ifm5MNlc1sSAcTlm8xOWRKStKgafYrKGaH5k8yuYTXwtkP2L7oM6VwpLk9YHHfa41PWdn6+4B2H11Ro+LwrCmPMbwD8EsC16a96A3islI1SKks5t9z7EkdVblcixK5HV+HjZxxN/oo/qyTPjlus0QE3TMSfsOdVSvd0/tvD7qDVMtKFZh9Gc37AfjLt5LEV8pXpYDraOSdknL65nYgkDszJo4eVbww/zzMuTF5Z5/0NbR33Doeeijh/I4p04X7cAP+i9jNnHSsrpIRw9y+0aTRld2MynyRuh6mWkFpY9GUCdUi5+PSMMvn6T53uPU+qyOME6STKwK4YaOEKAJcBaAAAa+1GAF2j53YR+gkXFFLK2YdpeE5uezWpw7GPEBqaakcqIJ3FRPKhRbz7bQcX26SKab5DC/ohNMldhf+75J2i8zihSEp9c1vRZYSGdgWufycxHU0q3IQwVbn5ineLzvtPzw4/t7iiwgn3LoXe6ZA+A+n9C20uKeWjpx8lOo+72t5JQvsJ2bynyXuMewYhdikopRynufnwc8LoitLWcRYRl56ZUZLuH2AtyD2DLwwqPD/Ue08I6/NUaiRvRUs6NLcFAGNMZWyrFC/hhaLyrVxPOzpjOsFpY0O06Z1HHdj5+ZJ3+SeV/x50vPdYEkKHx+XuU1Nre+dnaa37MYtVettDCDR0kfeuY2Rhb0MQenIc0C9suN1a5j3HyYRlTjCVCq31TdUnFFG4blbOcTWJMOWGyS72fecul+6o0Xv2P+fHo0SGuGVUe374ATJNNzfGUqTCSQjofXr7kZllmG+nDuD7XKX093QedpGOA9LRPGlIewnPfOd877HPvVfmC0iv1p0Pv3VRxvwyhJKD3trPnu3fxeQCN/RNkBfwgBpLEyLpMc8YY/4N4BBjzLcAjABwb2mbpRTCoBPDBkbgJkOpmYuUH5OcBR3MiiKEpr8/ccBtbuvwnkeFhCB+OYGnn7b2TNvd20InQbEJGjPehm47naNCmJfsrdAi+cTD+lWkXo7QeVGknHhY8Xqyat9543LE0Pcs+FUIX787vhQPuJJkuGxtj4+JxV7LQKn/DqnJXcSHGH2o+c47jvQvyCncXETh+j4dO3/xCX/uJCn0PonH5QA3MGkwmxE/+WDO77m2h968kppuHZlgnqe7Mq7lCV2vcFEYaS9z3+HPEv9ErjtKh87GlozC1Le7CwA/uUTWV2s5MiaHJNDCbQCeA/A8gHcC+LW19h+lbpgi512Mo2oS+iWU7H972RkF/8anMXQJMTnS8XEPY/NMJ58QfjShYbV/5JD0nnEJCMNTuNDGwZlpUELbNVdjoIVqDL9L4R5BdYtE/LuU5K73F46x0rJdZVWSNr3T8eeQLrZ8dUkTpdJdGU7Jk5QkJYS2vvh24Cho0uGM7bfCMqRhzF2OG5BbccT5YUmfd4iRjlYl3c3w+QqF8c+Kv3BUeGwXvoycwLlXaHrMPQJ67Jzju2YCXelqaB6AcQDGpj8rVURoJSsXBpYztbr6PwYWVe9ARutGB8ukvi3SAZdO0tLFC0vgtSrN4eM+e1qVdJHMOoVSISvAAqVSPkXSbPBnCU3BypmQTqrFrHZ/Vq7/JBnDOLOhow4KK7SeziiepM77sUWEOOBIsoeaxF/kE2ceHfvbV7V0ASjtj3GfrPiPQghF9F2VFnfVuRkzvk++O35f6HjJlhd47KT3adGmPaI2cPVyJuQU6TOgZrQDD+vn9YPhdhCDJ7wVFkf76uPfPM973ike07+kSrej+ssUB2IFBdOMw4TjVCn47WVn4A9CH8VKI4k+900AUwH8F4DPI5XI9ZpSN0yRI93ql8K94EkiKEm51JmUKSF8W2IDBvnsagXpVnhV7giw5geFLwDYSVXaKMJNnz0zwa/8fPR0/1Z/h9D4XzzZMudVSuigC1xOIRDa1PFL556Q/6QKcvdX3uc99vUL/CYrFC7gyjEk0t3BjqkIXQC2kT7ImQHe8Ol3dX6WPilOmD/h0Iwm3u22tBV0cfqdD/l3LNw2+S5FqmD40DuPEJ139MGZMdZtQ4g1chLBqhd52Y9w5gBp0J8ku/Yc9HEs2VxPyo6XTnPEcPWGMHulxOcek0hxJP3JPmIKxpfH+VRljtFdUi4gjK80rh73PaLBpS565+He84Knw6igJcEpR/XP2omuViTqpJ8DOMda+zVr7dUA3odUiG4lIVVu5VKx9nH10sGS08xyPk+xQZt8f8t/xTUY7gKoaMpoGxTzKQpQHl0A9RLOWJwmWbpAiTkVH+H3Awh9a7nW0baH8IH58KmyReN/kPDf0qAYIThof/9zvCyBP1iI5lEhhlPQnC007ZA+R/c8ei3b6ps7P3N9lT476QLl7UzOOKpx5wRiWhWX2FSKqzTzXYo0USpHiJ2iJFp8qWM7V3LPBP6dX+Sie8XMDP0FnkkUJ+Wcyz06x4LoKWzwVvLOcdDiBjp+oFSZTMeLJPfskH7y94qG8P/yeSd6z6PtkI5nHPQ1SCogXXVebkVZORPylhrJqLUeQD35ux7AutI0p3twjNDWulLwdsiVl+j++sWzvce4RWN8USur68wAYailSLe3pTa/IbiMRKmRRlzjo4wV3aQYxfo9uLAhlQM3XhoZiS5+W5gAIcHDF3PazwTlhWgeTY7KLVw/wJiE0vdMeh1uP6NBQqiyQGq2FnrXccOuRu8x+SZp/MQz35YxGaSBRVzliHSH8vhD86dB+O/3xyN/hggeluRWS6PPcWMd9VORzpsDhHOAVNBjhWVRCeEjwlF+4oTzl/bV9g7/OBgrj1zlX5x1AxWsjo7lPyt83PvZx/zBCdxxiioNucdI2/6xM2Smjpy/VlJrm1NIcBKf5UwlTfNCIxlyNgCYYoy5MZ3IdTKA5caYnxhjflLa5ikSgmvLSyz4JAnIQIUdbuIQh/1lLpHeT05bHppL3+03H/TB27TLnmNru78HJdF2ctCQygGaLkZuW86YzwWORyGdmFZtb+j8PG/D7rCNYOC0tskej/9XbcJFToiAGdLx7SQijLomyscT0zVqqpdUAPGex9wzeis2744HHKE7W0nNKqNonSce1g+ff29mB8MNQy295ivfn1vLTG/tKY6JzX+dU3heFJckyoJDhNYCwccpdkFOo/T5y+AWqB84OeOHV0oFlThktmOKKH0vuDmLQpOjumPHI9ecm7PeTbv9CgYfheQH8ilOuCu6RmgOfNEpfusD2rcKCdXunvr+gQPS38vKqzUk0/wKAC8h88xeBrAJqQSutWEkWGUEFzoC+xSVunsncQKWTuy8+VPB1Qaxu5bmcUmSU8F99HuFQgelbwn9xFy21mcWb+Jey1xIiIzgsaqYukLbRPcWJjOVmpRQHxMOacLJ0PeWQ/p+U/+/pMOedPj94Ucy6QIOZfLbUMUJG0FTppNED0//AAAgAElEQVRxfuQ/JF2I0HGPMw12S4sEK4O4KdxZCUx5jPG313cZfXr1wAXE/yIpsfsuvPGnCXOorSYKi6TQQA5JhOqNziJ+0EC/4LNfgjwzlzM5bSi06yc1L+b8RymcRQjlEGLd4O5w+nzDmlv9ChrfZXF+SH2ce+5T7LhlUyE4xBwt3SlyL1HyKC88pfj3tFqQhOT+LfdfORqplJdSC/0+s5cQZlfceeIgEWQU4ByxpUgXEVK7ZE6oXEEmaek9+8xZx3iP0WcSwteKLn53M2HRYzCDMufDEatX2n+YVehn3lN8XqUk9BQ6dkvzwkhzpnD9LLT5nNSH44xjMwqGpKog2gy6QHHfU7qI4vp+kmAs0v6YxOnbpYdQo+sLS2yMwQEk4qVbhETJ18OYgpVSfXv3DDIXUR8OX0Q0F25RT69XPIYx9NuPmNmxbSJtIN+7udroMffZxPxKhD2IC6xx51WZ3Dq9SeFJ383LzpIlPQ3hY0OhdyKJRQCnPD39mLgSins+pST+7oet9z9PlQmztYAk+twgY8yLxpiZxpi50X/laJwiQzoA9ZZGzalYrms/IQaPr3wgt1NjOfNG+rT05550qDiQwUdI4jX3tlyUQLMq3aE6MoAvHG3v6MVb/ecJy5M+OvFOI3OaG7K4WGgkuZMdgebjxIZculP0rmNkO0DSexHitZAqIqiPTuicUhy0rqOZMN5BMsoncEUPsosrvJ1ugJToig14Uxn6ly8whMnxu856PLfWWhtkJqJJu5PMI6WeHsShy8lnehlumGhuR1KS3Jua2AH8/EhzEX3y3X7lWhIGFBC8oFhCyCa+1Amfcu9LFZiaFdIE9/FHpnw0EXK1p4MoBMlq6HEADwL4HIDPkP+UKkG6qPcJBQBwBsnDUew7O+jEAWzm8CRCiPyl85/IbbkPOnFA5+d2qZetEHq9H/GYBxxxYB/xhM2FOo1H2Cve5JA2SRqKl61LqLXu0YOZ2RPVKzvv/LczOZsIIRbuNJfORY75ATXXElclvEhpXp0QPPe98zs/c+/9Dy/OmKp9hMm2TklqokN/9b0PvZ2UFz+PmiOGUJwkdXSWlMc9ek6J4isPINdsgEOJGZLbdvo7V3EQRaW64py3JZpXQqwfpbtDlMOY3b/Qmn7pOP1/H828I9JxPmtXj3z29emk/iHUHC2EaevxQnPgJGW7xKO2Jrv+E53odlEkXDcKo690V/ESWjlNdZ+F+BS5XPruY7D61k/F5pFqCMAVCslosc1a+4q1dpW1dk30X8lbpoizaofQYsoji/HHV9z8STzznfPzmAEU3t4Q60Kfnna/Xj1ivxP6cMaiM3FIn0+IMM8U6ThV3+TPdE0Xhu8jgiNbr/AYt0FVqSF20In+hKCU/gFCG9PHfe5JfmGsZ+AIDwcKk29yO1TSvkpNgzhTMIkGuxRw94LbGaXvTJIIiCGukQu/T5t0MQmMUFi1mVLifi+uSVbmb3fXOTItvPo/BiZcbBd/o6QR3ShSU+HQwi3HD4jigC6YswWfsC8QN3/Rmo4nu0ZJ1yS0vDuuPMd7XmjrDlrvnPW7vOdxyrB7vjoo9vfwn3wIj37j3KzzEvkWFsC5nqTW9P3jxuIkdCGZSCQU/eb/t3fmcXYU5d7/PbPvS/bJzCQzSWayr5OE7DvZIWEPyBIg7Pt2IQLKqnH5+L5e79WrFxRfr6JcL7jeq4JXVATZBGVXkKCICoIsEnbq/eN0n6mu01Vd3af7nD5znu/nM5+c9FJd3V1dVc9Tz0JE1xHRkUR0sPuXeM0YjC5S6G7bBu6nca6syE3aFkcMe/toTaYyBn/LferG6WM8A4nthM/WrEkWbpOO0mLb4Z4raR1NRNGymqiy1HDah0qOd3Q0hkjN89Udo6zU3vnUi9nf9TX652ydLNKyHrbHjTKYk9kiX2uzIbqidV4YzTccFXlR2FSe2s7uf+al7O9eyWQsDgWVLbLP16sGxYY3P4l9+e4tq+Zzar9ndNp2ConiUxREHP6e+RLHLVEEhYBxldCzIundaXOtqGOU3B7tFQXkjWYoXdokmP7tH3Z5itRrafdJ9/yHF/dpj/OG7vaiCt+dbfXZaHCf3jEYDjx+odXLMB8Fd3tDtee9LjOY2asWNTZjbP+ooRNzzWbGczyAOQA2YtB0bmuSlRrqHGgZzcU2R45tB2TdUVkGPDCZ48nEMbHWOQGrTBtrt3oj9yQVFeTpjNXwuy7T1bItBw+5c5eTn6kdk7XgZ5y425mn2UYqsx0fbVeR5A43Hi1rvAOMbUj3KFdVB9R9b8uRAr0ldkjH2kcZS7e6bu1Uu1wbJmzMf1RyvjPpt+zjZ1zdNuyzTohqmKxGQdZaf+NeferAqKZBWeu5nIm1cqC0QZ1AZQUr0n9buvdIAYJU3D5+toxti1dZGaUfNOXcMwlMumbX5Mmp5N1nGy02qkJA9zxN38hbhnxtOsKYjmqPC33VDLrn643YZy7DTfZtck1Qy3fpam/wBEMwmeBHsYJoLaD/V9LYtPbZQoj5QojjhBDHO38nJF6zIcwmy87c9AGetmqiYW94oizpmjrzFf2D8fJV6x/brnOhFFpUtdeVkeveYxtCW6m7PLHRdU7fPHWJ5/9RBjPZ8VyO6BQVg5KwoA7rtlpb+V0tMvjveEyNlLvcLikVTFqslf36nA029Yubw+d7E1OatLanS9+3rU7BXsvsPfCyLVN9j4vbRMWUUNW7UmsoxCMV2V1XTRoq3/5Yqd2aisv1p/N/2LZCR9xC0Xu58XylOkHzH7s2ox6iTqhMr8SdKBPp+0vj6zZU8BdP/s1wZoaPHzor8BiXs9dMsjru9FWDx8XiUyQVYRuYxCj4aH4D+ndginwaJYVGmL5D29dbrEACXt9M43UivirTqkq+yPdh+8wu3ezfX7v43aeAwMWb9FFHVZ/Wcsamtf+SiKYlXhMmh0JOamWhI0rnoUYdkleR1InC+5aBDOQP1VQleZ8pcZ08gC2d6O0Edi3vzf62j2iWPmydrz2OuiYNWoS7VFfadCZzDdX61T+Ttso2BPJPf/vC4HUjml96NHxWJeg1eer3bAqVLDvn2pppRmXX8gnZ32Mkk11TdnRbTOYmOuK+3RxNuvQm37eclMg5i4zXMvpfxHtjXmd7PSaFl3F1TFrl8VzX8ILc/rfZ+W4GTfDIsFKkf2Zm0zz9Ppd54+xWsAFgkmUeMvm5x7La7fEPitdaQD3Q67sX8yq7dB/ze+yfu6cMyyrJrz5K/3jh+n7P/2UTf1Xor7AcK03owqkXythWiNx8STLXH7egQDVJPzZC0TIADxLRE0447oc4JHd+xBIVTPodR7A0WRtiql9jjf9EtkmZxMY9jYsnys8gqnZJ1obpzOdUbLW9ctnqsz1CWT2wwdwu7DrwDdMHVytNUfmi+HqYckjITqCm+g1rrMmaC6i0KLbmNhMT29YzURFoorQ6W82ira+HydRBxraupuPkCZ+cBFLFNkJj3ImBowgWps/Zu09/oHwfB8+1y6WiIr/jP73sTbgpm9XaslhaeTtlxQTDkfpnZurDsqs8yvmmc9yExFud3GfuE60gfRvXPXUhhMfMt5AhmnVsndXhrW8M49KWWeFDWcvv4OE/verZp1spqqwgrYDslaOi3ZNsJn7FAdOzv+Vw+37o3r+pGnL/Yzv/kecuddWVnm9/vNTOdN/3Vdumx6LY8JjPCf1Kl3r/cn1bLIPl+J3rh3kOUF7YCEUbAfQBWI9BfyIOyV0AbH174o5uZuqM5IhMo5olLXCI9fJlfXZmTbarHgfP6xqshmUdTOXZ3ortZNXkMLq8338CbXJKN2E7nsmCmsknIkpkLTWRnVyEbYJRIn0UnX5Fo2uzomr7XKIk4lSRJ7i2WnqT2aetJrSQLkVLYjYpse3DXn9Livpm2+8px8n/jxKo45SV8ZouA/bRoHYtG1zRlvPTNBh8Lk0T3ij9oCkkt7QVwKCCicjQjg0+RXJ9VT/IQrV3j5ZffX4xlG8yK9UhK55k30QTmbxP/kozeftTz/9DW4ZqZiWXMUXKk+YGh9m7Zws+c2RuFLkDJUFJJ8SZnq2t4lJGDvFtmlupAoJ7ZPewhljanMcKQgxG/g3qz7J7yZsfyoZyE2zyIbAndsJvdwNY4/zeZ3Meo8f2wzJGwoo7gonOBt2AKd+JSaBxJwB+fijfP3uZb3km7WSQje1gPQbLiCXviPR7aoc+wIMu27XHj0LptnothQdTnaIc11zrn8AxLmwHPYL/O+rx8S1LNPmuph2bvmFZCL5wvd6Oe7RkWmbKyVFpiD4nm/fZ2v7HMbAf6igi4g7tGsQb77yX/R01wIy1/1IEZnXpV0ltV3hNyBFJxw+Tot4Z7kMuOUeg0Vy3f3RTVtnQoPg+2iqDMhUbvJKar8W3gvJmZbvqNyX/V01+rCsjXwqodzAiB7YZqShy5Huu8Pwmb3+mOUddxZRRFVIqtrns3EAyuYEgLJ+w9O6juhnoLqWda+TRV7jmhFtndXh8yt8Xwvqef+aYgz/70j4sCGmemE+U1rS0+UIROKIR0YcBXAxgt7OpGsB/JFkpJoO1M65lex8XMQiB51KJzkCB6WP9I+6ZnoQ8SK8xJH70K8ONjOdd0ra7x21z7MxoPJHZrAVi0yqhUVqWfppMY+TyBn/vWOg157N9FrZtVRd5x/ac2y9abXlWPOQ7IMhCg/qIei2/R1XD3uyYTpyyYoKnfmun2EV3C5PsMei4QmsgheZ3HOXFgW1+G5nbL1wV+rkDQF2Nvm15fC40PhFnrZlkvG7fqCZcsH8/PvuBeZ7tOWGeDUKmbD63TRd1Vbsi5b1ObtmDG3T3kcSETvaJbaqtyibpLBadiu+f7vueNrbF68do6ZMmYxpfgfDzg1yFhfSbSGstIJvMHbvYLgquzDvvve+5ttckUqlTDI2oraEGe/dswb8cNc8zftdLbSfo0c3qysyNOlrrPT6OxW5/Qw0bNd9BAA4E8DoACCGeAzB0gpKnGNsw1CZkk4Pjl/RYnRPJbt9QxiglT5H78QflpJQ7D7Xj15ETNltC1rK6dRjdmqmbfMc6G2W1c5S1NeoTu3xrfrFJ5o7Ta5y9ddJPUGQmjLSbgA9rjGg+FrMgbas9WzRhuGUELTvB2YS8EmNayVMHdpcoE2YgN1iBO7E5bdVEz3cXc47XRLlm+wzP/22biNqX2JDTN0kvKIoZjlqG/Tn+JzXXVVndv6odlh2nTdWR/aHk7+CEpb1ac9HnX3sLRISz1vaho9Xb91r58DnHuP4Zw5tqtSuZOrMh9TKmVYqJI/2Dm+Tji3rVtum+22V/li2zOvABy9QUNthW19SXGM0lod+XL1FLi1IP+bs9abnJn86fHz3yF319NNsFhH34fUuqKytw0NyMskDt59U+wQ1iUlHhVRiYkkzrygpDlOdbytgMo2+LzKxGAAARRbPrKWOaQzrFuUzt0A8Cthr37ZLToLXDtmkhQhtBSH/OBxXzNp0DrwmTr4dtnyqHHXW1p24n50lOaP2c9MfpwkGbn+3g75mddmY4qsChM/FSL2u6xf88dfFg+frDIiFnvI9jSK6urLDq8OVnUR9Rsya3QVub7jgmIcMtBVXdYzhhaa+3TpZt0ET2uJgaiGcFyDIwgu3TtJ0Q2DpsR51LyqfJztVqMAp1wnvYQMZUsc0nKaMOuV/QmUkReYOWyPnkXt73jrbsnJDchrHozDWT8MQ1G82TeOVNugoHVfGgM5EDcgOkxMGmGR3obKvH8Ut7PNvffX8wR051ZQV2b5oS+7WD8EbF1DdI+VUJEU+0PJncHEnhLpBrPif9hv4bl4WioHnNpw6fjf2UFacwwqIb0KSrvSHQ/8sU/dYPIQROWj4BT1yzMWeOY1LYhO2D8kkqHVWZV6rYCEU3EdHnAbQR0UkAbgNwXbLVGlokoUGxLVMX2cSUD8FUtncSHi0CVcIWeFZ0tdfj8q3TcN1x83P22Sbny1fR9gODtirq4KUzY8t1sPY/roKABVLUMVvNmGlgdgXEbXPGepzD41JUhm1OHwgR6StfbWocAohuBUgIu37g/PX9mG2ICBgF932HHWz3n5Yx8VPv3TaYhNz/qBnkbZEnHx4TGttANJGu6r1nuQ6qRcCiCd4J3Con6WJV3DNaBdu2bjTtVf8lMoYC9sP9Pmd2eU2p1bcjvy45mqYOkw+sHyOba/GLS9ZggrQKJQC8p+QNDdtHmFaq7ROsD4aRdr8peZ+ubvkmoE4aW0VpmIn6wfO68I1TFnu2qZ+Sx5xcOf/kFRNwx8Wr0T+6ObDP/uk/rcavLt/fum7vC/03okb4tDY393mG+cy5ChnAJw3YBFr4JIBvAvgvAJMBfEgI8c/5XJSIDiOiR4jofSKar+zbTURPOiHAN+RznbRg6jR3Wpq0mYhinmTMpxHDV2Bl0mQ4ZtucsRjRZDeIRamtAHDist4c0xA/dOEqdRrYMOgGgWrlmlPG+K8aqu+qWuOUb6qe1zHXe6QpVKeuDBXXhFMN1W0r9Pt08Z7/2YSHlstYMtEuctp3zlya6IAQZaCa0dkSXksoBM5bZ5dnJw7USZqMbsXXNohFlLH9g5u9mvxpUlCUoL7zjotX446LV+dsz7dZqN+ZrLzS9QlE0frmuHVQJgH20IEu7FjQbQwwomIfPVW/L8jB/7bzV+DW81ZY10kHIeNrdfzSHtx+4apQdXDx85NZ4iSyrrFOlErZdjxptJpGQC/4aC0JbH1CLWunvqqTnZDxxzn+PzZv3FQlU2AaG8IIVURkbRnQVFsVSvg2rQbpdgUKjj67o/YBO5f0YLlltOChgk2ghY8JIW4VQlwkhLhQCHErEX0sz+s+DOBgAD9TrjUNwA4A05EJBf5ZIip5LzLTErEpk7ROMdjZVo8mySTPNFisnuyvlbKNVnS9z0qKb3lGIcv7/872eizsGYaPH+Kfbfzpj27Gp3fMxWED3Th+aQ9+fMFKqzpkrhVtulIoZYh6HdfXZ7EyUVdXaM6VJrWmW5TDfcrPYu1U/UTVNrdRGD6nOGf7YfIRiBKQwUSU+5rV1Zbzvm47fyW+fcbSGGpkj/x+ts4y5/zInhOzkK7Drx8ZY7Bxd81YdEK+rkwX3SRio89Kwd49W/D0RzdjuCKIeUJy6y8FIGMy4zchslUWyJi+MzmBbku9GgHS3xTOxHrNyknSCq+66krsOWRWqFW8yJM/CV3C5MH9zTntILceFsoVyphrffiA6Z70AjeetAi3nr/CKiqY31250UttX0+H4n+iywUkC98CIvT3HYRt3+wqOP2+G889S7/rqiq1zyNfaxPd9wGECHAVAyahSI22aI3PaX5t243kunSS2STQDa9eLitGNj2731rgpnwuKoR4TAjxhM+ubQC+LoR4SwjxNIAnASzM51ppx6R102lDzlnbh51LerP/N306On+mHFME6bdcpdEWTnxhqa6swE2nLsZ+Gvtcd+B2Bx+dE616fBBeUxm1DKsitNcNGnB1TO1owT2XrsXRASZdG2eET/An39JFG+w1t3EwxwkUMbqlVvt+Znd7zWNkDZsxcl6kscJbXtTnMWlUU2ymaLZtTvZxk5N0mh6DyUY+jsHNvJqjr9n2uZ2459K1GBivTwxrImyiavfeGzVRnmSlVENtlXWo29lO6G01b4t1vZT/y+/4Qwf4O/iHiRp48cYp+PYZS/HxQ2d5zO4Ig4kfKaYpctxzJfdZqIsmcruy9dPVrZxHRdf3LJ44HB2t9aH9G4PK1TFWSWfRIAfTMKy66qwCrJ+S4cAwpnk21wsV+j0kK5TVD28uKv15cZv+m0xLjT5FYZVXPttcpeQxhkAhch3KRCbSC0VEdBoRPQRgMhH9Rvp7GsBvEqpPJ4A/Sv9/1tnmV7+Tieg+IrrvhRdeSKg68ZCzhC1tOdZgPjcwzn+AFhAejYtx1SfCDCjJPB7FJA4zDR2TAgQ3lyofB5FRzXUgyp2ixKmZMQWPiGJGkVOG8n/3GaptyWjGF3J7GNyohO4K1iFSwl8TJ62IN/JOlOhpxvejeTiF0nZG6R48SZ99WGdY1dRNFIK+7ROdpKeqP5k8KWmzNKnJmLE554QIfgDL70w1w4rSH1VWEGZ3t+Hw+d3eyaphkmyLrZlYVI5cOA47l/R4wg6rDIxvN77xsdk8OPY3WCizcb9vMx9H+Jw6aOqjBlrw1IIGfT8XR0gmq2Ly//Lbr9uR1PxDjfQmU8jJv2lcNq1cmtqL7z7jJn0dbEzThxqmlaKvATgAwHecf92/ASHE0UEFE9FtRPSwz98202k+23zfihDiC0KI+UKI+SNHlpbNoyzQmAIeJIkuAAMAz1tQP7C1GifRYgpP8Wg74+0KdYNj1MhnnrIt66rW4YoDvGHC/Ry3oz4F9VpCs917rcGdqyaP1JpRBF3Lhu5hDdi7Zws2zQy34nb6qknhLxZgXhSWWV3+ubuMVciZ/JLv76DztMcZ9oV1rFc5fEG3dl9dxLLdcNDtYYQYLREVBwYNvu1ldeeFWUU6yIlIWltdEUnA6VGiwOUrS6hDR111Ja44cLrHFBgwr/RHJWzy4aR0DVklUiyC2WAZppxS6j5XKJpsMG1VUVfidLUfHA/sji801v1eASusBvSw5d33wn0cpnuSZaK4Q7inFW2PIIR4RQixVwhxpBDiGenvJZuChRDrhBAzfP6+bTjtWQDyiNgF4Dm7W0kvamOS7Z+jtDNTEruca2u2f+NkbzQW3fKxqig4bklPTnQkvzqVGpHM5/K8pskhPQ7UiZJq558dqORzIt6U1jnccE4YP7SPHDQzawNt29biNp2xRv6WYihOFTJ0ZeqctIUQsU8+3D7NT6nj+gttnWUvgI4yKWkk/PoeIJ7+p7qywnclNwnCrOQtnjgc9dWVxnwhHYaImfKVBsa340MHTMdvrliPuupKHLnQPhKjH70jGrPPfmFPNJNIW8EkiSHmIwfNjLW8qIp19xnk22ep+b9UbBVPtoy3TQgf8ZK63FZRLeuO2m8ctvgoxkTIyf/ICCv+YVFXxW37OL/VHb8VdpvyogTxKnXSlu7vOwB2EFEtEfUC6ANwT5HrlDdplK9Vm2QZo4kTUTZyi9lsL2LFImB7rTDhTr0n5nddHWrHbmkZZSxDRvXZUXE7vCTMRuSy3ehzwSYLg4W01FV7OuSj9huH2y9anXc9i43fo7aNshiEJ0mnZWQ/lV2WifoqKwiXbp6KW05fkrNv+9xOnLJyAj5ysHnCWVc9OPzYri5p86RJv6P6+Zy3rh8Hz8usokRN8CvzsUO89y/XPMykbkRTLR67eiPmdOcG/hjvKAqmduiTVsuPrL2hBpUVJOVny2zXWQDo+LCz6izXp2dEcISua7bPyAYq+bejM6asOt/SHKT+QCCeCVvYHIJxDGt+AvFZa/twyooJOEJZJT10wM7M11UwVVV41VM9wxtx5YGDPmpyHxyHfKS+g7PWZlbWgyxgNs7IBDpYoeTzUxVlK/r9v+WoPrwfOWgm/jUgCJBpOHSjZ561JoIFQUje12aRN5/3js95OqNjXXGumff7whyc477L1uG+y9aZK1RiFEUoIqKDiOhZAIsBfJ+IfggAQohHANwE4FEAPwBwhhDivWLUsZTQaVOAiCsg0kmuL0YQpaBPEJ7fEUJhhpnIWCTcVDsbW7trnbOsim0YUZm4fFHke9m5pAc3HL8Am2boI/401FTpTYOU7f2KeYcuYV4alvtt6qCLEBmEaVI4VwoGQUTWbffw+V3OOcHHnrRiAvp8IghmElpODcxxZWNKuHVWB37+T3ph+PPHDORsCwpr/PIb/olJm+qqsn2pebJs19sZBZXIJnje8+zyOwUfE9asV57MhvnMjl40PhuoZOOMDuzdswWdBgWdTBrGmKQiYTbVVmH35qk5ygFZcWBbtlz+ySsmYGB8xjdZCGDtlEHrhC0hVnKz5Qe0pZNXTMTePVty5iRqVzVvXDv27tli/EaA8OPReev6rY/VRz3UU19Tib17tuDYxT2h6hWF8YZkxep7uP3CVfhfJ0rve++Hs7vzG6Nuv2gVNs0Ygwuk0Pp+z2VEU61vmoXmhP0Ok6QoQpEQ4hYhRJcQolYIMVoIsUHad60QYqIQYrIQ4n+KUb+4ieJHAHg7t6MXDZo5qN/yyIhaE+11pd9xC1xJoOuoj1KcqpM0p1L9PloNodaDCKOlNjlqBuE3JkQ2nzOcV1FBWDV5lFFAmDuuLUd77k4Q1ImCGo3wC8dmwsZ/cac3fLx5xdOwM18MZXu1s+ZK6CbmNoKWXy4Ul5defzvw/EJgM+EhIqucJLaLBgICr7/1rqYMke3vjMmtowYj8TgVRSoiBzc1gzGhagJt3Q1KIa/KFdLS5vW33jUKcsUSoBZYmBCGeR1zuzMCjd/E87z9+9HRWpcVerLlWwbWaKgZ7F/ejWj3F/qsgJvP17d37VT7sVNWjLbnMV5H4ebTl+C7Zy4zHtPZVo9LN0/Nmgw31mbau58vcM+IxmySYb9naGM+JysnGmqq8LmjByJHH77iQP8ImqVA2sznhhQHOrkDTl01UXuMbRdwygp9GXEThzma3DEXyyxV1aLKk2vVwdh0z3Od8NIVRJ4OSRZ2t8/1DZIYCrcOfQE5N2TyEoqyEeLkOkQtz3uea3N99troZgbHLhmPs9f2ZRP/6RgYn9E6rpmiz+yeFsI83zsvWYP7A0wTdKVFChCBwQE16jd7/v72mto4Iu76FREk7Osj2GXMes5d14cPbpmqvWbU1VT5rKC8OjrU1cHPHzOA3ZumZP3tgq6rX40Nd0/Dm2pxx8WrcfnWabEEqTlt1cTAVRH51n/1h78bfaxcwtTMKk9RwH43yqFu9RoI96xdxYia+NrddtfutWipq8ahAxmzu8UTcs3Nxjlt45SV+uf155ff9Pz/U4fPtq5jrGgezfFLe2K/lPy6q6yT5sbDvHHtmL1aFJ0AACAASURBVGkRQOekFRPwdcf/+9rtM3H+/v1YKuU0bPFRnLmhtj3pG0xzNeffH563Avdeqh9vwnQRDTEElCoWLBQliKt1rIuQ6E+FaLChhZmwRFEABQ1yfvsPmacXCiYbknTGge5jNZnIqaZl7j1NGdOck+36uuPm47tnLstZNctHIDER5pXFYe6WgAIbddUZM4MjFkR35K6tqsT5+/dHX2k13M0rGhMqHcsmRcxHY+EnpnvfzXXVvrbzrh+JKSiASYtujAio2Wcr7ITx0ei0MO+0b4+Sv0lAB2myLqmsIJy7rj/Q9M/Exw/NJKWePtY76ZGfrW347yA6WutxysqJAREFLVbklP/bmFZ1tTd4JpP56L4u3jgFj19tTn+oJrENGzmu2Hzp+AUAkLOyY8J9d0FtemHvMOzdsyUrAMnnt9RVY++eLdg2x6y4k5uJrY9fUgrPsL5eUdCbp6dQm4ZMoKSz1/Z58jeZHn9QMAj3G3eFqKbaKt9z4gwXXwqUVq9SooRpUmes9l8RqqwgbJtjl81expQATIfaJ+w05FJycTVkfiSZhC0u5HtWzdea66qzWp0k+8soRfstpYe+riGEa9zoBhwiij08velW3njb3lXxqY9sxldOjCeH9IgYohZdf9wC/Pux80OZaMoCok5YHGcwU7PNrxSm9XzkIHOkLKvrhWyvQugzxYfpKt1JY1Ntbps9fH439u7ZYp0bTCYou3wUTE9Id89NNSEmpQXq3t2EuTYX/uRhszF3XFuovGA2Qpatgsbv/a6ePApPXrsJMzrtQ+y7TSiuaanOHP6C9f1WCUzV7dq8RwqmifV4p9+ZOFLyoSnAPLycIqv53erB87rw5LWbcgRpHXGnLUkrLBQlSKR8KhrtaUfroL2n2sGYOpxqyxCzpjIOVIQxd7D35t0o7Adjc7mofZ7tveR7x3H47zTVVeG4xePzrAkw2xH62iLaVucrmxGADdP1gRiilqndJ+30M02RqaygvNq3bBZ0uo8pbdiShzXWhA7n7v1Wc/c/+KH98cNzV8TQpu1LaHQm3o0xmFoEfetyvaImgB28lsD6aaNx8cYpuHTLtOAT3DoEPN37L1uH649bYDzGxr8q57oWK4OqAOd3zkNXrMdDV6wPff24WC/1DwLm+1o6aQRuOX1poFmU3C7mOSs4fsKsa+6oRofToWuPYc203Oq5bfbIheMwM4RQpdI/2t9sUw14YPsVq7mkgvD7BmodQXPRhOFZwXSB4xOZ1lWbtOD3dPwemU4ALLTZYClQuiEiyhI7e///e8QcnPuNBwFETxZ6xQHTMHlMi3TVQa7cNh0jmmqw1pB5vlS7sqBn29ZQgxdeewsjm2vz7rDV05c4tsLuSpWpLtvmjMW3H3wO1ZUVOHZJD7581zPZfVdvn2H0MXDpH92E3/71HwAyoVp//ewrkYUb27wNJu1c3CuKpvcjV2Py6GY8+MeXY712tg4AfnHxGvzDce5f5RNpLh99pekeG2sq8brPihiRExHwzr1Z34c2J6npu5qMgUnoVN2qm8LrBq10h20xAkDv8EY88Ifc9x0m6WxFBeE0RcA9YLZ+JV/1MfGbHNqEGVZDGNtgWiXcNKMD9y/+O85Z2wcgo9x4X3iVcC5hJ8Bppa2hGi/vyzWfdZ+Nn9O9q9goVB4rlynOGOwm3P1oQJj7IIgI9122Dvve8u8X/H57jsnr6v4cNLcTjz73Ki5YnzGV/sG5y3NWrZNY1LGJ7jpUyOfxldGCGgBeKSoMlgEJgrA9NF+nfyJg59JeLJ443Pm/98Ijmmpx5bYZxsh0hcR2qT9KGSpugsLdm6bEPkDM7GrF3j1bsMgib8end8zF3j1bAAwOVL1OCM9jFo3H8r7gydONJy3C13btB0Du+KLdVb5L60TxD7i279TPwXs/Q/Q2lasNCRNrqysxvKnWP8lhDDdsawJCnt+EHQszGm81qlXcgr4NphUa15fr+KU9xkSbYcbtDzk5drra7UJBq/g9o717tuAzR87VnvOZo+Z62lkYvxKZKH2u6Z3UVFXgqm0zsgLZ0Ysyq86t9eH1pYWcPBGifz5u4vKbT1/i+X7i9J2Ia2I9tq3eyh8oDCOaan18j9SjvBsW9ERrrzbUVVfi6u0zsoqZKWNaPJHxkqLcJvt5E6JNl/Kj5ZWiBJHb0JELu3HjPX8MPEduTLYTlDAfd2dbPf708hsAgLGtdXjulTcDyyhVxUmY55KNuiW9Ad+wxs7DqK6syA4kcfvCuNRVV+DNd3I193HZ9g5vqsWSSZnJUFydWNBij65NZ0zUYqpEti52Ph2zu9sAaaXtoSvWh1o1OGBWBy7/1sODZUvvZ2UUzX7Cgw8R0FqXmYDMVyY7hfzWbdqxa6704QP8Q7xWOWH25XD7Qc+kraEGnzh0lpXiIC7qqis9bX91QNj9z35gHqaMiSdATa8h34lKlPdfjPEhn/5q8pjmrELpR4/8xecIwwpzAaZ7DTWV2BfC5zFuhBCx98Wu72uSaTHCk96p+5aZ4XNIqcjzHxYA7UmHqn+IIrfDqBG0gsoNy3+fszybDFG7fKwMCmlfTjZNrtYZTPw8ZbgOrc5Duf3CVbjh+Fz7fvdK8rOL2tEHTQr/48T9QpVnu2pwoI+ZTzY8d57v+ozV0UJBb5rREUnYG93ib3LU1lBtvBfT99hcV42akJGtVk3OTLDVFaYoz3Osj+mSDptXLoTwzPMIGXPJ285foRU2/K4T5Hvllm3LiOaMYHbi0l59eQEPcHnfSJy6ciKuPWgmznayzKvRI4FB4dTtDw6b340xrZkcHKNbarFkYvDqrI1Jqo6wzWDzzI5s3pGwqMFXGiMkUowyxhQySlVckzz/9pVbeNhQ9fnUz41euNjCYiCIqN25ep7cN6t+pzZ93LGLe7BrWS9OXRkutUiU+uv8plTSLCgsjRjtFPB/ZnF8m0HvwqOYSvGzDYKFogIRRyPRNcodIcIet9ZXZ5111zvO2moG+Byn2whdU9KC1BeOySTq9EtqJ3PdcfON+3X0jGg0LuELIaTVpWTosdTwxuOMmrmLyINoxBPdPAuRBUvNhYUwrxTJPh5xfJtu2PnVU0blPQCFiRj55RPsouLJ5lruY5k0qjlH+FMfmSt0CohQkbxsaKipwt49W7DTIBT58f2zl+HOS9YAyPRVl2yaghFNtUYhYkZnxjTVz2zt7g+uw9dOWhSu8inmxpOj38tgCOjw5xQS3SXDtlFZkWQa58Leonv8nZeswffOMifpVHFTb9QG5G0y0dEaLummx++McgPLyH2an9Ihc4yeuupKXLZ1WiQBPQyjW+owvNHSv1WzvZg6YNdMMWoeM8D/vvIZ42qrKnDoQBf+Y5dZSWtKGF5KsPlcgkT5uKI03jCheWWOXjQeX77rGXQPq8/mPgHsIhEVGzcCTwXp6xdN22km1qz0Aefr2kLU92FqW+7KSb5+YoFRwDwHy9splmSe2mslCGHQISpJDZmacBjICDu/vWaTURAjIo85YJhJ7OaZHfjSL/ZaR7EsBGr+H5fBvHDpSRw4u6sVv372lYIKDgt69JOToGqo0c5s6B2RGTtsVhLjYvucTlQrAv0T12wMrcBLeiI3tq0eY9ui+a4Vi4zCzx+/dkwoviHak9duwstvvBOoJLXBNmhQEly4fjLOvPEBTBvbEnxwAPKryjeYzycPC07m6zHXK3qLiA4LRQmhChY606ZIQ2VMMy/5o5mVkwOiNLCZa3zskJnaiVS2nAjXdjV6566zS2yZQ0z9hqvNV6Nh6fB7Zldvm4GJI5si+cCEoZBdZTGEeQEBm5xAnnOUh9Lnk+z43kvXaU36wpr6mWqkTnouWD8ZDTWVOGheJ378+F8tCi+eBmXjjDE4a80k7Fo+IfjgApG2qUFlwPuJYhUwMH4Y/veClaF8l/Klq70+R/gL4wfo4jr3p5FCfkmZfku6tnJxk3/KnO42/MonmmMhqaqsCC0Qqffx1Ec2448v7fMPilMg9pswHPdeui6WsoTIWAG9/d776I4YVCbs9YYCLBQlhBxSUsQkNxdrvpHGlSKZoOodYWFe6K6UBGn1sj5FIqOZdh12bZjVFS6/hG2rcc2QrMv1Kba9sQbn7R9RuIuK8uJmxiiYN9VW4W1NeGmZYY018XybGp8DU3Jd3Z4+H9OJOLWXYRL0NtVW4aINUwDYDXrF7CoqKwgXrJ9cxBroSUsXmlQi7aj+T/kQ9524JrxdmlyBQHxC7g3HL8DOL93ru2/ZpJE4dKArr/74huMX4qt3P2NtRhfGj1gdl244YSGefuF1Y7LiqMQdzdJznNKhVVaQtcl6mpEf2S8uWYOtn/k5vrqrsObBpZzolYWihCAkJ0zE1TF3D2vAlDHN+NBWcwLCKA08iQ4ySbqHNeCzH5iHpRPNDo7ZgAwWb2HJxOE4bH4XgMzyflwmNIX2+7EqO4YyJvuskERlfk87fvn7F2MrLwjds21vDNZEu21pTEsd/vLqm9i5pCfGmsVHIZUjew6eiR89arEylXL8BMnakCt7cbCyf6RVRCu320671jeJptjWUIPPHzPga34Y9/VmGxRANVUVVuZKJiaPacZV2/SpAvzYMmssvviLvdi5tBd7X3xde5zaNlrqqjMRPEuMlDfxWBjZXIu7PxjPylMQ8pyIzecYI2EGGKNvQMgIOEHUVlXiB+euCDwuymRoVHM4R8+oCBGfo+9mi0lDmCvJztu+maMjVjvq/RZiohPUGep8imKvR0CgBZmxbfm31SCzJKsynBlpXMLHJZun4vJvPYy6mCbhhdT+7Vg4DjsW2geQSTvuO/31h9ajGO5ZtgE5ovgUFQOBZIT0DdPH5HW+m4tq7rjk8vokQVtDNUY21+JnTmTaZzRCUbGsRmwjq4YrM/iY7mGl5Q9WTPyeZ9qtjPxgoShB5ElEHE7zYRuYLlxxqfL5Ywbw8r63i10NAAXSpCZ0jTg6qiljmvH4X17Lu8ykHuP7Bmdhz/WFwJKA1cFACDhl5QS8+Prb2LmkJzDHyJ6DZ2JYYw1eeeMd53TV/zC/6rgcs2g8jnGScXqqG/BgzlnbZx3KPmzZ5YaqJIgaFKdQFCOSXBTSWsvmump876xlmDCytMywVH+w3OhzxSHJYFU2qxlTx+Qf8KBckJ+m+w42z8g/31KhYaEoIZrrqyMtIW6Z2YFLb3nYeIyN1uRru/bLK6yjTFrGST8tHpG+44wjEk3u9eJ7GJHN4EIce9v5K3wTwObLpFFNHqHINZ+Y2x1RQxpzG8skgy1cw22uq8ZHD54JAIFCkbsC8p/3ZZI5u/1EWr6zfHwZStmWPElK7bmke52o8LhmsCYfQZcZncG+o2n51nVoo8+hsKaVblqMpjr7qers7jbc/fRL2XQPOrraoucdSzMnLOvF3U+/hIPmdRb2wn7tIuXt3A8WihJi96YpuPlXz4Y+zxQNJ0z7WiIl/zpm0Xg88dfXDEebKbUB3SXuvCoyhTFF8yfMgDppVHx+OiaW943EvZeuCwwIoM29EdPz3LmkBzfcuRdjWuvQO6IRf3r5DePxxdSMm3IsJXrdEv2emeRx/foKGUmuFPjU4XPw3V8/h+kxhEouBdIitB0y0IWX33gbxy7uwb/+5Cmrcy7eOAWEYOXOOItkzKWoHBjbVo/vhsyNFQfyIkCnE+2uFL8XFooSorGmyms+F/Hz+u6Zy0I5jC+dlJsF++rt4RwuVdLSQeooZP2y0ecMx+ST+V4m5Wb9OdhESPMkxDWs8kVldMugf9DK/pG448m/xXyF5Ej7d2ZDPvfw/bOX4ee/K533ZUOpfcMHz+vE5DHNVqsdxaaQwv2wxhocl9IAKHGg+pClRXFSWUE4eYVdqgn5nN2bp8Zy/bR+v/VOOpBTVoZ7NkkiP6t549rxvbOWYVoHC0WMhqgf18yuVsxUQjmbipqSgA3sMIsIWmWDxVhh6+AfdZWiVOz+A1Eachy3tWNBN+586m84cVkvvvPgc/kXGAHb+2iqzQxs7c7qcDaQSkr1k6b7am+oxt/3vZNXXzF9bGtgPrFSJc5P9phF47F0Up5+cBqIqCQEorjZmGeAhaGGG57cjySCHjDhqKkKlw6kGJRqP8JCUQEQMJlC2Y+WxZoMt9VXO9cvyuV9aXAmlEsnjQj9XOK4D+PAYFl+0GFqPT952Gz8849/Z1e4D3FOtuVnvnpyuISvwxpr8NLruQEz4hhr2xtr8JUT98u/oBCYEh2a2DB9DK7eNh2Hze/2lJO4+VwC3/G8ce348ePPh8qBVGq4uczC3GES71K38n/b+Su1UcOGHDG2s0eu3FDwMOlpWYlxUcdQ10d0j+MnKY93Q0YpZwULgLacv38/jrru7mJXI29YKEqIccMaUiVE5IPbLeQz4ekZ3oC9L+6Lp0LI5Ea4/cJV6AgZTvmeD66NlPncxWYws31Ky/rM2l51QnXoQBcOHeiyLF1PsZulnMMqySFnZf9IXPP9xxK8Qn4QEY5Z3JOzPelh2J3cJ0Gx21aSXHfcfHzrgT9hfEzmsXEzaVRTbMF1SoG4xtfGWp4GqY+yrrrSdyWCKBPVNshXsxA8cPn+ePf9ZHtLXhSzZ0lCq9eFpggZE8qDKKFXN0w3h8Fd0Z9pdKYcCElOSvIp++bTl8ZWD5eeEY2hBZxRLXV5hcVdO3UUgPyWhl0tXNAEJu25QlxqQmpZfW8rgYbbZ0gG6+aN6myLnoeiOebJVNZfLaH3/qWdCzC7u83K9ysspdFS86OrvQFnrukLpSkvh+fCDH3kdpyWlaL2xppE+jKmvGEVSYLsWt6Ln/72BaybOhq/efaVvMtbM2U0Hr96Y6KaXj/imKMNFb+kzTM78n4HtkNKUhOqOMqV78E3MW2UMgs41rbWV+OzH5iHhb252evDon4fUe8j6cnG6imjsHrKqMjn21QvJfOlkmBBTzvu3fv3YlejJFkyMTegUElRst9JyVY8FA01ldj39nv4wCJzAunpY1vwyHOvFqhWTCFgoShBJo1qxl271zr/C56K2ggfhRaIZJKa8Ewc2YinXojfFj6p+hbqHQxVh9a0TJw3z0xXYjmbyIZpZai21ST5yon74VUngS9jx+TRzXjir6+hTVrtt0gdxAQQ1CdPH9uCB/7wsue5D2XGtNTh9397HeOGmUPTf/PUJXjtrdL5hv/1qHkY3cKrayZYKCoQpTxnSDoa1s2nLcWfX43PRvnIheNw4z1/iK28sMSl8a+OaQVGJY7aJbHyV6rfSGxCXgyBFn7+T6tRUcRZot+zmN3Vil/HsFJeirjCot9zqauuLKqSqxQ5bH4Xrvn+YxjdHM6XlMmPy7dOw8HzujBxZJn4rFl2ofU1ldnw2KXAllnJKgLPW9ePZX2lvYrLQlGKiGNOmMS80g0uMLwxGQ1Da0N1Xn4+APCTC1fhpdffiqlG6cDtl9NkN+1qag8d6MINd+4tdnVSQfzCXPQCu4cVJwiAqcbfOiN+f8JSI23RxkqVE5f14oSlvaioILz5znvFrk5k0ra6FdQ+a6sqMc/xZV7VPxL3P/N3XHHAtEJULctFGybjEz98ItYyT1k5AXVGv+QS1dQViXPW9RW7CnnDQlEKGD+8Ac+8uC+1mvKaqgp87JCZWDIxvdFFekc0ZrOw71jQjRvv+QNW9IULFR0XlWmxD1MI075uPn0JXt6XGza70mc0D3u31XIZUp1S+tj0xFzfUrt9P/wmV2lxzGZKk1vPW4FH/5zx2yCi3BD4RahTvpTyN3HG6kk4YkE3RrUUdrXujNWTYheKdm/yT/Jaum+HyRcWilLApZun4uSv3B9LWUl9zEcsMDsc2tJTgHC2s7vbipLYbNmkEbjjyb/hlJUTrI4PElKKOdjPM0Q4zJev7NoPt/zqT54VsBKeI8ROWpUjJm1yWuucFrh9R6dvdLNvJMlSfqYlXHVUVFDBBSKGKRRFCclNRJ8goseJ6DdEdAsRtUn7dhPRk0T0BBFtKEb9ksBu0jC0ZxZfP3kRvnnakmJXIzFc2+KgvBdhB/PYXFYiFnTw3E78+7Hzc7bvPy0TQn5MyAFy4sgmXLhhcklrS5PAzQOW2l7A5nXxK/XAwmLylGKT464vOtPHtiR+DXds4u+3/CjWStGtAHYLId4loo8B2A3gYiKaBmAHgOkAxgK4jYj6hRAlYzx83bHzfe36TcEKyuUDXDShtB3wgkj7+4tav08dMSf7u646o0chAgbGt+PWR/8am2P/UJkoRL0N9/7T2o662/WrvGesnoS7fv8i5na3aY8pZ4ZK204jKf1cjLgKkKq0ORelnIev3IDqyuSfWSlHAmXyoygrRUKIHwkh3nX++0sAXc7vbQC+LoR4SwjxNIAnASwsRh2jsm7aaEwek7vUb5roRP0Abzl9Ca7ZPiPkWUzSxN1lx90x57NC8y9HzcPZa/swraMl9vvMJ5Fqmsj3fSUd7TEq9YZIaQt7h+G312xCW8PQyEcWFycs6wEAdLQOjbadJoZC8IpSSdCdFppqq0InbGeYMKTBp+gEAN9wfnciIyS5POtsy4GITgZwMgCMGxePv0uxiDpHnTuuHXMV3480aSQrKwjNdWloYkxcjG2rx/n79ydSNhHhjNUTMbOzNZHyEyOmeU3aJ3mt9fwth+WIBeNi88dk/En3V+NPdlW4uNXIkqZ5Q5pgmbX8SGyUI6LbAIzx2XWpEOLbzjGXAngXwFfd03yO922WQogvAPgCAMyfPz/1TbdQFdw4w++RJ8eYljr85dU3ffc9dtXGgtalVGisyXx2fpHc/IhrvHLzHrkmcGmgqa4Kr731bvb/F22YUsTahCOpeURaB+KjF43HFd99tNjVYJiSp6JMTOZLFRYSy5fEhCIhxDrTfiI6DsBWAGvFYDr0ZwF0S4d1AXgumRqmB1czfvSi/DWKowqc1O7W81fgDU2+iJqq9Ey+08SnjpiNm+79I2Z3FXZFZPPMDvzu+X9g1/Legl7XxNdPXoTbHnseLXXJZEpvqq3CoQNdwQdGQDefGao+RbZCPMMwZvhLSjfuqn1aTZmZ5CiKPQQRbQRwMYCVQoh90q7vAPgaEX0KmUALfQDuKUIVC8qolrrYQkgXWsPRXFeN5oQmtKVGR2tGIG0KMBkc1VyHM9cEJzmLe3JcWUGxmr61N2b8R4Y3RvcjGT+8EScuS05Ie/jK0glg+bmjB3D9Hb/HFB+fxDTh5gNjmGJSytp8jryZbtKuoGKSo1hG4v8CoBbArU7n8EshxKlCiEeI6CYAjyJjVndGKUWeM8Ef19Dn0i1TMTC+HYtjjrKX1vHz0HldqCTCtjlji12VohD0WoaFFBZ7RzTimu0zo1coYYgIX9w5HzPGlpjPF8OkjLQsutZUVeDtd98vdjUYJjUURSgSQkwy7LsWwLUFrE5B4GXYoU9ddSW2z/WNC5IXaRWoKyoIhyRkmlZodi3rxU+eeD7Sueq3XetEaUsyAW6xWDNldLGrwDAeUto9GknNSlEpPrwCktaxl0kODidUJL531jL87+PRJmEmUtPZMnmTtghFQ5nLtk7DZVunhTpH96011Vbhv89ezmZmDJMgPNLFB08bGCYDe8IXiC0zOwAAI5trAQAzOltx9tpgvxKmfGmqzegs3LbDpAthUCNOG9uC+hrOp8EwScPz+ei48xHGH7bwKT94pahAtDVkghF0tyebxM80UWNKi8baKjxw+f5oqedAFipzx7VhQc+wYleDYRimZLnp1MX45VMvckJUBeKQ6WULC0UMk2La84jsNpS55fSlxa4Cm6oyDFPSdLbVDxm/0Djhnr18YfO5IQZP1BiGYZihzlAY6w6cXZ6ROxkmrfBKUYHgZViGGZrwt80wTFgevWoDm60xTMpgoajADAXtFsMwDMMw0Wmo4elXWuHkreULm88NMVjkYpjCwnoOhmGYoQP36eULC0UMwzB5wNpEhmGYoQeH5C4/WCgaYvAnzDCFgbWJDMMwQw9im5uyhYWiIcbY1rpiV4FhGIZhEqXCmbeesLS3uBVhGGbIwJ5+QwwO5MAwheEzR87FZ3/yFCfXZZgiQER4+qObi10NZgiyZsooPPSnVzCyubbYVWEKDAtFBaJ/TDMA4MzVkxIp/7ItU/G5259KpGyGYXJZ3jcSy/tGFrsaDFO2sBKQSYJz1vbh6EXjWSgqQ1goKhAtddXYu2eL1bF3XLwa9dXh8hfsWj4Bu5ZPiFI1hmEYhmEYBkBFBbFAVKawUJRCutobil0FhmEYhmEYhikbONACwzAMwzAMwzBlDa8UMVn+zxGzMbqFo9cxDMMwDMMw5QULRUyWg+Z2FbsKDMMwDMMwDFNw2HyOYRiGYRiGYZiyhoUihmEYhmEYhmHKGhaKGIZhGIZhGIYpa1goYhiGYRiGYRimrGGhiGEYhmEYhmGYsoaFIoZhGIZhGIZhyhoWihiGYRiGYRiGKWtYKGIYhmEYhmEYpqwhIUSx65A3RPQCgGeKXQ+JEQD+VuxKMIwP3DaZNMPtk0kr3DaZNMPtMxzjhRAj1Y1DQihKG0R0nxBifrHrwTAq3DaZNMPtk0kr3DaZNMPtMx7YfI5hGIZhGIZhmLKGhSKGYRiGYRiGYcoaFoqS4QvFrgDDaOC2yaQZbp9MWuG2yaQZbp8xwD5FDMMwDMMwDMOUNbxSxDAMwzAMwzBMWcNCEcMwDMMwDMMwZQ0LRRYQ0ReJ6HkieljaNoeIfklEDxLRfUS0UNq3m4ieJKIniGiDtH2AiB5y9v0zEVGh74UZWoRpm0TUQ0RvONsfJKJ/k87htsnEjqZ9ziaiu5z29l0iapH2cd/JFIQwbZP7TqbQEFE3Ef2EiB4jokeI6Bxn+zAiupWIfuf82y6dw/1nvggh+C/gD8AKAPMAPCxt+xGATc7vzQBud35PA/BrALUAegE8BaDS2XcPgMUACMD/uOfzH/9F/QvZNnvk45RyuG3yX+x/mvZ5L4CVzu8TVl7/ngAABQxJREFUAFzt/Oa+k/8K9heybXLfyX8F/QPQAWCe87sZwG+dPvLjAC5xtl8C4GPOb+4/Y/jjlSILhBA/A/CSuhmAq+FsBfCc83sbgK8LId4SQjwN4EkAC4moA0CLEOIukWml/w/A9uRrzwxlQrZNX7htMkmhaZ+TAfzM+X0rgEOc39x3MgUjZNv0hdsmkxRCiD8LIX7l/H4NwGMAOpHpJ7/sHPZlDLY37j9jgIWi6JwL4BNE9EcAnwSw29neCeCP0nHPOts6nd/qdoaJG13bBIBeInqAiH5KRMudbdw2mULyMIADnd+HAeh2fnPfyRQbXdsEuO9kigQR9QCYC+BuAKOFEH8GMoITgFHOYdx/xgALRdE5DcB5QohuAOcBuN7Z7merKQzbGSZudG3zzwDGCSHmAjgfwNccm3lum0whOQHAGUR0PzJmIW8727nvZIqNrm1y38kUBSJqAvBfAM4VQrxqOtRnG/efIWGhKDrHAbjZ+f2fANxAC8/Cq13qQsZ86Vnnt7qdYeLGt206y+ovOr/vR8bmuB/cNpkCIoR4XAixXggxAOBGZNohwH0nU2R0bZP7TqYYEFE1MgLRV4UQ7pj+V8ckzjXffN7Zzv1nDLBQFJ3nAKx0fq8B8Dvn93cA7CCiWiLqBdAH4B5nmfM1IlrkRP44FsC3C11ppizwbZtENJKIKp3fE5Bpm7/ntskUEiIa5fxbAeAyAG4kL+47maKia5vcdzKFxmlP1wN4TAjxKWnXd5BRfML599vSdu4/86Sq2BUoBYjoRgCrAIwgomcBfBjASQA+TURVAN4EcDIACCEeIaKbADwK4F0AZwgh3nOKOg3ADQDqkYkA8j8FvA1mCBKmbSITbekqInoXwHsAThVCuI7G3DaZ2NG0zyYiOsM55GYAXwK472QKS5i2Ce47mcKzFMAxAB4iogedbR8EsAfATUR0IoA/IOP7xv1nTFAmGAXDMAzDMAzDMEx5wuZzDMMwDMMwDMOUNSwUMQzDMAzDMAxT1rBQxDAMwzAMwzBMWcNCEcMwDMMwDMMwZQ0LRQzDMAzDMAzDlDUsFDEMwzAMwzAMU9awUMQwDMOUNW5iToZhGKZ8YaGIYRiGKRmI6GoiOkf6/7VEdDYRXURE9xLRb4joSmn/t4jofiJ6hIhOlrb/g4iuIqK7ASwu8G0wDMMwKYOFIoZhGKaUuB7AcQBARBUAdgD4K4A+AAsBzAEwQEQrnONPEEIMAJgP4GwiGu5sbwTwsBBiPyHEHYW8AYZhGCZ9VBW7AgzDMAxjixBiLxG9SERzAYwG8ACABQDWO78BoAkZIelnyAhCBznbu53tLwJ4D8B/FbLuDMMwTHphoYhhGIYpNa4DsBPAGABfBLAWwEeFEJ+XDyKiVQDWAVgshNhHRLcDqHN2vymEeK9QFWYYhmHSDZvPMQzDMKXGLQA2IrNC9EPn7wQiagIAIuokolEAWgH83RGIpgBYVKwKMwzDMOmGV4oYhmGYkkII8TYR/QTAy85qz4+IaCqAu4gIAP4B4GgAPwBwKhH9BsATAH5ZrDozDMMw6YaEEMWuA8MwDMNY4wRY+BWAw4QQvyt2fRiGYZjSh83nGIZhmJKBiKYBeBLAj1kgYhiGYeKCV4oYhmEYhmEYhilreKWIYRiGYRiGYZiyhoUihmEYhmEYhmHKGhaKGIZhGIZhGIYpa1goYhiGYRiGYRimrGGhiGEYhmEYhmGYsub/A0M3sCaHxNJVAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -950,18 +950,18 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[0.81040687, 0.69606128, 0.42944323],\n", - " [0.99033137, 0.60317056, 0.82435046],\n", - " [0.70689463, 0.05604562, 0.53930095]])" + "array([[0.34743109, 0.34666094, 0.67796236],\n", + " [0.37775535, 0.7452935 , 0.44639271],\n", + " [0.7097024 , 0.54721637, 0.96400871]])" ] }, - "execution_count": 45, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -974,7 +974,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 35, "metadata": {}, "outputs": [], "source": [ @@ -983,16 +983,16 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 36, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "8.104068706347091755e-01 6.960612833436454761e-01 4.294432296218351208e-01\r\n", - "9.903313699879116028e-01 6.031705643128616456e-01 8.243504620080480683e-01\r\n", - "7.068946259685966460e-01 5.604562284444569720e-02 5.393009542524886957e-01\r\n" + "3.474310879390657414e-01 3.466609365910759966e-01 6.779623624489031775e-01\r\n", + "3.777553531256817587e-01 7.452935047749419395e-01 4.463927097637667707e-01\r\n", + "7.097023968559375007e-01 5.472163711854115542e-01 9.640087120207403437e-01\r\n" ] } ], @@ -1002,16 +1002,16 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "0.81041 0.69606 0.42944\r\n", - "0.99033 0.60317 0.82435\r\n", - "0.70689 0.05605 0.53930\r\n" + "0.34743 0.34666 0.67796\r\n", + "0.37776 0.74529 0.44639\r\n", + "0.70970 0.54722 0.96401\r\n" ] } ], @@ -1037,14 +1037,14 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 38, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "random-matrix.npy: data\r\n" + "random-matrix.npy: NumPy array, version 1.0, header length 118\r\n" ] } ], @@ -1056,18 +1056,18 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[0.81040687, 0.69606128, 0.42944323],\n", - " [0.99033137, 0.60317056, 0.82435046],\n", - " [0.70689463, 0.05604562, 0.53930095]])" + "array([[0.34743109, 0.34666094, 0.67796236],\n", + " [0.37775535, 0.7452935 , 0.44639271],\n", + " [0.7097024 , 0.54721637, 0.96400871]])" ] }, - "execution_count": 50, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -1085,7 +1085,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 40, "metadata": {}, "outputs": [ { @@ -1106,7 +1106,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 41, "metadata": {}, "outputs": [ { @@ -1115,7 +1115,7 @@ "48" ] }, - "execution_count": 53, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -1126,7 +1126,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 42, "metadata": {}, "outputs": [ { @@ -1135,7 +1135,7 @@ "2" ] }, - "execution_count": 54, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } @@ -1167,7 +1167,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 43, "metadata": {}, "outputs": [ { @@ -1176,7 +1176,7 @@ "1" ] }, - "execution_count": 55, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -1190,7 +1190,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 44, "metadata": {}, "outputs": [ { @@ -1219,7 +1219,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 45, "metadata": {}, "outputs": [ { @@ -1230,7 +1230,7 @@ " [5, 6]])" ] }, - "execution_count": 57, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } @@ -1241,7 +1241,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 46, "metadata": {}, "outputs": [ { @@ -1250,7 +1250,7 @@ "array([3, 4])" ] }, - "execution_count": 58, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -1268,7 +1268,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 47, "metadata": {}, "outputs": [ { @@ -1277,7 +1277,7 @@ "array([3, 4])" ] }, - "execution_count": 59, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } @@ -1288,7 +1288,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 48, "metadata": {}, "outputs": [ { @@ -1297,7 +1297,7 @@ "array([2, 4, 6])" ] }, - "execution_count": 60, + "execution_count": 48, "metadata": {}, "output_type": "execute_result" } @@ -1315,7 +1315,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 49, "metadata": {}, "outputs": [], "source": [ @@ -1346,7 +1346,7 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 51, "metadata": {}, "outputs": [], "source": [ @@ -1357,7 +1357,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 52, "metadata": {}, "outputs": [ { @@ -1368,7 +1368,7 @@ " [ 5, -1]])" ] }, - "execution_count": 63, + "execution_count": 52, "metadata": {}, "output_type": "execute_result" } @@ -1393,7 +1393,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 53, "metadata": {}, "outputs": [ { @@ -1402,7 +1402,7 @@ "array([1, 2, 3, 4, 5])" ] }, - "execution_count": 64, + "execution_count": 53, "metadata": {}, "output_type": "execute_result" } @@ -1414,7 +1414,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 54, "metadata": {}, "outputs": [ { @@ -1423,7 +1423,7 @@ "array([2, 3])" ] }, - "execution_count": 65, + "execution_count": 54, "metadata": {}, "output_type": "execute_result" } @@ -1441,7 +1441,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 55, "metadata": {}, "outputs": [ { @@ -1450,7 +1450,7 @@ "array([ 1, -2, -3, 4, 5])" ] }, - "execution_count": 66, + "execution_count": 55, "metadata": {}, "output_type": "execute_result" } @@ -1471,7 +1471,7 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 56, "metadata": {}, "outputs": [ { @@ -1480,7 +1480,7 @@ "array([ 1, -2, -3, 4, 5])" ] }, - "execution_count": 67, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" } @@ -1491,7 +1491,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 57, "metadata": {}, "outputs": [ { @@ -1500,7 +1500,7 @@ "array([ 1, -2, -3, 4, 5])" ] }, - "execution_count": 68, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" } @@ -1511,7 +1511,7 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 58, "metadata": {}, "outputs": [ { @@ -1520,7 +1520,7 @@ "array([ 1, -3, 5])" ] }, - "execution_count": 69, + "execution_count": 58, "metadata": {}, "output_type": "execute_result" } @@ -1531,7 +1531,7 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 59, "metadata": {}, "outputs": [ { @@ -1540,7 +1540,7 @@ "array([ 1, -2, -3])" ] }, - "execution_count": 71, + "execution_count": 59, "metadata": {}, "output_type": "execute_result" } @@ -1551,7 +1551,7 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 60, "metadata": {}, "outputs": [ { @@ -1560,7 +1560,7 @@ "array([4, 5])" ] }, - "execution_count": 72, + "execution_count": 60, "metadata": {}, "output_type": "execute_result" } @@ -1578,7 +1578,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 61, "metadata": {}, "outputs": [], "source": [ @@ -1587,7 +1587,7 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 62, "metadata": {}, "outputs": [ { @@ -1596,7 +1596,7 @@ "5" ] }, - "execution_count": 74, + "execution_count": 62, "metadata": {}, "output_type": "execute_result" } @@ -1607,7 +1607,7 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 63, "metadata": {}, "outputs": [ { @@ -1616,7 +1616,7 @@ "array([3, 4, 5])" ] }, - "execution_count": 75, + "execution_count": 63, "metadata": {}, "output_type": "execute_result" } @@ -1634,7 +1634,7 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 64, "metadata": {}, "outputs": [ { @@ -1647,7 +1647,7 @@ " [40, 41, 42, 43, 44]])" ] }, - "execution_count": 76, + "execution_count": 64, "metadata": {}, "output_type": "execute_result" } @@ -1660,7 +1660,7 @@ }, { "cell_type": "code", - "execution_count": 77, + "execution_count": 65, "metadata": {}, "outputs": [ { @@ -1671,7 +1671,7 @@ " [31, 32, 33]])" ] }, - "execution_count": 77, + "execution_count": 65, "metadata": {}, "output_type": "execute_result" } @@ -1683,7 +1683,7 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 66, "metadata": {}, "outputs": [ { @@ -1694,7 +1694,7 @@ " [40, 42, 44]])" ] }, - "execution_count": 78, + "execution_count": 66, "metadata": {}, "output_type": "execute_result" } @@ -1720,7 +1720,7 @@ }, { "cell_type": "code", - "execution_count": 80, + "execution_count": 67, "metadata": {}, "outputs": [ { @@ -1748,7 +1748,7 @@ }, { "cell_type": "code", - "execution_count": 81, + "execution_count": 68, "metadata": {}, "outputs": [ { @@ -1757,7 +1757,7 @@ "array([11, 31, 24])" ] }, - "execution_count": 81, + "execution_count": 68, "metadata": {}, "output_type": "execute_result" } @@ -1776,7 +1776,7 @@ }, { "cell_type": "code", - "execution_count": 82, + "execution_count": 69, "metadata": {}, "outputs": [ { @@ -1785,7 +1785,7 @@ "array([0, 1, 2, 3, 4])" ] }, - "execution_count": 82, + "execution_count": 69, "metadata": {}, "output_type": "execute_result" } @@ -1797,7 +1797,7 @@ }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 70, "metadata": {}, "outputs": [ { @@ -1806,7 +1806,7 @@ "array([0, 2])" ] }, - "execution_count": 85, + "execution_count": 70, "metadata": {}, "output_type": "execute_result" } @@ -1818,7 +1818,7 @@ }, { "cell_type": "code", - "execution_count": 86, + "execution_count": 71, "metadata": {}, "outputs": [ { @@ -1827,7 +1827,7 @@ "array([0, 2])" ] }, - "execution_count": 86, + "execution_count": 71, "metadata": {}, "output_type": "execute_result" } @@ -1847,7 +1847,7 @@ }, { "cell_type": "code", - "execution_count": 87, + "execution_count": 72, "metadata": {}, "outputs": [ { @@ -1857,7 +1857,7 @@ " 6.5, 7. , 7.5, 8. , 8.5, 9. , 9.5])" ] }, - "execution_count": 87, + "execution_count": 72, "metadata": {}, "output_type": "execute_result" } @@ -1869,7 +1869,7 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 73, "metadata": {}, "outputs": [ { @@ -1880,7 +1880,7 @@ " False, False])" ] }, - "execution_count": 88, + "execution_count": 73, "metadata": {}, "output_type": "execute_result" } @@ -1893,7 +1893,7 @@ }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 74, "metadata": {}, "outputs": [ { @@ -1902,7 +1902,7 @@ "array([5.5, 6. , 6.5, 7. ])" ] }, - "execution_count": 90, + "execution_count": 74, "metadata": {}, "output_type": "execute_result" } @@ -1913,7 +1913,7 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 75, "metadata": {}, "outputs": [ { @@ -1922,7 +1922,7 @@ "array([3.5, 4. , 4.5, 5. , 5.5])" ] }, - "execution_count": 91, + "execution_count": 75, "metadata": {}, "output_type": "execute_result" } @@ -1954,7 +1954,7 @@ }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 76, "metadata": {}, "outputs": [ { @@ -1963,7 +1963,7 @@ "(array([11, 12, 13, 14]),)" ] }, - "execution_count": 93, + "execution_count": 76, "metadata": {}, "output_type": "execute_result" } @@ -1979,7 +1979,7 @@ }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 77, "metadata": {}, "outputs": [ { @@ -1988,7 +1988,7 @@ "array([5.5, 6. , 6.5, 7. ])" ] }, - "execution_count": 94, + "execution_count": 77, "metadata": {}, "output_type": "execute_result" } @@ -2013,7 +2013,7 @@ }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 78, "metadata": {}, "outputs": [ { @@ -2022,7 +2022,7 @@ "array([ 0, 11, 22, 33, 44])" ] }, - "execution_count": 95, + "execution_count": 78, "metadata": {}, "output_type": "execute_result" } @@ -2033,7 +2033,7 @@ }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 79, "metadata": {}, "outputs": [ { @@ -2042,7 +2042,7 @@ "array([10, 21, 32, 43])" ] }, - "execution_count": 96, + "execution_count": 79, "metadata": {}, "output_type": "execute_result" } @@ -2081,7 +2081,7 @@ }, { "cell_type": "code", - "execution_count": 97, + "execution_count": 80, "metadata": {}, "outputs": [], "source": [ @@ -2092,7 +2092,7 @@ }, { "cell_type": "code", - "execution_count": 98, + "execution_count": 81, "metadata": {}, "outputs": [ { @@ -2101,7 +2101,7 @@ "array([0, 2, 4, 6, 8])" ] }, - "execution_count": 98, + "execution_count": 81, "metadata": {}, "output_type": "execute_result" } @@ -2112,7 +2112,7 @@ }, { "cell_type": "code", - "execution_count": 99, + "execution_count": 82, "metadata": {}, "outputs": [ { @@ -2121,7 +2121,7 @@ "array([2, 3, 4, 5, 6])" ] }, - "execution_count": 99, + "execution_count": 82, "metadata": {}, "output_type": "execute_result" } @@ -2132,7 +2132,7 @@ }, { "cell_type": "code", - "execution_count": 100, + "execution_count": 83, "metadata": {}, "outputs": [ { @@ -2176,17 +2176,17 @@ }, { "cell_type": "code", - "execution_count": 101, + "execution_count": 84, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[0.04434218, 0.59817098, 0.78569806],\n", - " [0.03270677, 0.93918254, 0.01270568]])" + "array([[0.12684531, 0.88008175, 0.00646408],\n", + " [0.56140088, 0.06651575, 0.79145154]])" ] }, - "execution_count": 101, + "execution_count": 84, "metadata": {}, "output_type": "execute_result" } @@ -2199,7 +2199,7 @@ }, { "cell_type": "code", - "execution_count": 102, + "execution_count": 85, "metadata": {}, "outputs": [ { @@ -2208,7 +2208,7 @@ "array([1., 4.])" ] }, - "execution_count": 102, + "execution_count": 85, "metadata": {}, "output_type": "execute_result" } @@ -2227,7 +2227,7 @@ }, { "cell_type": "code", - "execution_count": 103, + "execution_count": 86, "metadata": {}, "outputs": [ { @@ -2236,7 +2236,7 @@ "((2, 3), (2,))" ] }, - "execution_count": 103, + "execution_count": 86, "metadata": {}, "output_type": "execute_result" } @@ -2247,18 +2247,39 @@ }, { "cell_type": "code", - "execution_count": 104, + "execution_count": 87, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[0.21057582, 0.36170027],\n", - " [0.77341514, 1.93822861],\n", - " [0.88639611, 0.22543893]])" + "array([[0.35615349, 0.93812672, 0.08039952],\n", + " [0.74926689, 0.25790647, 0.88963562]])" ] }, - "execution_count": 104, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.35615349, 1.49853379],\n", + " [0.93812672, 0.51581293],\n", + " [0.08039952, 1.77927125]])" + ] + }, + "execution_count": 88, "metadata": {}, "output_type": "execute_result" } @@ -2269,7 +2290,7 @@ }, { "cell_type": "code", - "execution_count": 105, + "execution_count": 89, "metadata": {}, "outputs": [ { @@ -2277,9 +2298,9 @@ "evalue": "operands could not be broadcast together with shapes (2,3) (2,) ", "output_type": "error", "traceback": [ - "\u001b[0;31m------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mA\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mv1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mA\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mv1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mValueError\u001b[0m: operands could not be broadcast together with shapes (2,3) (2,) " ] } @@ -2304,20 +2325,20 @@ }, { "cell_type": "code", - "execution_count": 106, + "execution_count": 90, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[1.03315792, 0.6905855 , 0.84353203, 1.45096566, 0.87872966],\n", - " [0.38571022, 0.35776393, 0.43959241, 0.58357586, 0.47922741],\n", - " [0.92430843, 0.58422879, 0.78342705, 1.42096537, 0.66931662],\n", - " [0.53165197, 0.29194347, 0.4070023 , 0.71839424, 0.36541866],\n", - " [1.07740213, 0.81283748, 0.74676416, 1.1225275 , 1.16903802]])" + "array([[2.59833251, 1.8189686 , 1.32946437, 2.15441681, 1.55219543],\n", + " [1.4561364 , 1.26875236, 0.97855704, 1.35013248, 1.05524471],\n", + " [2.38061437, 1.70445667, 1.16297305, 2.27888345, 1.66499116],\n", + " [1.08602725, 0.76015292, 0.46415646, 1.38753125, 1.00011024],\n", + " [1.82122991, 1.34175794, 0.92375387, 1.74770416, 1.27559765]])" ] }, - "execution_count": 106, + "execution_count": 90, "metadata": {}, "output_type": "execute_result" } @@ -2331,20 +2352,20 @@ }, { "cell_type": "code", - "execution_count": 109, + "execution_count": 91, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[1.44646503],\n", - " [0.6220085 ],\n", - " [1.17066732],\n", - " [0.68703402],\n", - " [1.71817279]])" + "array([[2.0139906 ],\n", + " [1.41657535],\n", + " [2.09784627],\n", + " [1.2752073 ],\n", + " [1.6253844 ]])" ] }, - "execution_count": 109, + "execution_count": 91, "metadata": {}, "output_type": "execute_result" } @@ -2355,16 +2376,16 @@ }, { "cell_type": "code", - "execution_count": 110, + "execution_count": 92, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[2.28303296]])" + "array([[2.08466462]])" ] }, - "execution_count": 110, + "execution_count": 92, "metadata": {}, "output_type": "execute_result" } @@ -2382,7 +2403,7 @@ }, { "cell_type": "code", - "execution_count": 111, + "execution_count": 93, "metadata": {}, "outputs": [], "source": [ @@ -2392,16 +2413,16 @@ }, { "cell_type": "code", - "execution_count": 113, + "execution_count": 94, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "matrix([[0.73710128, 0.81515879, 0.7439564 , 0.16244929, 0.70382519]])" + "matrix([[0.45282687, 0.64874757, 0.70028245, 0.91412865, 0.36429705]])" ] }, - "execution_count": 113, + "execution_count": 94, "metadata": {}, "output_type": "execute_result" } @@ -2412,20 +2433,20 @@ }, { "cell_type": "code", - "execution_count": 114, + "execution_count": 95, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "matrix([[1.03315792, 0.6905855 , 0.84353203, 1.45096566, 0.87872966],\n", - " [0.38571022, 0.35776393, 0.43959241, 0.58357586, 0.47922741],\n", - " [0.92430843, 0.58422879, 0.78342705, 1.42096537, 0.66931662],\n", - " [0.53165197, 0.29194347, 0.4070023 , 0.71839424, 0.36541866],\n", - " [1.07740213, 0.81283748, 0.74676416, 1.1225275 , 1.16903802]])" + "matrix([[2.59833251, 1.8189686 , 1.32946437, 2.15441681, 1.55219543],\n", + " [1.4561364 , 1.26875236, 0.97855704, 1.35013248, 1.05524471],\n", + " [2.38061437, 1.70445667, 1.16297305, 2.27888345, 1.66499116],\n", + " [1.08602725, 0.76015292, 0.46415646, 1.38753125, 1.00011024],\n", + " [1.82122991, 1.34175794, 0.92375387, 1.74770416, 1.27559765]])" ] }, - "execution_count": 114, + "execution_count": 95, "metadata": {}, "output_type": "execute_result" } @@ -2436,20 +2457,20 @@ }, { "cell_type": "code", - "execution_count": 115, + "execution_count": 96, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "matrix([[1.44646503],\n", - " [0.6220085 ],\n", - " [1.17066732],\n", - " [0.68703402],\n", - " [1.71817279]])" + "matrix([[2.0139906 ],\n", + " [1.41657535],\n", + " [2.09784627],\n", + " [1.2752073 ],\n", + " [1.6253844 ]])" ] }, - "execution_count": 115, + "execution_count": 96, "metadata": {}, "output_type": "execute_result" } @@ -2460,16 +2481,16 @@ }, { "cell_type": "code", - "execution_count": 116, + "execution_count": 97, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "matrix([[2.28303296]])" + "matrix([[2.08466462]])" ] }, - "execution_count": 116, + "execution_count": 97, "metadata": {}, "output_type": "execute_result" } @@ -2488,7 +2509,7 @@ }, { "cell_type": "code", - "execution_count": 117, + "execution_count": 98, "metadata": {}, "outputs": [], "source": [ @@ -2497,7 +2518,7 @@ }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 99, "metadata": {}, "outputs": [ { @@ -2506,7 +2527,7 @@ "((5, 5), (6, 1))" ] }, - "execution_count": 118, + "execution_count": 99, "metadata": {}, "output_type": "execute_result" } @@ -2517,7 +2538,7 @@ }, { "cell_type": "code", - "execution_count": 119, + "execution_count": 100, "metadata": {}, "outputs": [ { @@ -2525,10 +2546,10 @@ "evalue": "shapes (5,5) and (6,1) not aligned: 5 (dim 1) != 6 (dim 0)", "output_type": "error", "traceback": [ - "\u001b[0;31m------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mM\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mv\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/anaconda3/envs/dl/lib/python3.7/site-packages/numpy/matrixlib/defmatrix.py\u001b[0m in \u001b[0;36m__mul__\u001b[0;34m(self, other)\u001b[0m\n\u001b[1;32m 216\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mN\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtuple\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 217\u001b[0m \u001b[0;31m# This promotes 1-D vectors to row vectors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 218\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mN\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0masmatrix\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 219\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misscalar\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'__rmul__'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 220\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mN\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mM\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mv\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/anaconda3/lib/python3.8/site-packages/numpy/matrixlib/defmatrix.py\u001b[0m in \u001b[0;36m__mul__\u001b[0;34m(self, other)\u001b[0m\n\u001b[1;32m 218\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mN\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtuple\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 219\u001b[0m \u001b[0;31m# This promotes 1-D vectors to row vectors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 220\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mN\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0masmatrix\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 221\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misscalar\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'__rmul__'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 222\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mN\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m<__array_function__ internals>\u001b[0m in \u001b[0;36mdot\u001b[0;34m(*args, **kwargs)\u001b[0m\n", "\u001b[0;31mValueError\u001b[0m: shapes (5,5) and (6,1) not aligned: 5 (dim 1) != 6 (dim 0)" ] @@ -2554,7 +2575,7 @@ }, { "cell_type": "code", - "execution_count": 120, + "execution_count": 101, "metadata": {}, "outputs": [ { @@ -2564,7 +2585,7 @@ " [ 1.5, -0.5]])" ] }, - "execution_count": 120, + "execution_count": 101, "metadata": {}, "output_type": "execute_result" } @@ -2583,7 +2604,7 @@ }, { "cell_type": "code", - "execution_count": 121, + "execution_count": 102, "metadata": {}, "outputs": [ { @@ -2592,7 +2613,7 @@ "-2.0000000000000004" ] }, - "execution_count": 121, + "execution_count": 102, "metadata": {}, "output_type": "execute_result" } @@ -2613,7 +2634,7 @@ }, { "cell_type": "code", - "execution_count": 122, + "execution_count": 103, "metadata": {}, "outputs": [ { @@ -2622,7 +2643,7 @@ "(77431, 7)" ] }, - "execution_count": 122, + "execution_count": 103, "metadata": {}, "output_type": "execute_result" } @@ -2644,7 +2665,7 @@ }, { "cell_type": "code", - "execution_count": 123, + "execution_count": 104, "metadata": {}, "outputs": [ { @@ -2660,7 +2681,7 @@ "6.197109684751585" ] }, - "execution_count": 123, + "execution_count": 104, "metadata": {}, "output_type": "execute_result" } @@ -2673,16 +2694,16 @@ }, { "cell_type": "code", - "execution_count": 126, + "execution_count": 105, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.5275611748380306" + "0.4931528475182218" ] }, - "execution_count": 126, + "execution_count": 105, "metadata": {}, "output_type": "execute_result" } @@ -2708,7 +2729,7 @@ }, { "cell_type": "code", - "execution_count": 127, + "execution_count": 106, "metadata": {}, "outputs": [ { @@ -2717,7 +2738,7 @@ "(8.282271621340573, 68.59602320966341)" ] }, - "execution_count": 127, + "execution_count": 106, "metadata": {}, "output_type": "execute_result" } @@ -2735,7 +2756,7 @@ }, { "cell_type": "code", - "execution_count": 128, + "execution_count": 107, "metadata": {}, "outputs": [ { @@ -2744,7 +2765,7 @@ "-25.8" ] }, - "execution_count": 128, + "execution_count": 107, "metadata": {}, "output_type": "execute_result" } @@ -2756,7 +2777,7 @@ }, { "cell_type": "code", - "execution_count": 129, + "execution_count": 108, "metadata": {}, "outputs": [ { @@ -2765,7 +2786,7 @@ "28.3" ] }, - "execution_count": 129, + "execution_count": 108, "metadata": {}, "output_type": "execute_result" } @@ -2784,7 +2805,7 @@ }, { "cell_type": "code", - "execution_count": 130, + "execution_count": 109, "metadata": {}, "outputs": [ { @@ -2793,7 +2814,7 @@ "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" ] }, - "execution_count": 130, + "execution_count": 109, "metadata": {}, "output_type": "execute_result" } @@ -2805,7 +2826,7 @@ }, { "cell_type": "code", - "execution_count": 131, + "execution_count": 110, "metadata": {}, "outputs": [ { @@ -2814,7 +2835,7 @@ "45" ] }, - "execution_count": 131, + "execution_count": 110, "metadata": {}, "output_type": "execute_result" } @@ -2826,7 +2847,7 @@ }, { "cell_type": "code", - "execution_count": 132, + "execution_count": 111, "metadata": {}, "outputs": [ { @@ -2835,7 +2856,7 @@ "3628800" ] }, - "execution_count": 132, + "execution_count": 111, "metadata": {}, "output_type": "execute_result" } @@ -2847,7 +2868,7 @@ }, { "cell_type": "code", - "execution_count": 133, + "execution_count": 112, "metadata": {}, "outputs": [ { @@ -2856,7 +2877,7 @@ "array([ 0, 1, 3, 6, 10, 15, 21, 28, 36, 45])" ] }, - "execution_count": 133, + "execution_count": 112, "metadata": {}, "output_type": "execute_result" } @@ -2868,7 +2889,7 @@ }, { "cell_type": "code", - "execution_count": 134, + "execution_count": 113, "metadata": {}, "outputs": [ { @@ -2878,7 +2899,7 @@ " 40320, 362880, 3628800])" ] }, - "execution_count": 134, + "execution_count": 113, "metadata": {}, "output_type": "execute_result" } @@ -2890,16 +2911,16 @@ }, { "cell_type": "code", - "execution_count": 135, + "execution_count": 114, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.9739601910770402" + "1.4446600641166332" ] }, - "execution_count": 135, + "execution_count": 114, "metadata": {}, "output_type": "execute_result" } @@ -2927,7 +2948,7 @@ }, { "cell_type": "code", - "execution_count": 136, + "execution_count": 115, "metadata": {}, "outputs": [ { @@ -2955,7 +2976,7 @@ }, { "cell_type": "code", - "execution_count": 137, + "execution_count": 116, "metadata": {}, "outputs": [ { @@ -2964,7 +2985,7 @@ "array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.])" ] }, - "execution_count": 137, + "execution_count": 116, "metadata": {}, "output_type": "execute_result" } @@ -2975,7 +2996,7 @@ }, { "cell_type": "code", - "execution_count": 138, + "execution_count": 117, "metadata": {}, "outputs": [ { @@ -2993,7 +3014,7 @@ }, { "cell_type": "code", - "execution_count": 139, + "execution_count": 118, "metadata": {}, "outputs": [ { @@ -3020,12 +3041,12 @@ }, { "cell_type": "code", - "execution_count": 140, + "execution_count": 119, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAARfElEQVR4nO3da7BkVXnG8f8jEyOCiMqIRhwPWpYWEkQzRVSMQY0JipckpYl4CSoRE8RLtIyjSQrMBzNG8UKZUkGIdyyLeEFnQBAFTLwOighegpJBQeSiCaImGODNh96jh8nMmU2f3t3TZ/1/VV2ne3X3Xu+umnnOOmvvvXaqCklSO2436wIkSdNl8EtSYwx+SWqMwS9JjTH4Jakxq2ZdQB977bVXLSwszLoMSZorF1xwwXVVtXrr9rkI/oWFBTZt2jTrMiRpriS5fFvtTvVIUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGjMXF3BJ82Bh3YaJb3Pz+sMmvk3JEb8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQY1+qR5syk1wRyPaD2OOKXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjRks+JOckuSaJBcvajsuyZVJLuweTxiqf0nStg054n8XcOg22t9UVQd2j40D9i9J2obBgr+qzgd+PNT2JUnjmcUc/zFJLuqmgu4yg/4lqWnTDv63AfcDDgSuAo7f3geTHJVkU5JN11577ZTKk6SVb6rBX1VXV9XNVXULcBJw0BKfPbGq1lbV2tWrV0+vSEla4aYa/EnuuejlHwEXb++zkqRhDLY6Z5JTgUOAvZJcARwLHJLkQKCAzcALhupf2mLSq1mCK1pqvg0W/FV1+DaaTx6qP0lSP165K0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNWTXOl5J8oqqeOOliJO08FtZtmOj2Nq8/bKLb0/jGHfE/f6JVSJKmpteIP8ntgQcCBXy7qq4atCpJ0mB2GPxJDgPeDnwXCLBvkhdU1RlDFydJmrw+I/7jgUdX1XcAktwP2AAY/JI0h/rM8d+wJfQ7lwE3DFSPJGlgfUb8m5JsBD7EaI7/acCXk/wxQFV9eMD6JEkT1if47wBcDfxu9/paYFfgSYx+ERj8kjRHdhj8VfXcaRQiSZqOPmf17Au8CFhY/PmqevJwZUmShtJnquejwMnAx4FbBq1GkjS4PsH/P1V1wuCVSJKmok/wvyXJscBZwI1bGqvqK4NVJUkaTJ/g/03g2cBj+NVUT3WvJUlzpk/wPw24b1X9YuhiJEnD63Pl7sXAnrd1w0lOSXJNkosXtd01ydlJLu1+3uW2bleStDx9gn9P4FtJPpnk9C2PHt97F3DoVm3rgHOq6v7AOd1rSdIU9ZnqOXacDVfV+UkWtmp+CnBI9/zdwLnAK8fZviRpPH2u3D0vyX2A+1fVp5LcEdhlzP72XrSW/w+Bvbf3wSRHAUcBrFmzZszuJElb2+FUT5LnA6cB7+ia7sXooq5lqapidHbQ9t4/sarWVtXa1atXL7c7SVKnzxz/C4GDgZ8AVNWlwN3H7O/qJPcE6H5eM+Z2JElj6hP8Ny4+lTPJKpYYqe/A6cAR3fMjgI+NuR1J0pj6HNw9L8mrgV2TPA44mtG6PUtKciqjA7l7JbmC0UHi9cCHkhwJXA78ybiFa/4trNsw8W1uXn/YxLcprTR9gn8dcCTwdeAFwMaqOmlHX6qqw7fz1mP7lydJmrQ+wf+iqnoL8MuwT/KSrk2SNGf6zPEfsY2250y4DknSlGx3xJ/kcOAZwL5bXal7J+DHQxcmSRrGUlM9nwOuAvYCjl/UfgNw0ZBFSZKGs93gr6rLGZ158/DplSNJGlqfOX5J0gpi8EtSYwx+SWrMWMGf5LgJ1yFJmpJxR/wXTLQKSdLUjBX8VbXDtXokSTunHS7ZkOSEbTRfD2yqKlfXlKQ502fEfwfgQODS7nEAsA9wZJI3D1aZJGkQfRZpOwA4uKpuBkjyNuCzwCMZrdgpSZojfUb8dwF2X/R6N+Cu3S+CGwepSpI0mD4j/n8ELkxyLhDgUcBrk+wGfGrA2iRJA9hh8FfVyUk2Agd1Ta+uqh90z18xWGWSpEH0Oavn48AHgNOr6mfDlyRJGlKfOf43AL8DfCPJaUmemuQOA9clSRpIn6me8xjdcH0X4DHA84FTgD0Grk2SNIA+B3dJsivwJOBPgYcC7x6yKEnScPrM8X+I0YHdM4G3AudV1S1DFyZJGkafEf/JwOFbLuCSJM23PnP8n0yyf5L9GC3fsKX9PYNWJkkaRJ+pnmOBQ4D9gI3A44F/BQx+SZpDfaZ6ngo8GPhqVT03yd7A+4YtS1ILFtZtmPg2N68/bOLbXGn6nMf/393B3JuS7AFcA9x72LIkSUPpM+LflGRP4CRGd976KfD5IYuSJA2nz8Hdo7unb09yJrBHVV00bFmSpKH0uoBri6raPFAdkqQpGfdm65KkOWXwS1Jjdhj8SY5P8qBpFCNJGl6fEf83gROTfDHJXyS589BFSZKGs8Pgr6p3VtXBwJ8BC8BFST6Q5NFDFydJmrxec/zdWvwP7B7XAV8DXpbkgwPWJkkaQJ+1et7EaC3+c4DXVtWXurdel+TbQxYnSZq8PufxXwT87Xbut3vQNtokSTux7QZ/kod2T78GPCDJrd6vqq9U1fUD1iZJGsBSI/7jl3ivGN1/dyxJNgM3ADcDN1XV2nG3JUm6bbYb/FU19Fk7j66q6wbuQ5K0lb43W38Eo1M5f/l578AlSfOpz1k97wXuB1zIaGoGRlM9ywn+As5KUsA7qurEbfR7FHAUwJo1a5bRlSRpsT4j/rXAflVVE+z3kVV1ZZK7A2cn+VZVnb/4A90vgxMB1q5dO8m+JalpfS7guhi4xyQ7raoru5/XAB/B00IlaWqWOp3z44ymZO4EfCPJl4Abt7xfVU8ep8MkuwG3q6obuue/D/z9ONuSJN12S031vGGgPvcGPtJdF7AK+EBVnTlQX5KkrSx1Oud5AEleV1WvXPxektcB543TYVVdBjx4nO9Kkpavzxz/47bR9vhJFyJJmo6l5vj/EjgauG+SxTdXvxPwuaELkyQNY6k5/g8AZwD/AKxb1H5DVf140KokSYNZao7/euB64PBuPf69u8/vnmT3qvrelGqUJE1Qnyt3jwGOA64GbumaCzhguLIkSUPpc+XuS4EHVNWPBq5FO5GFdRsmur3N6w+b6PYkja/PWT3fZzTlI0laAfqM+C8Dzk2ygVtfufvGwaqSJA2mT/B/r3vcvntIkubYDoO/ql4DkGT37vVPhy5KkjScHc7xJ9k/yVeBS4BLklyQ5EHDlyZJGkKfg7snAi+rqvtU1X2AlwMnDVuWJGkofYJ/t6r6zJYXVXUusNtgFUmSBtXrrJ4kfwe8t3v9LEZn+kiS5lCfEf/zgNXAh7vH6q5NkjSH+pzV85/Ai6dQiyRpCpZalvn0pb447q0XJUmztdSI/+GMlms4FfgikKlUJEka1FLBfw9Gd986HHgGsAE4taoumUZhkqRhbPfgblXdXFVnVtURwMOA7zBas+eYqVUnSZq4JQ/uJvl14DBGo/4F4ATgI8OXJUkaylIHd98D7A9sBF5TVRdPrSpJ0mCWGvE/C/gZ8BLgxckvj+0GqKraY+DaJEkDWOqeu30u7pKknd6k7ygH831XOcNdkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxswk+JMcmuTbSb6TZN0sapCkVk09+JPsAvwT8HhgP+DwJPtNuw5JatUsRvwHAd+pqsuq6hfAB4GnzKAOSWpSqmq6HSZPBQ6tqj/vXj8b+O2qOmarzx0FHAWwZs2a37r88svH6m9at1yb137m+fZx0s5mZ7vFY5ILqmrt1u077cHdqjqxqtZW1drVq1fPuhxJWjFmEfxXAvde9Hqfrk2SNAWzCP4vA/dPsm+S2wNPB06fQR2S1KRV0+6wqm5KcgzwSWAX4JSqumTadUhSq6Ye/ABVtRHYOIu+Jal1O+3BXUnSMAx+SWrMTKZ6ND7Pu5e0XI74JakxBr8kNcbgl6TGOMcvSRMyL8fgHPFLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhqz4m/EMi83RpCkaXHEL0mNWfEj/mnxLwtJ88IRvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNSZVNesadijJtcDls65jQvYCrpt1ERO0kvZnJe0LuD87s2nty32qavXWjXMR/CtJkk1VtXbWdUzKStqflbQv4P7szGa9L071SFJjDH5JaozBP30nzrqACVtJ+7OS9gXcn53ZTPfFOX5JaowjfklqjMEvSY0x+Kckyb2TfCbJN5JckuQls65puZLskuSrST4x61qWK8meSU5L8q0k30zy8FnXtBxJ/qr7d3ZxklOT3GHWNfWV5JQk1yS5eFHbXZOcneTS7uddZlnjbbGd/Xl992/toiQfSbLnNGsy+KfnJuDlVbUf8DDghUn2m3FNy/US4JuzLmJC3gKcWVUPBB7MHO9XknsBLwbWVtX+wC7A02db1W3yLuDQrdrWAedU1f2Bc7rX8+Jd/P/9ORvYv6oOAP4deNU0CzL4p6Sqrqqqr3TPb2AULPeabVXjS7IPcBjwzlnXslxJ7gw8CjgZoKp+UVX/NdOilm8VsGuSVcAdgR/MuJ7equp84MdbNT8FeHf3/N3AH06zpuXY1v5U1VlVdVP38gvAPtOsyeCfgSQLwEOAL864lOV4M/DXwC0zrmMS9gWuBf65m7p6Z5LdZl3UuKrqSuANwPeAq4Drq+qs2Va1bHtX1VXd8x8Ce8+ymAl7HnDGNDs0+Kcsye7AvwAvraqfzLqecSR5InBNVV0w61omZBXwUOBtVfUQ4GfM11TCrXTz309h9AvtN4DdkjxrtlVNTo3OQV8R56En+RtG08Dvn2a/Bv8UJfk1RqH//qr68KzrWYaDgScn2Qx8EHhMkvfNtqRluQK4oqq2/AV2GqNfBPPq94D/qKprq+p/gQ8Dj5hxTct1dZJ7AnQ/r5lxPcuW5DnAE4Fn1pQvqDL4pyRJGM0hf7Oq3jjrepajql5VVftU1QKjg4afrqq5HVFW1Q+B7yd5QNf0WOAbMyxpub4HPCzJHbt/d49ljg9Wd04HjuieHwF8bIa1LFuSQxlNlT65qn4+7f4N/uk5GHg2o9Hxhd3jCbMuSr/0IuD9SS4CDgReO9tyxtf95XIa8BXg64z+n8/NcgdJTgU+DzwgyRVJjgTWA49Lcimjv2jWz7LG22I7+/NW4E7A2V0WvH2qNblkgyS1xRG/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH4JSFKLL0JLsirJteOuPNqt9nn0oteHrIRVTLUyGPzSyM+A/ZPs2r1+HHDlMra3J3D0jj4kzYLBL/3KRkYrjgIcDpy65Y1uPfiPduunfyHJAV37cd166+cmuSzJi7uvrAfu112c8/qubfdFa/6/v7uqVpo6g1/6lQ8CT+9uWnIAt1499TXAV7v1018NvGfRew8E/gA4CDi2W5NpHfDdqjqwql7Rfe4hwEuB/YD7MrqaW5o6g1/qVNVFwAKj0f7Grd5+JPDe7nOfBu6WZI/uvQ1VdWNVXcdo8bDtLRn8paq6oqpuAS7s+pKmbtWsC5B2MqczWsv+EOBuPb9z46LnN7P9/1d9PycNyhG/dGunAK+pqq9v1f5Z4JkwOkMHuG4H91O4gdEiXNJOxxGHtEhVXQGcsI23jgNO6Vbv/Dm/WiJ4e9v5UZJ/626wfQawYdK1SuNydU5JaoxTPZLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNeb/AGb7TuHgiT13AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAARgUlEQVR4nO3df7RlZV3H8fdHJgMRRGTEHzheIJKQEG0W/qAMNQpFIVu2EpVISSz8mS5ztFqgfximmLpyqSgIEkJGqOgAgiiwyvwBiAj+CMUBEWJAC1ELA779cfbgdZx753Du2efMuc/7tdZZ9+znnLuf714Mn3nm2Xs/O1WFJKkd95l2AZKkyTL4JakxBr8kNcbgl6TGGPyS1JgV0y5gGDvttFPNzc1NuwxJmimXXXbZrVW1cuP2mQj+ubk5Lr300mmXIUkzJcl1m2p3qkeSGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUmJm4gUuaBXNr1o59n+uOO3js+5Qc8UtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY1xrR5pxox7TSDXA2qPI35JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUmN6CP8lJSdYnuWpe27FJvpfkiu71jL76lyRtWp8j/pOBgzbR/vdVtW/3OqfH/iVJm9Bb8FfVJcAP+tq/JGk005jjf1mSK7upoAdOoX9Jatqkg/89wO7AvsBNwPELfTHJUUkuTXLpLbfcMqn6JGnZm2jwV9XNVXVXVd0NvB/Yb5HvnlBVq6tq9cqVKydXpCQtcxMN/iQPnbf5bOCqhb4rSepHb6tzJjkdOADYKckNwDHAAUn2BQpYB7ykr/6lDca9miW4oqVmW2/BX1WHbaL5xL76kyQNxzt3JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxK0b5pSSfrKpnjrsYSVuOuTVrx7q/dccdPNb9aXSjjvhfPNYqJEkTM9SIP8l9gT2BAr5ZVTf1WpUkqTebDf4kBwPvBb4NBNg1yUuq6ty+i5Mkjd8wI/7jgadU1bcAkuwOrAUMfkmaQcPM8a/fEPqda4H1PdUjSerZMCP+q5OcA3yEwRz/HwJfSvIHAFV1Vo/1SZLGbJjg3xq4GfjtbvsWYEfgWQz+IjD4JWmGbDb4q+qFkyhEkjQZw1zVsyvwcmBu/ver6pD+ypIk9WWYqZ6PAScCnwDu7rccSVLfhgn+/62qd/VeiSRpIoYJ/ncmOQY4H7hjQ2NVXd5bVZKk3gwT/L8OHA48lZ9N9VS3LUmaMcME/7OB3arqp30XI0nq3zB37n4F2OHe7jjJSUnWJ7lqXtuOSS5Ick3384H3dr+SpKUZJvh3Br6R5FNJzt7wGuL3TgYO2qhtDXBhVe0BXNhtS5ImaJipnmNG2XFVXZJkbqPmQ4EDuvenABcBrxtl/5Kk0Qxz5+7FSR4J7FFVn05yP2CrEfvbecNa/lV1U5IHL/TFJEcBRwGsWrVqxO4kSRvb7FRPkhcDZwLv65oezuCmrl5V1QlVtbqqVq9cubLv7iSpGcPM8b8U2B/4IUBVXQMsOFLfjJuTPBSg++nyzpI0YcME/x3zL+VMsoLBdfyjOBs4ont/BPDxEfcjSRrRMCd3L07yBmCbJAcCRzNYt2dRSU5ncCJ3pyQ3MDhJfBzwkSRHAtczWNtfjZpbs3bs+1x33MFj36e03AwT/GuAI4GvAi8Bzqmq92/ul6rqsAU+etrw5UmSxm2Y4H95Vb0TuCfsk7yya5MkzZhh5viP2ETbn4y5DknShCw44k9yGPA8YNeN7tTdDvh+34VJkvqx2FTP54CbgJ2A4+e13w5c2WdRkqT+LBj8VXUdcB3wxMmVI0nq2zBz/JKkZcTgl6TGGPyS1JiRgj/JsWOuQ5I0IaOO+C8baxWSpIkZKfirarNr9UiStkybXbIhybs20XwbcGlVubqmJM2YYUb8WwP7Atd0r32AHYEjk7yjx9okST0YZpG2XwGeWlV3AiR5D3A+cCCDFTslSTNkmBH/w4Ft521vCzysqu4C7uilKklSb4YZ8f8dcEWSi4AATwbenGRb4NM91iZJ6sFmg7+qTkxyDrAfg+B/Q1Xd2H382j6LkySN3zBX9ZwNnA6cXVU/7r8kSVKfhpnjPx74LeBrSf45yXOSbN1zXZKkngwz1XMxgweubwU8FXgxcBKwfc+1SZJ6MMzJXZJsAzwL+CPgccApfRYlSerPMHP8/wQ8HjgPeDdwUVXd3XdhkqR+DDPi/yDwvO66fUnSjBtmjv+8JHsn2YvB8g0b2j/Ua2WSpF4MM9VzDHAAsBdwDvB04F8Bg1+SZtAwUz3PAR4DfLmqXphkZ+AD/ZYlqQVza9aOfZ/rjjt47Ptcboa5jv9/upO5dybZHlgP7NZvWZKkvgwz4r80yQ7A+xk8eetHwBd7rUqS1JthTu4e3b19b5LzgO2r6sp+y5Ik9WWoG7g2qKp1PdUhSZqQUR+2LkmaUQa/JDVms8Gf5G1JHj2JYiRJ/RtmxP8N4IQkX0jyZ0ke0HdRkqT+bDb4q+oDVbU/8MfAHHBlkg8neUrfxUmSxm+oOf5uLf49u9etwFeAVyc5o8faJEk9GGatnrcDhwAXAm+uqg03b70lyTf7LE6SNH7DXMd/FfDXVfWTTXy235jrkST1bMHgT/K47u0VwJ5Jfu7zqrq8qm7rsTZJUg8WG/Efv8hnxeD5uyNJsg64HbgLuLOqVo+6L0nSvbNg8FdV31ftPKWqbu25D0nSRoZ92PqTGFzKec/3fQKXJM2mYa7qORXYncFc/4bn7hZLewJXAecnKeB9VXXCJvo9CjgKYNWqVUvoSpI03zAj/tXAXlVVY+x3/6q6McmDgQuSfKOqLpn/he4vgxMAVq9ePc6+Jalpw9zAdRXwkHF2WlU3dj/XAx/Fy0IlaWIWu5zzEwymZLYDvpbki8AdGz6vqkNG6TDJtsB9qur27v3vAm8aZV+SpHtvsamet/XU587AR7v7AlYAH66q83rqS5K0kcUu57wYIMlbqup18z9L8hbg4lE6rKprgceM8ruSpKUbZo7/wE20PX3chUiSJmOxOf4/B44Gdksy/+Hq2wGf67swSVI/Fpvj/zBwLvC3wJp57bdX1Q96rUqS1JvF5vhvA24DDuvW49+5+/79k9y/qq6fUI2SpDEa5s7dlwHHAjcDd3fNBezTX1mSpL4Mc+fuq4BHVdX3+y5GW465NWvHur91xx081v1JGt0wV/V8l8GUjyRpGRhmxH8tcFGStfz8nbtv760qSVJvhgn+67vXfbuXJGmGbTb4q+qNAEm2G2zWj3qvSpLUm83O8SfZO8mXGazSeXWSy5I8uv/SJEl9GObk7gnAq6vqkVX1SOA1wPv7LUuS1Jdhgn/bqvrsho2qugjYtreKJEm9GuqqniR/A5zabb8A+E5/JUmS+jTMiP9FwErgLAZPy1oJvLDPoiRJ/Rnmqp7/Al4xgVokSROw2LLMZy/2i6M+elGSNF2LjfifyGC5htOBLwCZSEWSpF4tFvwPYfD0rcOA5wFrgdOr6upJFCZJ6seCJ3er6q6qOq+qjgCeAHyLwZo9L59YdZKksVv05G6SXwYOZjDqnwPexeDqHknSjFrs5O4pwN4MHr/4xqq6amJVSZJ6s9iI/3Dgx8CvAq9I7jm3GwaLtW3fc22SpB4s9szdYW7ukqQt3rifKAez/VQ5w12SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGTCX4kxyU5JtJvpVkzTRqkKRWTTz4k2wFvBt4OrAXcFiSvSZdhyS1ahoj/v2Ab1XVtVX1U+AM4NAp1CFJTUpVTbbD5DnAQVX1p9324cDjq+plG33vKOAogFWrVv3GddddN1J/k3rk2qz2M8uPj5O2NFvaIx6TXFZVqzdun8aIP5to+4W/farqhKpaXVWrV65cOYGyJKkN0wj+G4BHzNveBbhxCnVIUpOmEfxfAvZIsmuS+wLPBc6eQh2S1KQVk+6wqu5M8jLgU8BWwElVdfWk65CkVk08+AGq6hzgnGn0LUmt885dSWqMwS9JjZnKVI9G53X3kpbKEb8kNcbgl6TGGPyS1Bjn+CVpTGblHJwjfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSY5b9g1hm5cEIkjQpjvglqTHLfsQ/Kf7LQtKscMQvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNSVVNu4bNSnILcN206xiTnYBbp13EGC2n41lOxwIez5ZsUsfyyKpauXHjTAT/cpLk0qpaPe06xmU5Hc9yOhbweLZk0z4Wp3okqTEGvyQ1xuCfvBOmXcCYLafjWU7HAh7Plmyqx+IcvyQ1xhG/JDXG4Jekxhj8E5LkEUk+m+TrSa5O8spp17RUSbZK8uUkn5x2LUuVZIckZyb5Rvff6InTrmlUSf6i+zN2VZLTk2w97ZrujSQnJVmf5Kp5bTsmuSDJNd3PB06zxntjgeN5a/dn7cokH02ywyRrMvgn507gNVX1a8ATgJcm2WvKNS3VK4GvT7uIMXkncF5V7Qk8hhk9riQPB14BrK6qvYGtgOdOt6p77WTgoI3a1gAXVtUewIXd9qw4mV88nguAvatqH+A/gNdPsiCDf0Kq6qaqurx7fzuDYHn4dKsaXZJdgIOBD0y7lqVKsj3wZOBEgKr6aVX993SrWpIVwDZJVgD3A26ccj33SlVdAvxgo+ZDgVO696cAvz/RopZgU8dTVedX1Z3d5ueBXSZZk8E/BUnmgMcCX5huJUvyDuAvgbunXcgY7AbcAnywm7r6QJJtp13UKKrqe8DbgOuBm4Dbqur86VY1FjtX1U0wGEQBD55yPeP0IuDcSXZo8E9YkvsD/wK8qqp+OO16RpHkmcD6qrps2rWMyQrgccB7quqxwI+ZramEe3Rz34cCuwIPA7ZN8oLpVqWFJPkrBtPAp02yX4N/gpL8EoPQP62qzpp2PUuwP3BIknXAGcBTk/zjdEtakhuAG6pqw7/AzmTwF8Es+h3gO1V1S1X9H3AW8KQp1zQONyd5KED3c/2U61myJEcAzwSeXxO+ocrgn5AkYTCH/PWqevu061mKqnp9Ve1SVXMMThx+pqpmdlRZVf8JfDfJo7qmpwFfm2JJS3E98IQk9+v+zD2NGT1RvZGzgSO690cAH59iLUuW5CDgdcAhVfWTSfdv8E/O/sDhDEbHV3SvZ0y7KN3j5cBpSa4E9gXePOV6RtL9q+VM4HLgqwz+H5+ppQ6SnA78O/CoJDckORI4DjgwyTXAgd32TFjgeP4B2A64oMuC9060JpdskKS2OOKXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS8BSSrJqfO2VyS5ZdSVR7vVPo+et33AcljFVMuDwS8N/BjYO8k23faBwPeWsL8dgKM3+y1pCgx+6WfOZbDiKMBhwOkbPujWg/9Yt37655Ps07Uf2623flGSa5O8ovuV44Ddu5tz3tq13X/emv+ndXfWShNn8Es/cwbw3O7BJfvw86unvhH4crd++huAD837bE/g94D9gGO6NZnWAN+uqn2r6rXd9x4LvArYi8GKoPv3eTDSQgx+qVNVVwJzDEb752z08W8Cp3bf+wzwoCQP6D5bW1V3VNWtDBYP23mBLr5YVTdU1d3AFV1f0sStmHYB0hbmbAbr2R8APGhe+6amZTasd3LHvLa7WPj/q2G/J/XKEb/0804C3lRVX92o/RLg+TC4Qge4dTPPU7idwSJc0hbHEYc0T1XdwOD5uxs7lsETuq4EfsLPlgheaD/fT/Jv3QO2zwXWjrtWaVSuzilJjXGqR5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxvw/tYNNp2EnXcsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -3065,19 +3086,19 @@ }, { "cell_type": "code", - "execution_count": 143, + "execution_count": 120, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[0.27954547, 0.39434877, 0.4540566 ],\n", - " [0.98942566, 0.36000135, 0.33399721],\n", - " [0.88427852, 0.87776476, 0.80368109],\n", - " [0.54534545, 0.12886051, 0.29466367]])" + "array([[0.85882078, 0.0838741 , 0.4529751 ],\n", + " [0.32355282, 0.23641565, 0.37693805],\n", + " [0.06769945, 0.30438005, 0.9780961 ],\n", + " [0.46162058, 0.42681981, 0.71106984]])" ] }, - "execution_count": 143, + "execution_count": 120, "metadata": {}, "output_type": "execute_result" } @@ -3091,16 +3112,16 @@ }, { "cell_type": "code", - "execution_count": 144, + "execution_count": 121, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.9894256638866764" + "0.978096099540799" ] }, - "execution_count": 144, + "execution_count": 121, "metadata": {}, "output_type": "execute_result" } @@ -3112,16 +3133,16 @@ }, { "cell_type": "code", - "execution_count": 145, + "execution_count": 122, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([0.98942566, 0.87776476, 0.80368109])" + "array([0.85882078, 0.42681981, 0.9780961 ])" ] }, - "execution_count": 145, + "execution_count": 122, "metadata": {}, "output_type": "execute_result" } @@ -3139,7 +3160,7 @@ { "data": { "text/plain": [ - "array([ 0.7859115 , 0.77223336, 0.50666828, 0.55104521])" + "array([0.85882078, 0.37693805, 0.9780961 , 0.71106984])" ] }, "execution_count": 123, @@ -3175,17 +3196,17 @@ }, { "cell_type": "code", - "execution_count": 146, + "execution_count": 124, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[[0.77814945 0.11415817 0.62327907]\n", - " [0.78832786 0.9410027 0.3151632 ]\n", - " [0.0368383 0.24516094 0.74711683]\n", - " [0.81727139 0.76195462 0.19487213]]\n" + "[[0.58458652 0.95489874 0.76873658]\n", + " [0.79144906 0.35559767 0.96031963]\n", + " [0.55942317 0.78723157 0.3650356 ]\n", + " [0.04685468 0.43444695 0.33839966]]\n" ] } ], @@ -3198,7 +3219,7 @@ }, { "cell_type": "code", - "execution_count": 147, + "execution_count": 125, "metadata": {}, "outputs": [ { @@ -3216,18 +3237,18 @@ }, { "cell_type": "code", - "execution_count": 148, + "execution_count": 126, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[0.77814945, 0.11415817, 0.62327907, 0.78832786, 0.9410027 ,\n", - " 0.3151632 , 0.0368383 , 0.24516094, 0.74711683, 0.81727139,\n", - " 0.76195462, 0.19487213]])" + "array([[0.58458652, 0.95489874, 0.76873658, 0.79144906, 0.35559767,\n", + " 0.96031963, 0.55942317, 0.78723157, 0.3650356 , 0.04685468,\n", + " 0.43444695, 0.33839966]])" ] }, - "execution_count": 148, + "execution_count": 126, "metadata": {}, "output_type": "execute_result" } @@ -3239,25 +3260,25 @@ }, { "cell_type": "code", - "execution_count": 149, + "execution_count": 127, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[[0.77814945]\n", - " [0.11415817]\n", - " [0.62327907]\n", - " [0.78832786]\n", - " [0.9410027 ]\n", - " [0.3151632 ]\n", - " [0.0368383 ]\n", - " [0.24516094]\n", - " [0.74711683]\n", - " [0.81727139]\n", - " [0.76195462]\n", - " [0.19487213]]\n", + "[[0.58458652]\n", + " [0.95489874]\n", + " [0.76873658]\n", + " [0.79144906]\n", + " [0.35559767]\n", + " [0.96031963]\n", + " [0.55942317]\n", + " [0.78723157]\n", + " [0.3650356 ]\n", + " [0.04685468]\n", + " [0.43444695]\n", + " [0.33839966]]\n", "(12, 1)\n" ] } @@ -3270,18 +3291,18 @@ }, { "cell_type": "code", - "execution_count": 150, + "execution_count": 128, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[5. , 5. , 5. , 5. , 5. ,\n", - " 0.3151632 , 0.0368383 , 0.24516094, 0.74711683, 0.81727139,\n", - " 0.76195462, 0.19487213]])" + " 0.96031963, 0.55942317, 0.78723157, 0.3650356 , 0.04685468,\n", + " 0.43444695, 0.33839966]])" ] }, - "execution_count": 150, + "execution_count": 128, "metadata": {}, "output_type": "execute_result" } @@ -3294,19 +3315,19 @@ }, { "cell_type": "code", - "execution_count": 151, + "execution_count": 129, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[5. , 5. , 5. ],\n", - " [5. , 5. , 0.3151632 ],\n", - " [0.0368383 , 0.24516094, 0.74711683],\n", - " [0.81727139, 0.76195462, 0.19487213]])" + " [5. , 5. , 0.96031963],\n", + " [0.55942317, 0.78723157, 0.3650356 ],\n", + " [0.04685468, 0.43444695, 0.33839966]])" ] }, - "execution_count": 151, + "execution_count": 129, "metadata": {}, "output_type": "execute_result" } @@ -3324,18 +3345,18 @@ }, { "cell_type": "code", - "execution_count": 152, + "execution_count": 130, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([5. , 5. , 5. , 5. , 5. ,\n", - " 0.3151632 , 0.0368383 , 0.24516094, 0.74711683, 0.81727139,\n", - " 0.76195462, 0.19487213])" + " 0.96031963, 0.55942317, 0.78723157, 0.3650356 , 0.04685468,\n", + " 0.43444695, 0.33839966])" ] }, - "execution_count": 152, + "execution_count": 130, "metadata": {}, "output_type": "execute_result" } @@ -3348,7 +3369,7 @@ }, { "cell_type": "code", - "execution_count": 153, + "execution_count": 131, "metadata": {}, "outputs": [ { @@ -3365,23 +3386,23 @@ }, { "cell_type": "code", - "execution_count": 154, + "execution_count": 132, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[0.15246604 0.88310479 0.72114104 0.13062197 0.34755784 0.23403431\n", - " 0.92416609 0.02256229 0.5800577 0.74899696 0.92496278 0.98122918\n", - " 0.48526406 0.61784995 0.74526605 0.36587567 0.53935338 0.48663655\n", - " 0.46254169 0.60397314 0.20181377 0.4031567 0.91153399 0.550312\n", - " 0.05484349 0.73570383 0.52350869 0.29877126 0.64086659 0.74656651\n", - " 0.4431057 0.26241441 0.8531424 0.44721405 0.25633508 0.68545314\n", - " 0.90912925 0.91285705 0.95180396 0.74203516 0.57374628 0.02461786\n", - " 0.65634028 0.3354893 0.89448353 0.42890204 0.09926527 0.93041583\n", - " 0.65132991 0.40817373 0.39369988 0.38511924 0.59963332 0.36952358\n", - " 0.22752502 0.56710332 0.95845757 0.97355957 0.43180755 0.20890057]\n" + "[0.88616566 0.11474399 0.49426839 0.86496944 0.44553257 0.01731081\n", + " 0.26391484 0.81714822 0.9077824 0.45350327 0.34418481 0.30680307\n", + " 0.22397584 0.96490185 0.25766897 0.1628303 0.35022665 0.87266285\n", + " 0.14436895 0.2987234 0.04567582 0.62524215 0.03006832 0.15222984\n", + " 0.86554462 0.30036796 0.66637188 0.51245662 0.46296801 0.53384373\n", + " 0.90012971 0.00319531 0.48428543 0.24703543 0.53384405 0.48024175\n", + " 0.17175873 0.1834814 0.43739033 0.64565657 0.49266811 0.72123815\n", + " 0.57728476 0.76663343 0.68360823 0.34881945 0.64329004 0.79011718\n", + " 0.7055079 0.32594224 0.48795517 0.43684614 0.32047664 0.63067622\n", + " 0.24496431 0.25019593 0.57181523 0.38889906 0.53574819 0.02653888]\n" ] } ], @@ -3393,18 +3414,18 @@ }, { "cell_type": "code", - "execution_count": 155, + "execution_count": 133, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([10. , 10. , 10. , 10. , 10. ,\n", - " 0.3151632 , 0.0368383 , 0.24516094, 0.74711683, 0.81727139,\n", - " 0.76195462, 0.19487213])" + " 0.96031963, 0.55942317, 0.78723157, 0.3650356 , 0.04685468,\n", + " 0.43444695, 0.33839966])" ] }, - "execution_count": 155, + "execution_count": 133, "metadata": {}, "output_type": "execute_result" } @@ -3417,19 +3438,19 @@ }, { "cell_type": "code", - "execution_count": 156, + "execution_count": 134, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[5. , 5. , 5. ],\n", - " [5. , 5. , 0.3151632 ],\n", - " [0.0368383 , 0.24516094, 0.74711683],\n", - " [0.81727139, 0.76195462, 0.19487213]])" + " [5. , 5. , 0.96031963],\n", + " [0.55942317, 0.78723157, 0.3650356 ],\n", + " [0.04685468, 0.43444695, 0.33839966]])" ] }, - "execution_count": 156, + "execution_count": 134, "metadata": {}, "output_type": "execute_result" } @@ -3454,7 +3475,7 @@ }, { "cell_type": "code", - "execution_count": 157, + "execution_count": 135, "metadata": {}, "outputs": [], "source": [ @@ -3463,7 +3484,7 @@ }, { "cell_type": "code", - "execution_count": 158, + "execution_count": 136, "metadata": {}, "outputs": [ { @@ -3482,7 +3503,7 @@ }, { "cell_type": "code", - "execution_count": 159, + "execution_count": 137, "metadata": {}, "outputs": [ { @@ -3504,7 +3525,7 @@ }, { "cell_type": "code", - "execution_count": 161, + "execution_count": 138, "metadata": {}, "outputs": [ { @@ -3525,7 +3546,7 @@ }, { "cell_type": "code", - "execution_count": 162, + "execution_count": 139, "metadata": {}, "outputs": [ { @@ -3534,7 +3555,7 @@ "(3, 1)" ] }, - "execution_count": 162, + "execution_count": 139, "metadata": {}, "output_type": "execute_result" } @@ -3546,7 +3567,7 @@ }, { "cell_type": "code", - "execution_count": 163, + "execution_count": 140, "metadata": {}, "outputs": [ { @@ -3555,7 +3576,7 @@ "(1, 3)" ] }, - "execution_count": 163, + "execution_count": 140, "metadata": {}, "output_type": "execute_result" } @@ -3574,7 +3595,7 @@ }, { "cell_type": "code", - "execution_count": 164, + "execution_count": 141, "metadata": {}, "outputs": [ { @@ -3604,7 +3625,7 @@ }, { "cell_type": "code", - "execution_count": 165, + "execution_count": 142, "metadata": {}, "outputs": [ { @@ -3625,7 +3646,7 @@ }, { "cell_type": "code", - "execution_count": 168, + "execution_count": 143, "metadata": {}, "outputs": [ { @@ -3675,7 +3696,7 @@ }, { "cell_type": "code", - "execution_count": 171, + "execution_count": 144, "metadata": {}, "outputs": [ { @@ -3694,7 +3715,7 @@ }, { "cell_type": "code", - "execution_count": 172, + "execution_count": 145, "metadata": {}, "outputs": [ { @@ -3703,7 +3724,7 @@ "array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4])" ] }, - "execution_count": 172, + "execution_count": 145, "metadata": {}, "output_type": "execute_result" } @@ -3715,7 +3736,7 @@ }, { "cell_type": "code", - "execution_count": 173, + "execution_count": 146, "metadata": {}, "outputs": [ { @@ -3725,7 +3746,7 @@ " [3, 4, 3, 4, 3, 4]])" ] }, - "execution_count": 173, + "execution_count": 146, "metadata": {}, "output_type": "execute_result" } @@ -3737,7 +3758,7 @@ }, { "cell_type": "code", - "execution_count": 176, + "execution_count": 147, "metadata": {}, "outputs": [ { @@ -3747,7 +3768,7 @@ " [3, 4, 3, 4, 3, 4]])" ] }, - "execution_count": 176, + "execution_count": 147, "metadata": {}, "output_type": "execute_result" } @@ -3791,7 +3812,7 @@ }, { "cell_type": "code", - "execution_count": 185, + "execution_count": 149, "metadata": {}, "outputs": [], "source": [ @@ -3800,7 +3821,7 @@ }, { "cell_type": "code", - "execution_count": 186, + "execution_count": 150, "metadata": {}, "outputs": [ { @@ -3811,7 +3832,7 @@ " [5, 6]])" ] }, - "execution_count": 186, + "execution_count": 150, "metadata": {}, "output_type": "execute_result" } @@ -3822,7 +3843,7 @@ }, { "cell_type": "code", - "execution_count": 187, + "execution_count": 151, "metadata": {}, "outputs": [ { @@ -3832,7 +3853,7 @@ " [3, 4, 6]])" ] }, - "execution_count": 187, + "execution_count": 151, "metadata": {}, "output_type": "execute_result" } @@ -3850,7 +3871,7 @@ }, { "cell_type": "code", - "execution_count": 188, + "execution_count": 152, "metadata": {}, "outputs": [ { @@ -3861,7 +3882,7 @@ " [5, 6]])" ] }, - "execution_count": 188, + "execution_count": 152, "metadata": {}, "output_type": "execute_result" } @@ -3872,7 +3893,7 @@ }, { "cell_type": "code", - "execution_count": 189, + "execution_count": 153, "metadata": {}, "outputs": [ { @@ -3882,7 +3903,7 @@ " [3, 4, 6]])" ] }, - "execution_count": 189, + "execution_count": 153, "metadata": {}, "output_type": "execute_result" } @@ -3907,7 +3928,7 @@ }, { "cell_type": "code", - "execution_count": 190, + "execution_count": 154, "metadata": {}, "outputs": [ { @@ -3917,7 +3938,7 @@ " [3, 4]])" ] }, - "execution_count": 190, + "execution_count": 154, "metadata": {}, "output_type": "execute_result" } @@ -3930,7 +3951,7 @@ }, { "cell_type": "code", - "execution_count": 191, + "execution_count": 155, "metadata": {}, "outputs": [], "source": [ @@ -3940,7 +3961,7 @@ }, { "cell_type": "code", - "execution_count": 192, + "execution_count": 156, "metadata": {}, "outputs": [ { @@ -3950,7 +3971,7 @@ " [ 3, 4]])" ] }, - "execution_count": 192, + "execution_count": 156, "metadata": {}, "output_type": "execute_result" } @@ -3964,7 +3985,7 @@ }, { "cell_type": "code", - "execution_count": 193, + "execution_count": 157, "metadata": {}, "outputs": [ { @@ -3974,7 +3995,7 @@ " [ 3, 4]])" ] }, - "execution_count": 193, + "execution_count": 157, "metadata": {}, "output_type": "execute_result" } @@ -3992,7 +4013,7 @@ }, { "cell_type": "code", - "execution_count": 194, + "execution_count": 158, "metadata": {}, "outputs": [], "source": [ @@ -4001,7 +4022,7 @@ }, { "cell_type": "code", - "execution_count": 195, + "execution_count": 159, "metadata": {}, "outputs": [ { @@ -4011,7 +4032,7 @@ " [ 3, 4]])" ] }, - "execution_count": 195, + "execution_count": 159, "metadata": {}, "output_type": "execute_result" } @@ -4025,7 +4046,7 @@ }, { "cell_type": "code", - "execution_count": 196, + "execution_count": 160, "metadata": {}, "outputs": [ { @@ -4035,7 +4056,7 @@ " [ 3, 4]])" ] }, - "execution_count": 196, + "execution_count": 160, "metadata": {}, "output_type": "execute_result" } @@ -4062,7 +4083,7 @@ }, { "cell_type": "code", - "execution_count": 197, + "execution_count": 161, "metadata": {}, "outputs": [ { @@ -4085,7 +4106,7 @@ }, { "cell_type": "code", - "execution_count": 198, + "execution_count": 162, "metadata": {}, "outputs": [ { @@ -4121,7 +4142,7 @@ }, { "cell_type": "code", - "execution_count": 199, + "execution_count": 163, "metadata": {}, "outputs": [ { @@ -4150,7 +4171,7 @@ }, { "cell_type": "code", - "execution_count": 200, + "execution_count": 164, "metadata": {}, "outputs": [ { @@ -4160,7 +4181,7 @@ " [ 9, 16]])" ] }, - "execution_count": 200, + "execution_count": 164, "metadata": {}, "output_type": "execute_result" } @@ -4186,7 +4207,7 @@ }, { "cell_type": "code", - "execution_count": 201, + "execution_count": 165, "metadata": {}, "outputs": [], "source": [ @@ -4202,7 +4223,7 @@ }, { "cell_type": "code", - "execution_count": 202, + "execution_count": 166, "metadata": { "scrolled": true }, @@ -4212,10 +4233,10 @@ "evalue": "The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()", "output_type": "error", "traceback": [ - "\u001b[0;31m------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mTheta\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m\u001b[0m in \u001b[0;36mTheta\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0m阶跃函数的普遍版本\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \"\"\"\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m>=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mTheta\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36mTheta\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0m阶跃函数的普遍版本\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \"\"\"\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m>=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mValueError\u001b[0m: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()" ] } @@ -4235,7 +4256,7 @@ }, { "cell_type": "code", - "execution_count": 203, + "execution_count": 167, "metadata": {}, "outputs": [], "source": [ @@ -4244,7 +4265,7 @@ }, { "cell_type": "code", - "execution_count": 204, + "execution_count": 168, "metadata": {}, "outputs": [ { @@ -4253,7 +4274,7 @@ "array([0, 0, 0, 1, 1, 1, 1])" ] }, - "execution_count": 204, + "execution_count": 168, "metadata": {}, "output_type": "execute_result" } @@ -4271,7 +4292,7 @@ }, { "cell_type": "code", - "execution_count": 205, + "execution_count": 169, "metadata": {}, "outputs": [], "source": [ @@ -4284,7 +4305,7 @@ }, { "cell_type": "code", - "execution_count": 206, + "execution_count": 170, "metadata": {}, "outputs": [ { @@ -4293,7 +4314,7 @@ "array([0, 0, 0, 1, 1, 1, 1])" ] }, - "execution_count": 206, + "execution_count": 170, "metadata": {}, "output_type": "execute_result" } @@ -4304,7 +4325,7 @@ }, { "cell_type": "code", - "execution_count": 207, + "execution_count": 171, "metadata": {}, "outputs": [ { @@ -4320,7 +4341,7 @@ "array([0, 0, 0, 1, 1, 1, 1])" ] }, - "execution_count": 207, + "execution_count": 171, "metadata": {}, "output_type": "execute_result" } @@ -4334,7 +4355,7 @@ }, { "cell_type": "code", - "execution_count": 208, + "execution_count": 172, "metadata": {}, "outputs": [ { @@ -4343,7 +4364,7 @@ "(0, 1)" ] }, - "execution_count": 208, + "execution_count": 172, "metadata": {}, "output_type": "execute_result" } @@ -4369,7 +4390,7 @@ }, { "cell_type": "code", - "execution_count": 209, + "execution_count": 173, "metadata": {}, "outputs": [ { @@ -4379,7 +4400,7 @@ " [3, 4]])" ] }, - "execution_count": 209, + "execution_count": 173, "metadata": {}, "output_type": "execute_result" } @@ -4391,7 +4412,7 @@ }, { "cell_type": "code", - "execution_count": 210, + "execution_count": 174, "metadata": {}, "outputs": [ { @@ -4400,7 +4421,7 @@ "True" ] }, - "execution_count": 210, + "execution_count": 174, "metadata": {}, "output_type": "execute_result" } @@ -4431,7 +4452,7 @@ }, { "cell_type": "code", - "execution_count": 211, + "execution_count": 176, "metadata": {}, "outputs": [ { @@ -4465,7 +4486,7 @@ }, { "cell_type": "code", - "execution_count": 212, + "execution_count": 177, "metadata": {}, "outputs": [ { @@ -4474,7 +4495,7 @@ "dtype('int64')" ] }, - "execution_count": 212, + "execution_count": 177, "metadata": {}, "output_type": "execute_result" } @@ -4485,7 +4506,7 @@ }, { "cell_type": "code", - "execution_count": 213, + "execution_count": 178, "metadata": {}, "outputs": [ { @@ -4495,7 +4516,7 @@ " [3., 4.]])" ] }, - "execution_count": 213, + "execution_count": 178, "metadata": {}, "output_type": "execute_result" } @@ -4508,7 +4529,7 @@ }, { "cell_type": "code", - "execution_count": 214, + "execution_count": 179, "metadata": {}, "outputs": [ { @@ -4517,7 +4538,7 @@ "dtype('float64')" ] }, - "execution_count": 214, + "execution_count": 179, "metadata": {}, "output_type": "execute_result" } @@ -4528,7 +4549,7 @@ }, { "cell_type": "code", - "execution_count": 215, + "execution_count": 180, "metadata": {}, "outputs": [ { @@ -4538,7 +4559,7 @@ " [ True, True]])" ] }, - "execution_count": 215, + "execution_count": 180, "metadata": {}, "output_type": "execute_result" } @@ -4583,7 +4604,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.9" + "version": "3.8.3" } }, "nbformat": 4, diff --git a/1_numpy_matplotlib_scipy_sympy/random-matrix.csv b/1_numpy_matplotlib_scipy_sympy/random-matrix.csv index 5e031a72228fa5d64a45ed618494cefde3b39a8b..295c447943f14ea303477e318322308ac9a56a65 100644 --- a/1_numpy_matplotlib_scipy_sympy/random-matrix.csv +++ b/1_numpy_matplotlib_scipy_sympy/random-matrix.csv @@ -1,3 +1,3 @@ -0.81041 0.69606 0.42944 -0.99033 0.60317 0.82435 -0.70689 0.05605 0.53930 +0.34743 0.34666 0.67796 +0.37776 0.74529 0.44639 +0.70970 0.54722 0.96401 diff --git a/1_numpy_matplotlib_scipy_sympy/random-matrix.npy b/1_numpy_matplotlib_scipy_sympy/random-matrix.npy index 1df9863b6c763783cc8ef930a2776c96d9265692..36d736eab45e07872fade6018ebff7ab7578f628 100644 Binary files a/1_numpy_matplotlib_scipy_sympy/random-matrix.npy and b/1_numpy_matplotlib_scipy_sympy/random-matrix.npy differ diff --git a/2_knn/knn_classification.ipynb b/2_knn/knn_classification.ipynb index ae6ea5d50ba34c57bc14ba00e71ded55b02b0656..f646626c1e12d839457f69d857f8828c93904ee4 100644 --- a/2_knn/knn_classification.ipynb +++ b/2_knn/knn_classification.ipynb @@ -322,7 +322,9 @@ { "cell_type": "code", "execution_count": 3, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "import numpy as np\n", @@ -479,7 +481,9 @@ { "cell_type": "code", "execution_count": 9, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "# split train / test data\n", @@ -570,7 +574,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.9" + "version": "3.5.4" } }, "nbformat": 4, diff --git a/3_kmeans/1-k-means.ipynb b/3_kmeans/1-k-means.ipynb index 3046e03693b6b7a7b530d4b1f883f21854a70234..af069f25b24f5792e81f79bee7ed4ef39e3c91ea 100644 --- a/3_kmeans/1-k-means.ipynb +++ b/3_kmeans/1-k-means.ipynb @@ -249,19 +249,17 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 2, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyEAAAIMCAYAAADiq6OvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddZxc5dXA8d+542vZ3QgSEjQEgkOKu2txdyjaUkpfoIVSaIu0VLBS3B2Ku2vxBHcNEUJsk7Xxuef94042KzPrOzO7e779zKfZe+c+98yS7M6Z53nOEVXFGGOMMcYYYwrFKXYAxhhjjDHGmOHFkhBjjDHGGGNMQVkSYowxxhhjjCkoS0KMMcYYY4wxBWVJiDHGGGOMMaagLAkxxhhjjDHGFJQlIcYYY4wxxgxzIjJORF4Skc9E5FMROTXHc0RErhCRb0TkIxFZv9W5I0Xk6+zjyC7vZ31CjDHGGGOMGd5EZBlgGVV9T0QqganAXqr6Wavn7AqcAuwKbARcrqobiUgtMAWYDGj22g1UdWG++9lMiDHGGGOMMcOcqs5W1feyf24EPgfGtnvansBt6nkLqM4mLzsBz6lqXTbxeA7YubP7WRJijDHGGGOMaSEiKwDrAW+3OzUWmNHq65nZY/mO5+Xvc5S9MGrUKF1hhRWKcWtjjDHGGDOMTJ06db6qji52HJ3ZaZtyXVCXGdB7TP0o8SkQb3XoOlW9rv3zRKQCeAD4jao2DFQ8RUlCVlhhBaZMmVKMWxtjjDHGmGFERH4odgxdmV+X4e1nlhvQewSW+TauqpM7e46IBPASkDtV9cEcT5kFjGv19XLZY7OArdsdf7mze/XLciwROS27i/4TEblbRML9Ma4xxhhjjDFm4ImIADcCn6vqJXme9ihwRLZK1sZAvarOBp4BdhSRGhGpAXbMHsurzzMhIjIW+DUwSVVjInIfcBBwS1/HNsYYY4wxZuhTMuoWO4jNgMOBj0Xkg+yxs4HxAKp6DfAkXmWsb4AocHT2XJ2InA+8m73uL6pa19nN+ms5lh+IiEgKKAN+7KdxjTHGGGOMMQNMVf8HSBfPUeCXec7dBNzU3fv1OQlR1Vki8k9gOhADnlXVZ9s/T0SOB44HGD9+fF9va4wxxhhjzJCggMvw6t3X5z0h2XVfewIrAssC5SJyWPvnqep1qjpZVSePHl3SBQqMMcYYY4wxA6g/lmNtD3yvqvMARORBYFPgjn4Y2xhjjDHGmCHPpeh7QgqqP6pjTQc2FpGy7K767fA6LBpjjDHGGGNMB/2xJ+RtEbkfeA9IA+8DHRqfGGOMMcYYYzpSlIwOrz0h/VIdS1XPA87rj7GMMcYYY4wxQ1tROqYbY4wxxhhjlrDqWMYYY4wxxhgzgGwmxBhjjDHGmCJSIGMzIcYYY4wxxhgzcGwmxBhjjDHGmCKzPSHGGGOMMcYYM4BsJsQYY4wxxpgiUrA+IcYYY0xXNPUlGr0V0jMgtAlSdgjiVBc7LGOMMYOEJSHGGGN6ROMvoot+AyQBF1IfoNE7YeQjiG9UkaMzxpjByS12AAVme0KMMcZ0m6qLNvwBiLPkV2YC3IVo09VFjMwYY8xgYkmIMcaY7svMADea40QaEi8WPBxjjBkKFCUzwI9SY8uxjDHGdJ9UAJnc55yqgoZijDFDhkKm9PKEAWUzIcYYY7pNfCMhuAEdP8OKIOVHFyMkY4wxg5AlIcYYY3pEqi8F/2pAJDszEoSyAyG8Z7FDM8aYQUnxdtkN5KPU2HIsY4wxPSJOLTLqQTT1JbhzwD/JqmIZY4zpEUtCjDHG9IoEJgITix1GQakqxB9Ho3eBxiC8O1J+KCKRYodmjBnUhAxS7CAKypIQY4wxppu04VyIPQrEvANN36Hxx2HkfYgEixqbMcYMJrYnxBhjjOkGTf8AsYdpSUAAiEN6GsSfLU5QxpghQQFXB/ZRaiwJMcYYY7ojORXEl+NEFE2+VvBwjDFmMLPlWMYYY0x3+Goh55rtADhLFToaY8wQM9z2hNhMiDHGGNMdwc1AInRMRHxIZP9iRGSMMYOWzYQYY4wx3SASgNo70IUnQeYnEAcIINX/QPzjih2eMWYQU4bfTIglIcYYY0w3iX8lGPU0ZL4FTYB/IiL2q9QYY3rKfnIaY4wxPSAi4F+l2GEYY4YYV4fXTIjtCTHGGGOMMcYUlM2EGGOMMcYYU0TDcU+IzYQYY4wxxhhjCspmQowxxhhjjCkiRcgMs7kBS0KMMcaYItDkO2jznaD1ENoFKdsLkVCxwzLGmIKwJMQYY4wpMLfpOmj6DxDzDiTfR2P3wsh7EAkWNTZjTHFYdSxjjDHGDBh166Dp37QkIOD9OfMtxB8vVljGGFNQloQYY4wxhZScChLoeFxjaPzZwsdjjCm6xdWxBvJRaiwJMcYYYwpJqvDecrTngDOy0NEYY0xR2J4QY4wxppCCk0HKQaO0TUaCSNlBxYrKGFNUQkaH19yAJSHGGGNMAYn4oPYWtO4Y0EZAQNNQeTYSWKvY4RljikABd5gtUBper9YYY4wpAeJfBWofgMAWQBB8ywEOqm6xQzPGmIKwmRBjjDGmwNRthLp9wK0DUpCpg8YL0fQnyIi/FDs8Y0wRlOLm8YFkMyHGGGNMgWn0PnDrgVSrozGIPYhmfipWWMYYUzA2E2KMMcYUWvItIN7xuAQh9Qn4li54SMaY4lEdfhvTh9erNcYYY0qBbzzg63hcXUtAjDHDgiUhxhhjSoJqGnWbUM3VQ2NokfJDgfYNC/3gHw/+NYoRkjGmyFxkQB+lxpIQY4wxRaWawm24EJ2zPjp3Q3TeNmj8pWKHNaDEvxJScxU4SwFhIAjByUjNTYiU3psFY4zpb7YnxBhjTFFpw3kQe5yWPRLuj+iiU6H2FiS4flFjG0gS2hxGv4om34TEGyBloIuAUcUOzRhTYApkhtncwPB6tcYYY0qKuvUQe4yOm7TjaNNVxQipoLT5Blh4AkRvhOZ/o/P3xh0Gr9sYY2wmxBhjTMGouwjiT6OpL7wKUZlpQJ4GfZlpAxODpiD9PThVSBE3gWt6OjRdASRaHc1A09VoeGfEv1KxQuuUahJSn4KEwb+aLR8zpl8Mv+pYloQYY4wpCE28ji48GS/pSHTxbAcCa/Z7DG7sCWg4D0iBZtDAOkj1FYhvZL/fq0uJ5/AWYbSXgfhzUHFCoSPqkht7Fhp+n/0qA84oqLnW6wBvjDE9YEmIMcYMM6oKqQ8h/YVXKja4MSJOu+e4kPoItAkC6yJORR/vmUQXnQLEuneBhJCKX/Xpnh1iSH0E9WfSpkFgagq68Dhk1IP9eq/uyVGiFwAByXeueDT9PdSfTpulc5mZaN0RMPpVROwthTG9pYBb5F0SInITsDswV1U7fAokImcAh2a/9AOrA6NVtU5EpgGNQAZIq+rkru5nPzGMMWYYUY2hdcd6y2lQEAecpWHkXYhT6z0n/Y33HG0ABDSNVp6NU35Q72+cfKcbTxIgDMF1kcrf9fun69rwD9p2KAdQSH+Opr8p/Kf54R2g8V85TjgQ2rGwsXSDRu8D0u2PgsYg+SaEtihGWMaY/nMLcCVwW66TqvoP4B8AIrIHcJqq1rV6yjaqOr+7Nxtei8+MMWaY08bLIfUx3oxEHDQKmelo/R+88+qidUeD+xNoszcTQhwaL0JTH/fhznn2fbQRRMa8jlN7KxKY1Id75ZH+NM+JjPcpf4GJbyxUng2E2j4qz0D84wseT5fceXRMQgAU3Locx40xPZFRGdBHV1T1VaC7/5gPBu7uy+u1mRBjjOlHqnG0+XaIPwL4IXIQUrY/UirLa2IP0XE/RhoSr2Q3HH+YTTza71VIotG7kBF/7d19gxvSeSISgbID+rzsq3OdfO7mFKcsrlN+MBre2tsDAhDeHvEtW5RYuiKhrdD480C07QnNQLDLlRfGmCFCRMqAnYHWa2YVeFZEFLhWVa/rahxLQowxpp+optG6wyD1FS3r5hv/iiZfQ2r+U9TYlmi/HGkxb0Uybj3k7Kzr9unTbpEwjLgEXfQbb6yWOBSogoqjkfKTej1+twQ3g8RTOU74B2bmpZvEtwyUH1G0+3dbeCdovhnS39Dy91siEDnAm9UxxvSaIoXoEzJKRKa0+vq67iQLOewBvN5uKdbmqjpLRMYAz4nIF9mZlbwsCTHGmP6SeLntGzQAYpD4H5r6FAmsUaTAWgltB/EnaLusRiCwFiJhNLgBaLLjdRJB+rhPQcLbwujnIf4E6jYhoS1Q/9o4TmFWBkvlb9HEK7T9JD8IlachEipIDIOZSBBG3oVG7/X+DkkZUnYIhHYodmjGmO6Z350N491wEO2WYqnqrOz/zxWRh4ANAUtCjDGmEDT5rrfHooMMJKdCCSQhUnkmmnwL3Ea8N+NhkCAy4iLvvFODVpwKTf9mSTIVBt9KENmj7/f3jYHyo1vmWgrZYUL8y8OoB7L7YqaAMxqpOBEJ71LAKAY3kTBSfiSUH1nsUIwZctxB0CdEREYAWwGHtTpWDjiq2pj9847AX7oay5IQY4zpL85SeJuL2+25kAD4Rhcjog7ENxpGPYPGHoP0x+BfBYnshTjVLc9xKo5Dg+ugzXeC1kNoZ6Rsb++T8EFO/CsjNVcUOwxjjCk5InI3sDXesq2ZwHlAAEBVr8k+bW/gWVVtbnXpUsBD2calfuAuVX26q/tZEmKMMf1EInuizVe029MtQBBC2xYpqo7EKUPKDwQOzP+c4IZIcMPCBTUIaGY+JJ71lquFtkb8KxQ7JGPMEKFQiD0hncegenA3nnMLXinf1se+A9bp6f0sCTHGmH4ivpFQcwO66DTQRlAXfMsg1VfanoNBzo09DfVn4CWVLjT+Cy3/BU7lqcUOzRgzBCjdK6M7lFgSYowx/UiCk2H0q5D5FvCDb3myU9RmkFK3Pttpvd0yu+Yb0fA2SGDtosRljDGDmSUhxhjTz0QECt192wycxMvk7jGSRGOPWxJijOkX7jDrIT68Xq0xxhjTY/maLCporg7ixhhjumIzIcYYY0xnQlsBmY7HJYxEdit4OMaYoUcVMoOgRG9/Gl6v1hhjTAvN/Ig234I234Smpxc7nA40Mxd30Zm4cybjzt0ct/HfaK5Git0Zy21C4y+hiTdQzdc1PjdxaqHqT3jllwN4vzrDENkfCW7Qq3iMMWa4s5kQY4wZhtzmu6HxIlrqCTdeilb8Bqfi2KLGtZi6TeiCvcGtAzKgDdB8PZr+CKm5vkdjudFHoOGPIH681xuAmuuQ4LrdHsMp2xcNbgjxp1BNIOHtkMCkHsVhjDH5CW5B27cWnyUhxhgzzGhmdjYBaVftqekyr9qTf6XixKUZtPl6iN4O7kK8vRit92PEIfE2mvoKCazavTHT33kJCPE2/Vt04bEw5nVEwt2OT/zjoOL4YfY2wRhjBoYtxzLGmOEm/lyeExk01mWT2wGjDX+EpqvAnQekybkhXBxIf979MWMPZMdqz4XEK72M1Bhj+pfi7QkZyEepsZkQY4wxWUq7du+Fu3NmPsQeBbqx58M3rvsDuw3kTULcxu6PY4wxpl+VXlpkjDFmYIW3y3MigER2KmgoLdLfQpdd5f3gWw4C63V7WAltC1LW8YS6ENq0ZzH2M9UYGn8BjT+Huk1FjcUYU3wZnAF9lJrSi8gYY8yAEt9YqDyDJdWe/N6fK05EitVk0T8O8la+EiAAoS2R2tt61oE+tBUENmiXiESg/GjEt2wfAu4bTbyMzt0ErT8Drf8dOncz3CIuhTPGmEKz5VjGGDMMOeVHoKGtIf4MkIHwDoh/5aLFI75l0dDmkPgfbTbMSwRqbkcCq/ZoE3nL5eJAzbUQfxqNP5Ht7XEAEtqk5TneLISDODlmTAaAunXowl8D8bYn6s9Eg+sivqULEocxpnQogqvDq+yFJSHGGDNMiX88VBxX7DBaSPWlaMNFEHsISIFvJWTEn5Hg2n0bV/wQ2R2J7N7muKa+ROt/D+kvva+DmyAjLkZ8o/p0vy7Fn4WcNbZciD8B5Z2XSVY3ikZvh/iTIGVI2aEQ3q1nM0TGGFNkloQYY4wpCSJhZMRf0KrzgFSvZj66S906tO4Q0Fab05NvesdGPe3NoAzYzZvJvVk+jbrRTksAqybQugMg/QOLZ4y0/jNITkVGnDcAwRpjCqUU920MpOH1ao0xxpQ8Ed+AJiAAGn0IOnROT3vlgZNvDui9CW5J7l+/ISS0ZefXxp+AzEza9niJQey/aHpm/8VojDEDzJIQY4wxRaGaKF5VqPQ3dNiTAaCZ7Jv8gSOBCVB2kLffpUUEIrtAoPOlZ5p4DTSaa1BIvde/gRpjCkYBV50BfZQaW45ljDGmoNStR+v/AImXAEX9KyEjLkK6eAPeX9zYM5B4PvdJEQhMGvAYpPJsCG2Lxh4GMkhkTwhu3vW+DmdpvF/dOZZzOSMBULcRMjPAtxziVPVz5MYY0z8sCTHGGFMwqorWHQXpr4Dscqj0V2jdETDqKcS3TKfXkngRjd7hNRoM74yUHdKjqlaa+B/Un0HOWRBCEFgHCazVk5fUKyICoU3aVOnq1nVlB6HRO2mbhAhIJRr4GdpwPkTv82ZGNIVG9kWq/oiIr1/jN8b0NyHT6Y6woaf05maMMcYMXelPIP0dLQnIYppGo3d1eqk2XoIu+i0kX4f0R9B0OVq3P6q5Eoo8YzRdTu4EBCg7Aqm5vttjFYP4l0eqLwcZAVIORLwqYrW3Q/QmiN4PJECbvP+PPYg2/afIURtjTEc2E2KMMaZw0jNAfN4C6DaSXtf0PDQzD6I3e89rkYD0TIg9CmUH5L9WFeJPoM3XZmdgcgkj5YcjXXZt7xvVOMSfg8wsCKwJwU17XIlLwttA6E2vtLBEEP9K3tjNNwOxds+OQ/RWqPx1/7wAY8yAWLwnZDixJMQYM2R5y3deRqP3gMa8PhGRvRAJFju04SuwWo6qVABhCKyX/7rUeyDBHF3VY2jiJaSzJKT5ami+FrT9G/RWxN+yp2KguKlvoO6g7OtPgoTAtzLU3t7jRokifgis0fagNuR+sjahqtZHxJgSZ8uxjDFmiNDGi9FFv4HkS5B6C228EK07CtVcPRpMT6iql+T1kPhXgtCWQOsSvD5wyjtNJHBqyTF9kr12qfxxus3QdE3nCQg+KD8JEs/jNvwVt/kO1M3zhr6X3NhjsGD3bKIQAzJelav0V16S1B/8q+c5PtESEGNMybEkxBgzJGl6JkTvpM3yFI1B+jNIvFC0uAYTTbyNO38P3J9Ww52zEW7Ttbjp2bgLT0LnTELnTMJdeDKamdujcaX6Mqg4wUsepMrr9j3yIZCQd4+5O+PO3RJ3/v64jVd64wc28PZBdPi1FUDKDs5/s8w0b5ajK7EH0UVneUu+Gv+BztsGTX3Ro9eVj6Y+g/qzATfH2QTEHu6X+0jVOUCEJd8jAcJI1R/7ZXxjzMBRFSvRa4wxQ0Lyndx7DzSKJl5GwjsVJazBQlMfoQuPo2UTty6Epv9A8zWgcSDjHU+8hC74DEY/2+1lbiIBpOKXUPHLJffTDFp3EKS+oKURn/sTpD9GozcgNTcjtbehC4+HzGzvvy0KVRcggYn5b+aMybGEq70MZKazZLN8DBS0/gxk1GPdek2d8apZdRZDz2eUcpHg+jDyXrTpKkh/4c2AVJyEFKDkMHh9X0h9DFIG/tVt9sUY0ylLQowxQ5MzAnKur/Vnl/aYzmjjlbTtyg0Qz/F+OQNaD4kXIbxz72+YeBVSX+e4p+sljvWnI6OeR0Y95TUa1CYIrNFl4iO+0WhoK2/8DmMv5qNDtS6A9PdoZgHi6+Nekcwc8icafojs2bfxW5HAakjNFf02Xne5sSeg4Ry8f3Out7+m5jrEv3LBYzFmsMqU4GzFQOqXVysi1SJyv4h8ISKfi0jPCp8bY0x/C20BBHKc8COR/QodzeCT/opuf0KvsWzZ3d7T1FQgRyfwxTLzwJ2NiCCBCUhwve7PvFT/E8I70PHvgwOEwanJF1V2xiX7VeJt3LrDvaViC09GU5936/6EtqbtHpjWwdVCcLNe7a8pFZr6GurPAm32kkONQmYmWnckqplih2eMKVH9lXJdDjytqqsB6wDd/MlsjDEDQySI1N7iLceRcpAKb5nIiIsR/4rFDq/0+Vcl90xSDhIB/yp9up04S5H3jTrg7afoXVUzkQhO9SXImLeh5i4IHwj+SRD+OTLyAYgcDLQvzetAYE3EqfbuHnvWW56WfNtbJpZ4AV1wEJr6uOv7R/YB3zI57uEDbYRFJ6ELDkDdpl69vmLT6D10XG6mXlKSfLsYIRkz6CjgIgP6KDV9Xo4lIiOALYGjAFQ1SeeLX40xpiAkMAlGvwqpj0ATEFx3wPtADBVS+St0wVu0bewXznbijrGkY3e2tG1o277dMLIHNF2SZ/LFgcAkxDeqT7cQpwIJTYbQ5LYn/OPR5NteI0VNe69RKpAR/wKypZ4bL6Dt90KBGNr4d69RYKf3LYORD3id3uPPgDsP3Dq876G3/4T0Z2jjRciIi/r0GovCnUfuTfeAu6iQkRhjBpH+mAlZEZgH3Cwi74vIDSJS3v5JInK8iEwRkSnz5s3rh9saY0zXRBwkuC4S2sgSkB6QwNpe93D/aoCA1HgbyUc9A+Fd8WYtwtnKVvd5fSv6cj+nGqm5BWRZ2lZ3ioCzNFJ9aZ/G7/TeEkJqb0dqbkQqT0dG/B0Z/SLiX857gjaDOz/3xalPuncPpwKn4kScUQ+B28CSJK5lIIg93uvXUEwS3tqbZWxPUxDcoODxGDM4CRl1BvRRavpjY7ofWB84RVXfFpHLgd8DbWoCqup1wHUAkydPHryLX40xZpiQ0EZI6NGOJ6r/OTD3C64DY16CzA9oehrizgPf0tmu4r6uB+jLvUW8N8y53jRLGG8/SY7+Mr1qcJivT02uJo6lQzUN7lyQ6rbNFcO7Q/Nt2X1Bi2eLIlB2BOLL38PFGDO89UcSMhOYqaqLF37ej5eEGGOMKUGanIo2/tPbfO4bi1ScioS3K3ZYQDYZ8K+A+FcodigtRPxo2cEQvYUOy45kdM8HDG4CydfbjeV4x0uUG/0vNP7dW9aIopE9kapzvb1XEoSR96DR+yD+JEglUnYIEt6m2GEbM2go4Grp7dsYSH2em1HVn4AZIrK4UPt2wGd9HdcYY0z/0+S7aN3RkJrqbYpOf4EuOg03+nCxQyttoR3JuVE//YnXjLAHpOo8r0ljy0b8MEgVUvWnPgY5MDT+EjSc75ViJo7XYPFRtOFPLc8RCeOUH4Ez8h6c2ustATHGdKm/+oScAtwpXr3E74Cj+2lcY4wx/Ugb/0HbDdZ4Xzf93ft02xrM5SSpN9Gcu+YzkHgdetAQUPzjYfTzaOwBSH3mNfYr2xdxRvRfwP1Im68i59+Z2GNo5R8Qp8M2UGNML2T6rWjt4NAvSYiqfgBM7up5xhhjiiz9Ve7j7iJvA7ZUFDScQUMq8PaFtG94GACn598zcaqQ8kHyeV1mdp4TDrgLwZIQY0wvDK+Uyxhjhjtn6dzHJeT1+zC5hXcl53IsoW+d4geDwLrkfu1+sI3nxvQLRXB1YB+lxpIQY4wZZFQzuM234M7bFnfOxriLzkQzP3V+TWYebvwlCO9Fx6aAESg/ZsArUA1m4huNVF/ulaKVipaHVP8HydtxfWiQilOzCWrrNzERqPgtIu270BtjTPf0154QY4wxBaINZ0PsKVrW6ccfQxOvwuinOrwhVk2j9Wd4VYta9jQEgXIg5TXmKzsKKf9l4V7AICXhbSD0FiTfBQSCG3qVoYY4CUyA2v+iTZdC6gOvb0vFyUh4+2KHZsyQ4g6zuQFLQowxZhDRzI8QewJItjqaAW1Go3cjFSe3fX7Tte0SELLXujDyQUAgehO6YE/UvxpSfrz3prP9fTUNiZe8zuLO0khkrw4dzFVdyHwH+MC3wpDY5K5uHRp9CDLfIoH1ILI7Etqi2GEVnAQmIDVXFTsMY8wQYkmIMcYMJqnPvf0bmmx3IgHJKR2f33wT5KzqlIbmWyHxZHasDKS/RuPPQu3NSHD9lmeqxtEFh0LmW9AoEEKbr4SaG5CgV5NEk++hi04FbQBVb69A9X+QwKr99ML7h6qiqfcgPQMJrJEz4Wp5buoLtO5Qr/M3cTT2BDRdCSMfRHy9aVJojDG5qUKmBPdtDKThNe9jjDGDnW8saK6O237wr5jjeCz/WIkXQGNAJnvABWJow5/bPE2bb4X019kEBCABGkUXnea9qXfr0IXHgDsnO17c63pedxiq7Uu7Fo+b/ASdsx7UHQwNZ6IL9sBdcDjaIaHzaP3vvV4qLeVpY+DOQ5suKVjMxhgzVFkSYowxg4gEVoPAqnjlYtucQMqO6HhBYI18I2Wbz+WQ/txbWrVY7DE69onAm/XIfItGHwF1O54nBfEX8tw/x3BuI5r6CnWbun1N98dugroDgWiroy6k3kYbL8sZS+5yxmmIP9fv8ZUKTbyFu+BA3Dkb4i44EE281fcxNYnGHsdt+Dsa/S/qNvdDpMYMPVYdyxhjTEmTmhsgtBVeIhIE3zik5nrEv3zH51ZdAOSoeuXUAnma40k5It6vB0195iUbuah6MbhzyZ2kpMCd1+XrUU3j1p+Hzt0ErTsQnbuJ94Y1Z2LTOxq9H0jlPhm9J8fBTiqF5diMrppEU1+jmfm9iq8UaOIVdOHxkHofdBGk3kcXHu8VPejtmG4dOn8XtOEciN6ANlyIztsOTU/vv8CNGQK8Er3OgD5KTelFZIwxplPijMCpuQpG/At8y0LmR3TRmbjRBzo+NzARRj4F/vXwqmKFIbQ7MuoJqDiSjuV6wxA51EsMFp6MLjgI3FxvrMW7t288EvyZV7q2Ax8EN+jy9Wjj5RB7CEh6DRNJQPRONHprl9d2h7oN0PzvTp7RvgEhiFMGwU3ouHUyBJH92hxxow+gczdG6w5A522NW3esd89BRhv+Sq7O6N7xXo7Z+A+v2WHLUr4o6CK0/uxej2mMGRpsY7oxxgxCmngV6s+k5U2j+yM0/AVX4zjlh7Z5rhNYAUbd23GQ8hO9/iKxh71P9zUB4V2RylPR6J2Q+B8d35RKNuEIITVXIiJoaCvwrwqpL1o9PwKhzZDAWp2/DlWI3p7jPjFovgH6oau4Nl+f3auSR2DdnIdlxN+8jenuPNAMiEBgXaTipCVjJ96Ghj+3jT/5FrroVKT25j7HXlCZ73t2vDvizwDt9zC5kJqKanJYlDg2prsyuZqCDmGWhBhjzCCkjf8i5xv3pivQsoNbllN1RsSHjDgfrTwN0jPAPw5xar3xo/fmGB/AB5W/RyJ7t7yBFPFB7e1o8x0QfxjwQ+QApGz/rl+HO5e2+zRacfPsWempnG+EF3NgxMU5z4hvNIx6GpJvQWYmBFbvkFRp8/V0/D6lIDkFzcxGfMv0NfrCcWrBXZD7eO8H7cO1xpihzJIQY4wZjDLTch/XRm/pi1R0eyhxaiHY/o1m7opR4EeCm3T4BFskhFQcCxXHdvu+ADTmTgCATjbV91DOpWIAAjX34viXy3+pOBDaNP/Ybp5O9RLwlrENpiSk/ARovJS2FdUiUH5Sviu6Fv45xO6l7X4cHwQ3t1kQY1pRKMnN4wPJPqIwxpjByDcu93Ep7+RNdw+Ed8fbQ9KOMzL/vXsj/mz+cxVn9c89yg4FIu0OOuBfEye0Tt/GzrlvBG/5lm/lvo0NaOpL3MZLcBv/gaY+7vN4nZGyI6HiRO/vECHv/ytORsoO6/2Ylb8F/4Ts38mAN6ZvGWTEhf0WtzFmcLKZEGOMGYSk4rfoot/QdilQxHvT2I2lWF2OX/4LNPE8pGfiLZcKgfiQ6ksK1wnd/QlV7fP9JLIvmnrfKzUs2V97Ti1Sk3+zumYWoE2XeeV4JQRlByDlx3WcASr/BRp7NNtPJL34hlBxqre5vQ/cpuu85oikAEWbb0fLDsOpOjN/3H34fokIUnESWv4LcBeBU41IoMvrOh3TqYCRD0LyTUh/Cb7lIbQVIvb2w5i2pCQrWA0k+ylgjDGDkIS3RUdcDE1/h8wsb4aivG+fWrcZf/Gbx/jzaPId8I319oH4RuW9RtVFm2+E6K3efo7gukjl2Uhg9fw3Cm0LiefJuWej4XdoaipS9Ye+vRZxkBEXoeUnQepD8I2BwOS8yZq6UXTBPtnywmlvnUTTtWjqQ6TmunaDl0PVOd6+k/QX4IxByn+BhLftU8yangFN/6Zt5a44RG9HI7sjgUltn594GW24CDLTUKmFihORsiN7lZCIBMA3uk/xtx3PgdBm3sMYY7IsCTHGmEHKiewCkV1Qdftl9qM9kSBEdkUiu3br+dpwPsQepGVPQfJttO5gGPkw4l8h9z2q/ogu+ChbBrjdPhSNQfQetPxoxLdsr19Hy73848Df9VIyjT3izQS0SYzikHgLTX3hNYwE3Oa7oPFv2dkVBRmBjDgf8edehqWxx9DmayAzD4LrIRX/hwRW9c6lv0ebb4LU595eGKfGG7ODBBr9LzLivCXjJt5EF/6allkxrYPGS1GNIhUnd/l6jTGlwR1m1bGG17yPMcYMQQORgPSUugsh9l/abmoGNIE2X5fzGvAqUMnoZ/NvQhc/JKf2X6DdkXqPDq8DQBxIfwaAJj/0EhDioE1efxN3Nlp3dM4mi27T9Wj9OZD+2msEmHjZ6yuS/hZNfogu2Ati90P6I+/72HwteYsDxJ/0ShtnadNl5C5xfD2qeRo0GmNMkdlMiDHGmL5LT8/2Gmn/xjkDXWyoFgmi/rUg9QE5P/3vU4nYXvCviLcpP0cS4PMqaWn0Ljo2OVRvb0jqPQhOXnJUE9D8H9omNgoaR5v+A+lp7fqY5CsnvPjSqNe7w79S9ul5+nhoGtyF3vIzY0xJU4WMVccyxhgznGniZdx5u+L+tAbuvG1xo490fZFvbI4EBLwqVBM6vdR1E5B4lpwJiJRDcONuxd1fJLK/V2K3DT84S0HgZ96Xbh25l0sJtO+WnpnhHe/AhcT7kP60hwH6vMaSLaGtlOd5/uyyLmOM6ZqI3CQic0XkkzzntxaRehH5IPs4t9W5nUXkSxH5RkR+3537WRJijDGmhSZe9fYXZL4BUl6TvoY/4kZzdFxvRXyjILwTEG53JoSUH9/5TRednL/fRvW/vWaIXcWd/h638R+49b9D4091axmSagZN/A+N3oOmliQC4huN1N4OvglAwHsEN0Zq72zZ6C3hHehY9hcvEQuu3/aYMwbyxeMf51XT6gkJex3qF39ZcRodv+9ef4++VrcyxhSOq86APrrhFmDnLp7zmqqum338BUC8H9L/AXYBJgEHi8ikzgYBW45ljDGmFW38Jx33F8Sh6TI0ckCn1ZZkxF9Rpxai9wJJ8K2IVP2pZSN3zvtlZkPy9TxnQ4g7r8uY3djTUH8m3jKmNBp/Bvw3Q+0deRviaeYntO4Qb7mSZgBBg5ORmqsRCSKBNZHRT3h7XQh41cLIVs6K3gTRRwEXL0lJ4c10hKHi14hT3fb74lSh4d0g/hTtSypLxclo4iWI3k3uDvVtRgLCyIh/tUnMJLQR1PwnWx3r+2yltJOQskO7/N4ZY8xiqvqqiKzQi0s3BL5R1e8AROQeYE/gs84usiTEGGPMEulpuY+7i7x9C500QhQJIlV/QCvPAtLd64idnII3Kd9xMzekod0b+vZUE9BwFm3ewGsUUl+i0QeR8oNyX7foDMjMBjKtYnkXbb4eqfjlktfUajmTatpLXNLfsmQ/iB+kxpspKT8MCf4s5/1kxPmoBCH2sHfAqYTKPyChjSG4PurOgfgL2X01zdmrWn9PHIjsh1T8EsnRhV1CWyCjn8p5b2NM6VOkEB3TR4nIlFZfX6eq+SuH5LaJiHwI/AicrqqfAmOBGa2eMxPYqKuBLAkxxhizhG8sZL7teFwqur1syKvW1Y0EBLJJRoDcm7FDEJic43grqY/Ivd8iBvHHIJuEaHqGt/fCtyzqrJCtgJVpd00cov+FVklIG4kXIDONthvS06BxpOI4JLBm3jBFgl4iUvUHcJu8ZonZqmYiQaT6MjTzE6R/QH3LQNN/IP6Ed7FT680o9bH3iDFm2Juvql38UO3Ue8DyqtokIrsCDwOdb/rrhCUhxhhjWkjlaeii08ndiX0APqULbgJOObjtS+IKVF/WdflhCZF7FgWQMm/fR/3vIf50drO5C05nPUfylMUFNDnFm2XpIAPJ96GTJKQlJAmDr/3+jew539LgW9pLqaovRvXP4DZnE5bhVTXHmOGo1PuEqGpDqz8/KSJXicgoYBbQugnTctljnbKN6cYYY1pIeEcYcRE4ywDiLTWqPB0pO2pg7id+pPY2cMZmZ1oiQBiqLsUJb931AP41QapynIggZQej0Tu8buYksv08otlN97lmXgIQ6mRPprMMEMrxIgIDUgZXJIz4RloCYowpCSKytGR/IInIhnh5xALgXWCCiKwo3jrcg4BHuxrPZkKMMca04UR2h8juqKYRGfhfE+JfBUa/iKY+85YgxV+CpgtxU68iFafm3AOhmoL4M2j8Ka/RYaIZxMXrv5GBsoMgtA3M35HcG77bldeVMm/GofKU/HGW7YU2/7tteVzEq1YV2mbJyO4ib8mVb9mSaCRpjCl9CoXYE9IpEbkb2Bpv78hM4Dy89bKo6jXAfsBJIpLGa3x0kHqdU9Mi8ivgGcAH3JTdK9IpS0KMMcbkVIgEZMm9BI0/DLH7ljTuiz2Mxp5FI/uAbykksgfiWzq7QfzobBPEGN6ekBCEdkNCG0JwQ8Q3FgDNuXyqvTKk8lyI7Ootl8oXo1MLNTeji04DdwGg4BuP1Pzba7jo1ntL2ZJvAD5wKtCq85DAOtklVUv2yWjmJ6/XiH+V7m3gLwLVpNedPf4COCORsoM6rXRmjBncVPXgLs5fCVyZ59yTwJM9uZ8lIcYYY4pO3bpsmdrWezJcoAlitwFBtOnf6Ih/ISQhvTgBAe8zxDjEH4eqM7xkYbHQthB7gM67kMchtHGnCchiElwXRr8Imekg/pZkB0AXnpjdKJ/yHm4cFp2CEgQJoOW/hMg+sOhUrzt8NsnTyj/glO3X5b0LSTWBLjjYK1KgMcBBYw+iVX/BKdur2OEZMyR1s5fHkDG8Xq0xxpjSlPo8u8k8nyQQh4YzvCVY2n4jO96b+uTbgJfUaPRBr1t7SwWufBxv+RSgmR9xG6/Erf8TGn8B1fYVtLxZG/Ev3zYBSX8PqU/xEpAcsWszNP8b6g6E1FS8PSrN3qPhfDT5bifxFZ5GH/BKEbd8n10gDo3nobm+98YY00M2E2KMMaaoVBV1m0C7atYH4GSfl6e3iFTgRh+Ahj+B+LJbPzIQ3BmST9KxLC9AGfhXRhMve93iyQApb3mYfxLU3tL1kqnMbG+DemevQWOQ+SHHiRjafGPeHiNFEX+KJTNNrfkg+QGENilwQMYMcVqQPiElxWZCjDHGFI1mfkLn7woNvyN3gpBDaGty9yEJos44LwEhkS2nG/X+nHwWqq/G2zPZmh+p/jvgtipNnJ3N0CikPvFmBboSWA00f3nfLmV+6v21A8GpzHPC9UoqG2P6leKV6B3IR6mxJMQYY0zR6MKTvAaAGqXtzEb7ZGEJKTsAKs8EQtkmiuUgNUjtTUjyefL1DZHMDBj9LpQdD4H1IXwwMupRrwlg6pM818Uh3mWlSW8fStlheCWGO31mjmNBCG3e5T0KScoOoeNrEZBq8K9VhIiMMUONLccyxhhTFJqe7u07yDUD4l/LK70bewAvOfCDKFL9H6/DePlhaGQPSL7jldcNboSIH028Qu5kwgWSOL4KqDq94+nFjQxz6Wb1Kqk8EwKros03ezMb2tjutYUhsjfEHmbJUqcAOFVI2dHdukehSGhztOIX0HRt9vUrSBlSe4P1LTFmgAy35ViWhBhjjCkObST/hHwMZ8R5aPmhkPgfSCWEd0CcJY0JxRkB4R3aDhncEriajomN41XKah+CupCZhkqN1/SwQ0lfP6Q+wZ2zAYS2QirP9Dqb5yAiENkbieztjZ14HW36t7cPxD8RqfgNElwXDW2NNt/olfkNbYmUH4f4Rub9NhWLU3EKGjkIUlO8GZDghojkn6EyxpiesCTEGGNMwWnqE7T+PLw9G+0FIbQjkG1k6F+l6/E0gTb8NTtzkmTJsifxxis/FvGv2PaaxFto/engNgIu+MZ6yQ6u1/CQJF7zw0bvgviTaPJNGPVMm2QoHwlthoQ263g8vA0S3ibHFaVHfKPBt0uxwzBmyCuFZoWFZkmIMcaYgtL0DLTusByzDgBh8I1Gyo/s2ZiLTofEy0DrbuZ+CO+OlB+OBNruY9DMj+jCE2hTASozDWQMVJ0F6a+h+To69C1xm9Ho/UjFMT2KzxhjTFuWhBhjjCkojd6Sp5KUQPkxSPkvEKei++Nl5uRIQMDb46EdEhAvhvvo2MDQBRq9WQ7/SqgEcsQZ9xoNGmNMP7OZEGOMMaYTmp6GNt8C6a8gsA5SfmTefRI5pT4nZwdzqUCCkztNQFRTkHwPcCG4gde/IzPT2zytOZKQ9Ne5B8r8SO7GggruHPCtTO6N6sFuLQ8zxhjTOUtCjDHGdJsm30frjsJ7A5+G1Ido7D4Y+V/Ev1L3BgmsmZ1NaJeIaBI6GUOT76ALT6ZNclB9mTdehwQEwA+BdXKOJaGN0cSzHZeEaQYC64JvRe+R/po2yYoEkLID88Y4HGh6Jtr4T0i+7u2hKT8CKTsCEav6b0xvKdas0BhjjMlLG87F20exOIFIgTahDX/r9hhSfhRIqN3RMIS2RXzL5r6v24AuPA60AbSp5aELf+UlDpF96dDXQkJI+bG5gwjvBs7SQOs4IhDeGfGvhIggtbdkK2r58HpkjIKq8xDfUt1+rZ1Rdb0KWtF70dQn/TLmQNPMPHTB3pB4GrQe3JnQeCna8Mdih9YrmvkJt+k63IaL0cSbqGqxQzJm2LCZEGOMMd2imsizvEkh+Xa3xxHfslB7D9p4ASSnen0+yg5GKk7Jf1H8aXI3+lOIP4FUnYv6loPoreA2eEu1Ks9C/ONzxyAhGHm/Vyo3/iRIGCKHImX7LXmOU42Gd8/uN1HQOqg/Dzf5NlJ1UZ/6ZWhmLlp3KLjzvSRKBA2sh9Rc5y0xK1EavQM0RtulajGIPYJW/LrfErRC0PgL6KLTWNxDRmN3Q3ATqL7SShGboijFruYDyZIQY4wx3eQHAnTcAA445T0aSQITkdrbu3+BNoLm2sORRN1FOOJDKo6DiuO6H4NTgVSeCpWn5r6l2wz1Z9L29cYg9iSEd4HQlt2Pv/3Y9b/z9rIs7meiQHIq2nQNUvnrXo874JJTaFsxLEuCXoI6SJIQ1YRXnpl4q4NRSL7pJbyR3YoWmzHDhS3HMsYY0y0iPoj8nLZLmADCUHbYwN48uAnesqj2QYWR0OYDc8/km5Bzn0MMjT3a62HVbc7OHLVvqJiA2H97PW5B+Fci538HTXt9VgaL5BRyzqxpFI09UvBwjEG96lgD+Sg1loQYY4zpNqk6B4IbAaFsY78QhHdCyo8f2PsGJkFkV2/pVsvBCAS3hMAGA3JPzczMU0oYci8N6672yUfrm+a7X6unZObgNl2DW/9nNP4sqjkqjQ0QKT8KaL9cLOhVSWvXDLK0dbIQRAKFC8OYYcyWYxljjOk2kQhSewOang6Z6eBfpWflefty76q/QmhbNPoA4CKRvb2N5H3Ym5GP23wzNF5CzjK+EkEie/V6bHGqUP8qkP6i3Rk/hHfs9FpNvIUuOqGlo7vGHwLfeLTiDCS4FuJU9zqu7hD/ylBzHdrwB8jMBgTC2yNVFwzofftdcH1yz6yVIZH9Oh43ZoBZx3RjjDGmG8Q/HvJs+h6we4pAeEekizfqfaWZ+dkEJFfZ3wBE9oPgpn26h4y42NuYrmm8fQll4FQjlaflj0szaP1p2Y3hiw9GvWRm0UkooOXHIBWnDUhi1hJ7aCMY9RzoIi8hk/CA3WugiASg5ip04fGgilftzYHwnhDausjRGTM8WBJijDFmQGlmFtp0PaTeA9/ySMXxObuYl4zkG+T8lBwgtBVOVd/L0UpgdRj9PBp9EDLfI4H1ILIbIpH8F6W/apuAtJFdxhW9FfyrQmT3PsfYGREBqRnQeww0Cf4MRr8GiefAbYTQpog1ojRFZDMhxhhjTB7qNnifvDujutWcUNPfowv2BY0DaUh/iSZegerLkfA23bunKmS+A20G/2oDX8JWQt6G9A4tIxzI08ekV7dxapGKX/TggkD2U/tOaAxtvhEZ4CRkqBCnAiJ7FzsMY4YlS0KMMcZ0i9t0JTRd65Vj1RQamIjUXIs4tXmv0cZ/ZbuSL+4roUAcbfgThLbuctmQpqejC0+EzAwQP+CgVRfiRHbunxeVS2hLcmQgQBCJ7DNw9+2Kb2Xwjfb24nTGXVSQcIwx/cc6phtjjDE5aPxZaLoeSHg9O4hD6lN0Ye4eGy2S79C2sV2WuwDcuk4vdd0MOn9fyHyTvW+zd+/6M9FUrqaJ/UMkglRfA1LuPSgDQlD5W69KVx+4sSdw522H+9NquPO2wY12v9SviCDVV3vLoCRfXxY/hLbqU4zGGFMINhNijDGmS9p8E9B+P0IaUh+gmTn5O2U71ZBZlOdcFw0OGy8C6nOcSKDRu5AR53V+fR9IaCMY8wYkXvWWkgU3R3wj+zSmG3sC6s+ipUFeZhY0nIOL4pTt2b24AhNgzGuQeAmNvwrxR/A2VbtAEKQCqTipT3EaY4pDh9lMiCUhxhhjuuYuzH1c/ODW5++UXf4LaLiQtglMCMK7dFpVSdWF+AP5zkL6WzT1Gfgnek0UweuXoXGQ8n6pDiUSgfBOfR6nReMltOnQDd7XTZdAN5MQL66g15slvBOaOhhtvtlbrhbcFCk/otPlcUOVqkLyHTT+JOBDInsiwXWKHZYxPeL2qf/Q4GNJiDHGmK6FtoLoTDr2zfBBJ03qJLI/mv4BordlN1anILQFMuLPqCYg/ixkZkJgDW+2YXGHco123rgvNdUrcUsIHfE3SLwIsYeAtLd5vOovSGizPr7o7lFVSH/jxRxYPf/GeXdGnuOzUdVeJU4SWBOp/lePrxtqtOE8b1ZI44CgsfvR8mNxKrtYLmiMKRpLQowxxnRJyk9A44+D24BXDlbw9kmc6/VcyHedCFJ1BlpxAqS/B99SiG9pb8N53YFeyVmNg4TBtwLU3ok45V5ndCkHzbUcCyDlJTQ0w6KT8ErqZpOWzAx04Ukw8p4+7+HoiqanoQtPgMxPXkUtHLTqrziRtr1MNPVZ/kGkZkD7egx1mvwQYo+wZLbNK35A8w1oZG+vp40xJU51+JXotY3pxhhjuiS+kciox6H8OAisA6Gdkdrbccp+3r3rnSokuE5Ld3WtP8Nb4rW4cpZGIf0N2nyV93xxoOLXQCd9M1p43cPbSqCNl3f35fWKagatOwIy04BYq43zp6Ppb9s+OfkOeXuP+Eu4Z8ogoIkX6bjMLSvxciFDMcb0gCUhxhhjukWcWpzKU3FG/hen5vJer7lXtxFSn9CxalYy+4l29n5lh0HVH8BZGnBARgLd7RGikHwZd95uPaqkpW6DN0uj7Zed5ZB8O1sprH053xQavbftIWekN9vTgQ8KtGxsyJIQORM8cfJ8z40pTaoyoI9SY0mIMcaYAuus4d6ScyKCU3YAzphXcZb+Ahl5Oz37taWQ+QatOxTN22k8+0yN4S46DZ27KTp/D3TuJrjR+5ecT3+DRu9B4y+gi/equHV5XkoG3LltD4W3zx27BJHIHj14TaY9Ce9OziREFcI7FDweY0z32J4QY4wxBSVOFRqYBKmPaPsuPgjh/G/Ixb8KGt4ZEs94e0kACGf3jjSTe0mOAklvA3wkfwUqXfR7b3P74mVdGoOG83GdMRB/1LseQHzep+u1d0BwA7zyuO2FQarQxP8guDEifq/SVu1t6MKTs/tcBCSEjLgc8Y3KG5fpmvjHo1V/goY/AT4QAc3AiEsQp6a4wRnTbcOvWaElIcYYYwpORvwDnX8gXuIQ8zai+8YhFb/q4rq/QXwTNHoPaMJLWsoOhtj90HQZaFPHizQBmTl5x1R3ISReoOO+khg0XuhtOl+c4CigUXThyciop6HsEIjd0yop8gEJiD2Kxh/zXlftbYh/ZSSwBox+GdJfAhnwr9ZSXrgnVDMQfwSNeiWMJbIvRPbs1Vi9pepC8k1Ifwv+lSG4yZLKZkXglO2LhreFxGt4S9y2QpyKTq9RzXjL6aSyoN87Y4zHkhBjjDEFpe5CtPEfQCPggjMKyk5Ayg/r8s2giAORvZHI3m1PlB+B+pdHF52a3eze+qKQt5k+H3dBtnxwjpLAmVxliRUysyEzDan8PQTXR5vvBPdHyPzonSfaKmE5AUY951UKE4HAap2+xs6oKrroFEi8zuJqUJr6BBLPQfVVBamypW49WneI12xR016vGN9YqL0LcUYM+P3zEacGIl0XSlBVNHobNP3bSx4ljJafjJQfY1XKTFGV4r6NgWR7QowxxhSMqqJ1R0HiJVo6fbvzoeliNDOrb4MHtwD/BCDU6mAY/GtCcMP81/nylXB1QDqpzqUJL7EI74Qz8jbwLUfH5VkK7rzs7EcnQ6W/xa3/C+7CE3Cbb0XdHDM6AKkP2iQgnhgk34DUe53eo6c0PQ1NvIJmZrc93nAhpKdlk71ktrLZNLThgn69/0DR2H1eg0htwCv13AhNV6DR24sdmjHDiiUhxhhjCif1ofcGtsOb9TTUHdGnoUUcpPZ2qDjJ6zniWxEqfonU3tTpJ9wiQag4jbblgB1vKVXkACBXhaU4mvqq7aH2MzAtfK2Wa3WkiZfR+XtD7G4vOWu8BF2wh7dMrL3kW0Ai1yBeta5+oG4Ut+4Yb4P+ot+i83bEXXS615EeIP4UHWeHUtnjg0DTf3L894hB89VFCccY8CZOXZUBfZQaS0KMMcYUTmYGuTdzA+6czpv6dYNIGKfiZJzRz+KMfgan4oT8HcxbccqPQKov8ZZtOUtDeDdk5ENI5Sleed1cGv/YtupWeFdyJyx4HeFzUM2g9Wfh7TnJZI/GIDMPbb4hR6A12ZK07YW8c/1AG/+S7WuSyJYg9jrba/N12Wdk8lyZ8brHlzp3Xp7jCwZH/MYMEZaEGGOMKRz/auR/E+tAuvs9PfqbhLfzeqCMeRWn+l+If3mvqpVvpTxX+CA5Zcn1ZQd5m7RbZlT8QBiq/po/EcpMyzODklxSkau18C7kLvUr2SSob1TTEHucjpv04xC90/tjaKscMTjeZvDBsKfCt0Ke4+MGR/xmaFKvqvRAPkqNbUw3xhhTMBKYgPqWh8z3Oc76wb9iwWPqklOW54S2aYYnEoaR90L8KTTxMjhLIWUHIP58SQzZ8sJ5kjLxqjtpcioaewg0hUR2g+rrof4U0MUliUNIzb/7aVN4irxJYrbymFSdiy74CNxmIAqUgVOGVJ3bD/cfeFL1O3Thr2lb0jkMFb8vVkjGDEuWhBhjjCms2lth3va0/bQ9AIGJ4F+rV0OqG4XUFG+c4GREAr0OT91Gb6M3AQhtipQdiCZfzbGPIASB9dscEQl65XI76UnS5vm+pdHAGtmeKa3f/EeQ8iNwGy+F5lvw3jArGn8awjvCqNeQzGfex5uBNfutxKxIBPWvDOmv2p+B4CbZmJeBUc9B/Ek0/QXin+gtX8ubrJUWCW0NNVejjZd4ybBveaTyN0hoq2KHZoY5l+E1E2dJiDHGDGKqaa+qT/Qu701yaHuk4hTEl2cfQwlwfEujox5B68/LJg5+iOyOVJ7Tq+UwbuwpaPg9Xo8O9caruRYJrt/FlTnGij4CDeewpImiA9VXQeQwiN7mfS0O4CC11/XLm3+pvsKrGObO9sbXJET2Qf3rQ/25tN2IHoPEs0j6QCQ4uVvja3qGV1XLGQ3BDbvs5yFV56MLjwJN4e3fCXqNFSuXzBSIUwZl+w3at0wS2gwJbVbsMIwZ1iwJMcaYQUzrz4T487QsLYndhyZehFFPtjRrU016vTCcWiTnpubCE//KyMg7vKZ3SK/X4mt6OtT/jvbd0nXhsTD69R59Oq/p6dBwNh0qPy06Dka/hZQd7FWnciohtHW3v5eanulVBfONgcAGHZIA8S0Fo570ZkPcORBY25shid5JzmXcGkfjL3SZhKgq2vBHiD3i9fIAkGqovR3xL5f3OgmuByMfQ5tv9UoLB9dDyg7z4jTGDAhl+PUJsSTEGGMGKU1Pg/hztP2kPA1uPRp7EMoOR6M3QdOV2X0HgpYdhlT+X1G7W7fW1zg09hB5q20lXoTI7j0Y62E6lp4FyEDTZciI88C/X/fHa0kCHvaaIQI4tV4S4Fu2zXNFBILtGypG8GZ32vN5e0m6En8Y4o/hVbnK/h3RGLrol8ioRzq9VPzjkRF/7PoexhjTS6XxW8gYY0zPpT4h92dJMUi+i8YegMYrQJvxZgpiEL0DbbqyV7dTddHEq2jT9Wj8GW+GZQD0qEyq20DOJEQzLRupuy39bf5zsTtxF/4GdRd1f7z4Q9kkIOn9N9BmyMxCF57SvevD20POuRAf0p3O4M135NjH4kL6O292xhhTQga2R4j1CTHGGNN/fMuC5HqTGgDfMtBwAW07a+N9Hb05uwyq+9RtQhfshS76Ndp0KVr/e3Te9mjmp95G32F8t/4s3J/WQudMwq071lse1QUJb+01Few4IuqfiGqumY08Aut2fj7xHFp3aLeTpPxJwFdo5scurxenCqm50nt9Up6d/QhB1V8Qf74u760DyNM8UTpvnmiMMYVgSYgxxgxWgfW8RKTDbIgfEm/hlU/NQWPk7LrdCW28xJsp0CiQ9j7Vd+ei9Wf3PO72Y6uidUdALLt0iAwkX0cX7I+6DZ1fHNwMghu2S0T83hh1R6BzN8Rtuq57iUPZIeRe/rRYCjKzut+ZXJtzHxdfJ93V2z01tAUy5k1kxN+RERchY17HKdu7e/cP7wLk2rfiQ201tjElZ7j1CbEkxBhjBikRQWpu896EEwCC4BsHlWeB+0P+C52lyNvZO5/4Y3TcL+FC8s2+L8tKvQeZ72hbstf19i/EHur0UhEHqb4aqboAQtuAfyLer7Y03l6IZmj6Dxq9q8swHCfk9eCgkw7r6ubpcZJDeOfcY0lZJw0QczxdIkh4ByS8C+JUdf+68mOySeri5onZ5RiahgU/x607CnV7uGTNGDNgVGVAH6XGkhBjjBnExDcKp/YWZMwbyOgXkFHPI04Y8hZPdaDy7F5Uo+rsY7Q+fsSW/i7Px3RxSH/e5eUiPiSyO07NtZCZS8du3zFovqZboTjhzZExr0Fod3LutxEH/BO6NZaUH+sti2vXQV1GXFyQwgDiVCCjHkGq/gj+SSz5lZ+dCUtOQRsGR4NBY8zQY0mIMcYMAeKMQHxLecmFf0KeN/UC4f1xIjv1/Abhnen4ptzJlpztY9lf/8qQMymKZN88d4+qgi7MfdKd3+1xxKlBRpwPTg1tf00GwbcyBDbo5jhVyKhHvZmp0E5QdgQy6jEktEW3Y+krkTBSth9oAx07oSch/gyq8VyXGmMKyFsyZTMhxhhjBjEJrAGBtWi7FMgBqUaqTu/dmJWng2+5VnsvysCpQUZc1Ndws3tbVsZbUraYAxJGIt3c/0C2zK0vz4Ztf/eXPwGIU46MfABCOwAhkAqI7IvU3tqjWSSRCE75QTg1/8ap+j3iX75HcfQbtzHPiRTadJXXcd4YYwrIdqYZY8wQJLXXo43/9HpUaAICa4MzAl14IhrcFCk/DHFquj+eUw2jnoDEC2jqc+/NdHgXRCJdXtvl2CJQeyva+Nfs5vQ0BDdDqs5FnMqejVX5B3TRqbRtXhhGKs/qeVy+pZGaf/f4upIU3BQSzwA5qqI134QmXoGR/0Wkk/0wxpgBVYpldAeSJSHGGDMEiUS8vQBVf8SNPZXtKp4EXEh9gsbugZGPIr6RPRgzAOGdkfDO/R+vU4GMuBBGXNi3ccLbQM01aNPlkP4e/CsjlachwQ37KdLBSSr/D02+nq2M1r7AQBLSP0D82R41dzTGmL6w5VjGGDOEqaah4Vy8mYHFn4InwF2EdnOz9mAjoU1xRt6Ls9Q7OCPv7nMCouqiGu9ZE8USI/7xyKgnIbgRuX/1R9Hkm4UOyxjTipXoNcYYM3RkptHxk2+8Y4mXCxvLIKPq4jZdic6djM5ZF523DW7suWKH1WviG4OUHQ45l9AFwVmm22NpZg6amd1/wRljik5EbhKRuSLySZ7zh4rIRyLysYi8ISLrtDo3LXv8AxGZ0p379VsSIiI+EXlfRB7vrzGNMcb0kVR5fSFycaoLGspgo42XQNP1oE2AC+6PUP9/aOL1YofWe6HNs0lI+7XnPq+KVhc0/R3u/J+j87ZD5+2IO28XNNV1GWVjTNdKoDrWLUBn622/B7ZS1bWA84Hr2p3fRlXXVdXJ3blZf86EnArYTyJjjCkh4hvjVZ9qvwVQIkjZ0UWJaTBQTUD0dryeGq3F0aYrihFSt2hmHm79H3DnboI7d5tst/glM2EiAaT2zmw1srBX7cwZjdRcg/iW7nxsjaMLDoH0l3j7ixKQ+RatOwzNW33LGDNYqOqrQF0n599QbamD/hawXF/u1y8b00VkOWA34ELgt/0xpjHGmP4hNZejdcdD+msQH2gKyo6C8C7FDq10uQvJ24Qx00k3+iJStwldsA+4C/A6xgNNV6Kpj9tU+RL/isjoJ9H0D17lNP8q3WueGH8eSNDx+5KG+BNQdlA/vRJjhh+lIL08RrVbKnWdqrafzeiuY4GnWn2twLMiosC13Rm3v6pjXQacCeStpSgixwPHA4wfn6eOuzHGmH4nTi0y6n40/Y3XUTyweo/K8w5LzshswpbjnH9iwcPpDo09AG49LQkIAHFIvIymv0Pa9Urpcc8Sd46XtHS8MZr5scMCrw5Pc5u8JW7xxwAXwjsilWcgTm3P4jDG9Nb87i6V6oyIbIOXhGze6vDmqjpLRMYAz4nIF9mZlbz6vBxLRHYH5qrq1M6ep6rXqepkVZ08evTovt7WGGNMD4l/FSS0qSUg3SASgPJf5djEHUYqTitKTF1KTqFtf5Qs8UPqs76PH1gbcvURkTIksG6nl6q6aN2hELsXtB60EWKPoAv2RzXZ99iMGQJ0gB/9QUTWBm4A9lTVBS2xq87K/v9c4CGgy7KE/bEnZDPg5yIyDbgH2FZE7uiHcY0xxpiikfJjoPIc8I0FQhBYG6m9EQmuOyD3U02hibfRxJu9e2PuXwnI1WxQs6+hjwKTwb8mEG51MAS+FSG0VefXJt+EzHTaVmpLe0vH4s/2PTZjzIATkfHAg8DhqvpVq+PlIlK5+M/AjkDOClut9Xk5lqqeBZyVvfHWwOmqelhfxzXGGGOKSUSQsv2hbP8Bv5cm30EXnkybjubVlyGhLbs9hpQdjEZvhTYJjB98y0EXMxXdGl8Eam9Cm2+G2P1erOE9kfJfIOLr/OL0F+3iytIomvocKXCTxOlfzOLtx6cSCAfYYt+NGbmMzQ6aIlMKsSekUyJyN7A13t6RmcB5QABAVa8BzgVGAleJCEA6u7xrKeCh7DE/cJeqPt3V/axjujHGmGFFNY02Xe1Vv9JGCKyFVJ2DBNYuTjxuA7rwuGw381bHF/4KRr+A+Lq3hFl8S0PNLWj97yEzwzsY3ASp/jvZNwd9JhJEKk6AihN6dqFveW8pl7bvWVOG+Ffsl9i66+Y/3s39lzyOm3FxfA7Xn3kH/3fTSWx70OZdX2zMEKaqB3dx/hfAL3Ic/w5Yp+MVnevXJERVXwZe7s8xjTHGmP6kDedB7DFa9k+kPkAXHA6jHkT8Kxc+oPgzeU64XtWp8qO6PZQE10VGP426dUAQcSr6I8K+C20NMgI0DmSyBx2QMIR3LVgYX7zzNQ9c+jjJWNtZmX8dczWTd1yHqtq89XWMGXgl2NV8IFnHdGOMMcOGunUQe4SOG7iTaFNvK1X2kTbkaSiZQt1FvRpSnNrSSUAAET8y8l4Ibgb4vEdgMjLyPsQpK1gcL93zOslY+9kY8Pkd3n7ivYLFYYyx5VjGGGOGk/SM7LKg9vsTMpDuhwpSvRHcBO+Nebs3xxJGQkNniZD4lkJqb8huuldEQgWPQV31msXn+sR5mH0KbUpPsfeEFJrNhBhjjBk+/ONyb5DGAf9q3R5GNY7bdBXuvB1x5+2U7Uzeu1KzEpgEkV297uUtB8sguCUENujVmKVMJFiUBARg6wM3JRjuWEEsk86w4a7rFSEiY4Yvmwkxxpgi0/R0NPYoaCMS2hqCG/fbRmLTlji1aGR3iD1J2yVZIaT8+C6v1+SHaPQOSLyQ3Uie3d/QdCWaeBVqb+/Vfzup+iuEtvMaDqqLlO0NoZ3s70E/m7TJRPY4aUceu/oZUok0Pp+DOMKvrz6OEaOqih2eGeZ0mM3GWRJijDFF5MYeh/qz8bpcp9HYPd4n4NWXI2KT1QNBqi5AnTEQvQO0GfyrI1XnIoEJnV7nNt8DjRcBCTqu3YlD+hNIvQvBLnt0dYxJBMI7IOEdenyt6ZkT/nEEOxy+FW8+NoVgOMhW+2/MmPHWRNkUlzL8lmNZEmKMMUWiblM2AWn1ibzGIPEaJF6E8PZFi20oE/Ejlb+Fyt+iqp3ONqi6Xi8L1WwCkqMjecuTE5D8oFdJiCmsldZenpXWXr7YYRgzrFkSYowxxZJ8G8SfY0NsFI09igyCJEQzsyH1MThLeR3FB9nyoXzxqirafCM0X51ddhWmy53LEgLfUv0eozFmGFDAZkKMMcYUhHTyI1g6bp4tJaqa7bfxEEgAcMG3LNTcgvjGFDu8PtPoTdD0b2BxA8GmLq4QIAjhHQc2MGOMGSJswbExxhRLcJM8JyJIZN+ChtJTGrsf4o8ACdAm0Cikv0cX/abYofWZqkLTNSxJQLoSAN8qyMi7EIkMZGjGmCFMdWAfpcZmQowxpkhEglB9NbrohOxKHxdQKDsECeVLUEpE9PbsMqXWMpD6CM3MR3yj2pxRtw5tvgHiL4NTi5QfCxJGm66AzDTwT0QqfoME1y3QC+hMCrQx/2kpBwQ0BeVHIWUHI75lCxadMcYMBZaEGGNMEUloIxj9v2zJ1yYIbo74B8GGWW3Oc8KXPbckCVF3ITr/5+AuBFKQAV30Pl7mle0UnnwDrXsPam9Egj8buLCTH6LN10B6GgTXRspPQvwrtHtWAJzR4M7pOIBvIjLifNBFEFgPcUYMWKzGmGGmBGcrBpItxzLGmCITpwKJ7ImUHTo4EhCA0HZAoONxpwJ849oc0ubbwV1E247gKVoSkBZxtOGv/RpmmzjiL6F1h3uVxzLfQuwRdMHeaOqrNs8TEag4A28zemthpOp3SHBdJLS1JSDGGNMHloQYY4zpMak4EZxRLHmj7gPCyIi/dexvkngV6GY38fRXXT+nF7yN9H/GK7G7+OPGbPndxn90eL5T9nOk+l/gWwUkAv41kJqrkdDmAxJff9DMPDT+DJp81ystbIwZRATVgX2UGluOZYwxpsfEqYVRT3gb1JNvgG8cUnYY4l+x45N9S0P6Y7q11sAZ1fVzekMbwJ2X6wSkpua8RAZJ80BVRRsvgejN2apqClINtbci/vHFDs8YY3KyJMQYY0yviFOBlB8F5Ud1/rzyY9DEq7Rt9Lf4U7nWiUkEyk/s1xiX3C5C3sl/pybvZZr6GG24AFIfgVRA2eFIxclIZ+WVCy3xIkRvA5Kg2RknjaELj4dRTyEiXsWv5Oto7CFAkcjPIbjVoOvrYsyQZntCjDHGmP4jwfWh6jyvqpSUAyHwrweRw4GI95ByqPglUnbgwMQgQYjsTcd9HhEoOy7nNZr+Dq07DFLv4+2mr4fmG9CGcwckxt7S6B10LCfsQmY2pL/xntPwZ3TRLyH+GMQfRxf9Bm04q+CxGmPMYiX0UY4xxpihyinbF43s4b0pdqpbStpq1Rng1oEz0ksUBpBUnYNqE8Sf9ZYtaQrKjsib+GjzdUtmFlrEIfYoWnm6tyStlzT1GRp/BnCQ8K5IYEKvx8JtyH1cvEplmvoCYg/SZiZKoxB7Ci07BAms3ft7G2P6h1KS+zYGkiUhxhhjCkIkCIFJ7Y6FwLdMwe4v1Zegbh1kfgLfeMSpyH9B6jMgk2OgEKR/gGDvkhC34Z9Llk8haPONaMWvcSp+0avxCO8CTV8BiY7nApOy92pfiQzv+YlXwZIQY0wR2HIsY4wxw4o4tUhgUucJCIB/dXL+mtREhzLE3aWpz7NJQRyvOWXG+3PT5Wh6Zq/GlLKDwT8eb2kbLK5URtX5XuIn5eT+zDHg7XMxxpQGHeBHibEkxBhjjMlBKo4DQu2OhiG8a4eO8N2l8efIW6448WKvxhSnHBn5AFJ1tte/JXIgMvK/OJHdsiHvlO9KCO/aq3saY0xf2XIsY4wxw4Kmv4HEK0AQwjsjvtGdPl/8q0DtrV5/kfRn3oxC5BCk8tQ+ROHH+/yvfR8PgT5U3BIJQ9mBOfe3iFMLNf9GF53Kks8eM8iIfyK+Mb2+pzGmv9meEGOMMWZIcRv+AdHb8ZY/+aDx7+iIv+NEdun0Ogmui4x6CFXtl3K2EtkFbb6Gjns0FEID15NEQlvBmLcg8aZ3r+DGiFM2YPczxpiuWBJijDFmSNPk+xC9gyXVoVLe/9WfiYY2Q5yqLsdon4CoZiD1IZCGwLqIBL2KV9H7QRuR8I4Q2hYRX9tx/CuiladD4z/wPvUUwPX2b3QxM9NXImEIbzOg9zDG9EEJ7tsYSJaEGGOMGdI09ihtGyVmid+rDhXZvWfjJT9AF56IV43KS040vAfEHsLb7+F6ez+Ck6Hm2g6JiFN+BBreMbsHxIHQ9r3eY2KMMYOVJSHGGGOGuDwfL2on5/KN5DajC48BbWp7InZ3u2dGITUFEs/n3BguvqWh7JAe3dsYM8QNs5kQq45ljDFmSJPI7nTslA6QhtCWPRss8QIdN5XnoVE0/nTPxjfGmGHCkhBjjDFDW2ADKDsALxHxAUEgBFUXIs6Ino3lLgLN1fgvF8f6cBhjukcBlYF9lBhbjmWMMWZIExGk6g9oZB9IvOx1PA/vgvSmU3twE7r/+V0QiezX83sYY4YlHWbLsSwJMcYYMyxIYHUIrN7HMSagkT0g/gRoNHs0Av6JkP7G26euCqSh4lQkuE5fwzbGmCHJkhBjjDGmB6TqAght6ZXjJYVE9oLw7oALif95yUlwY6t4ZYzpGZsJMcYYY0qDagJSn3rdyv2r9kvDwL4SEQjvhOSoekV428IHZIwxg5AlIcYYY0qSG3sMGs7FW+OUAWdpqLkO8S9f7NCMMab/leDm8YFk1bGMMcaUHE19CfV/AG32enJoDDLT0LojUO1miVxjjDEly5IQY4wxJUejd+F1H29zFLQBUlOLEZIxxgwo0YF9lBpLQowxxpQedx65mwIKuHWFjsYYY0w/syTEGGNMyZHQ1kCk4wlNQmD9QodjjDEDSwvwKDGWhBhjjCk9kZ+Dfxxel/MsiUD5MYhvdNHCMsYY0z+sOpYxxpiSIxKG2vvQ6D2QeAqkCik7DAlvU/BYNDMfEi8CCqFtEN+YgsdgjBnqZNhVx7IkxBhjTEkSpwypOAYqjilaDG70QWg4D8TJLme4AK06B6fswKLF1F9UXURsQYQxpjjsp48xxhiTg2Z+8hIQEl6JYGLenxsuQNMzixxd77mx53HnbYfOWQ13zoa4TTeiWoILxo0ZbmxPiDHGGGOIP5vnhAuJpwsaSn/RxOtQ/1vIzMgeWATNV6DNVxc1LmPM8GNJiDHGGJNTitxlgl3QVKGD6RfadBkQb3cwBs3Xo4P0NRkzZNhMiDHGGGMIbUvuX5N+CG1f6Gj6R3pa7uOaBre+oKEYY4Y3S0KMMcaYHMS/IlScgFcm2Mk+wlB+NBKYUNzgesu/cu7jEgSnuqChGGPaGWYzIVYdyxhjhhh1GyHxCpCE4JaIb1SxQxq0nIpfoaHt0PiTgCLhXZDAGsUOq9ek8rdo3S9ouyQrAuUnI2JvCYwxhWM/cYwxZgjR+EvoolNBfICCZtDK3+GUH1bs0AYtCayOBFYvdhj9QoIbQs3VaOPfIP0tOKO8BGQIlBw2ZlBTrE+IMcaYwUndBi8BId526r3xYjS0MeJfpVihmRIioc2Q0GPFDsMYM8zZnhBjjBkqEi+Q+8d6Go09WuhojDHG9IDowD5Kjc2EGGPMUKEJcu8+dEHjOY4bMzC+eOdr7vnbQ8z6+icmbTqRg36/F8usuFSxwzKmtJVgojCQLAkxxpihIrQ1cGGOE2EkvGOBgzHD1ZuPTeHCgy8lGUuiCjO+nMXL977OlW//lXETxxY7PGNMibDlWMYYM0SIb2moOIUlJWUFJAKR3SCwQZGjM8OBqnLFydeTiHoJCEAm7RJrjHPj2XcVNzhjTEmxJMQYY4YQp+J4ZOQ9UHYkRA5Bqq9Dqi5EZHhVXTHFsWheA/XzGzocV1U+evWzIkRkjOkuEblJROaKyCd5zouIXCEi34jIRyKyfqtzR4rI19nHkd25ny3HMsaYIUYCk5DApGKHYYahssowkDvhHTGqqrDBGDPIlMDm8VuAK4Hb8pzfBZiQfWwEXA1sJCK1wHnAZLydLVNF5FFVXdjZzWwmxBhjjDH9IhQJsfVBmxIMB9ocD5eHOPCMPYsUlTGmO1T1VaCuk6fsCdymnreAahFZBtgJeE5V67KJx3PAzl3dz2ZCjDHGlCxNfwfpb8C3IhKYUOxwTDf8+j/HEWuI8/aT7xEI+Ukn0+z9613Z6ehtih2aMaVt4JsVjhKRKa2+vk5Vr+vB9WOBGa2+npk9lu94pywJMcYYU3JUk+iiUyDxBkgANI0G1kFqrkWcsmKHZzoRLgtx3gOnU/fTQubNrGO5CUtTPqK82GEZY2C+qk4udhCL2XIsY4wxJUcbL4PEm0ACtAmIQ+p9tDFXCWJTimqXrmHi5JUtATGmO7QAj76bBYxr9fVy2WP5jnfKkhBjjDGlJ3Yf0L7BYhJij6Ba/N2bxhgzDD0KHJGtkrUxUK+qs4FngB1FpEZEaoAds8c6ZcuxjDHGlJ68Hd5TQAb79WWMGXKK/PmKiNwNbI23d2QmXsWrAICqXgM8CewKfANEgaOz5+pE5Hzg3exQf1HVzja4A/ZT3BhjTCkKbgzJ1+jwWzmwDiL2q2s4SMQSfPH2N4TLQ6w6eWXrdWPMAFPVg7s4r8Av85y7CbipJ/ezn+TGGGNKjlSdgy7YLzsjkgSCIAGk6s/FDs0UwAt3vcZlJ16H4wjqKpUjK7noibNYftK4ri82ZpAqgT4hBWV7QowxxpQc8a+AjHoayk+A4FZQfjQy6ikksHqxQzMDbNqnM7j0uGuIN8WJNsSINcWZ+8M8ztj+L2TSmWKHZ4zpJzYTYowxpiSJbxRSeUqxwzAF9sS1z5FKpjscTzQn+OClT9hgh3WKEJUxBWAzIcYYY4wxxbFwbj1uxu1wXFEaFjQVISJjzECwJMQYY4wxJWPj3TcgXB7qcDydzLDWlrYczwxhpd8npF9ZEmKMMcaYkrHVAZswfvXlCJUFW46Fy0Psf/oejFq2toiRGWP6k+0JMcYYY0zJCAQDXPrqX3jm5pd4+d43KBsRYY8Td2LDXdYrdmjGDBjR4Vcdy5IQY4wxxpSUYDjIHiftxB4n7VTsUIwxA8SSEGNKwHuzf+SeTz6iKZlktwkT2WmVCfgdWy1pjDHGDBs6vBpyWhJiTJFdO+UdLn/nTRLpNAq8On0a9376MTfvuQ8+S0SMMcaY4WGYLceydzjGFNG8aDOXvf0G8WwCAhBNpXjvpx95/vtvixqbMcYYY8xAsSTEmCJ6c8b0nMuuoqkUT3/9VREiMsaY4UdViTbGcN2O/UmMKZTFm9MH6lFqLAkxpojKg0GEjmtAHYSqcLgIERljzPDy1I0vsP/Sv2CfkUezz8ijuffvD6Nagu/YjBlibE+IMUW0+bjl8Tkdk5Cg38eBa6xVhIiMMWb4eOme1/nPqTeTiCYAaK6Pcvtf7gcRDjxjzyJHZ4adYZb72kyIMUUU8vu5Za/9qA6HqQgGqQgGCfl8/GGLrZk0ekyxwzPGmCHt1vPubUlAFktEE9zz14dsNsSYAWYzIcYU2TpLLc3bx57IWzNnEE2n2GS5cVSFbCmWMcYMtHkzFuQ8Hm2MkYglCZeFChyRGbZKdN/GQLIkxJgSEPD52GL5FYodhjFmiJrx5SwevvJpfvpuDutssya7Hbcd5SPKix1W0Y1ffSzfvP99h+PVY0YQigSLEJExw4clIcb0wXcL6/jb66/yzqyZjAiFOXa9DTh87XURGV4Nh4wxpWvKsx/yp33+TjqZJpN2+fDlT3noiie4eurfqR49otjhFdVxFx/GuXteTCKWbDkWKgvyi78daj/HTeENs5kQ2xNiTC/Namxgr3vv5IXvvqUhkWBGQz0Xv/4qF7z2crFDM8YYAFzX5Z/H/IdENEkm7ZWfTcSSLJpTz10XPljk6Ipv/e3X5i+P/p4JG6xEuDzE8pOW43e3/ZodDt+q2KEZM+TZTIgxvXT91HfbNBkEiKXT3PXxh/zqZxtTE4kULTZjjAGYM20eTYuaOxxPpzK88ci7nHzZ0UWIqrSsv91aXPXuxcUOwxibCTHGdM/U2T+SztHYKujz8+3CuiJEZIwxbYUrwriZ3O9syqrsgxJjTPH0OQkRkXEi8pKIfCYin4rIqf0RmDGlbuWaWpwca4aTmTRjK6uKEJExxrRVM2YEkzZZFZ/f1+Z4qCzE3r/etUhRGWNysY7pPZcG/k9VJwEbA78UkUn9MK4xJe2EDX5G0NfuF3u2ytUylZVFisoYY9r6w92/YfzqYwmXhyirihAIBdjh8C3Z+Zhtix2aMWYY6/OeEFWdDczO/rlRRD4HxgKf9XVsY0rZ6qPHcO1ue3LOS8/zU1Mjjgi7r7oaf9l6u2KHZowxLWqWqubaD/7JV1O/Y8GsOiZssBKjlxtZ7LCMMcNcv25MF5EVgPWAt3OcOx44HmD8+PH9eVtjimaL5Vfg5SOPpSGRIOz3E/IXvtbDzIZ6nv32G0SEHVdahbFVthTMGNOWiDBx8soweeVih2KMMUA/JiEiUgE8APxGVRvan1fV64DrACZPnlyCK9OM6R0RYUQ4d4dzVW15zkC45YP3uPj1V1u+/vvrr/L7zbfkyHXWH5D7GWPMcPf2k+9x8zl3M/u7OYxbbSzHXnQI6227VrHDMkPBMHt33C9JiIgE8BKQO1XVCo+bYUdVueXD97l6ytvUxWIsP6KamnCYD+f8BMBWy6/IBdtuz9IV/bdXZHr9Ii5+/VUSmUyb43/736tsu8LKjBsxvJuQGWNMf3v1/jf5+1FXkoh6zQ2/fOcb/vjzv/GnB89k8o7rFDk6YwaX/qiOJcCNwOeqeknfQzJm8PnPu2/xzzdeY340iqvK94sW8t5Ps8moklHllR++Z5/77iKRTvfbPZ/59mtc7fixiap3zhhjekpVeeL65zhilV+xZ/UR/G7H8/nmg++LHVbJuPaM21oSkMUS0STXnXlbkSIyQ8YAV8YaqtWxNgMOB7YVkQ+yD6v7V+JiqRR/evlF1rr6Cla98lIOf+i/fGe9LXolmclwzdR3iXWSYGRUaUwkePa7b/rtvjnyD+949n/GGNNTt/35v1x92q3M/m4O0YYY7z3/EadtcS4/fD6z2KEVXSadYd70+TnPzfjixwJHY8zg1+ckRFX/p6qiqmur6rrZx5P9EZwZOMc//jD3fvoRzakUadfljRnT2ee+u5gfjRY7tEGnLhbNOSPRXnMqxbd1/Zfo7bDyKjjS8Z+wIw47rjSh3+5jjBkeYs1x/vvPR0lEE22OJ2MJ7jz//iJFVTocn0NlbUXOcyOXqSlwNGZI0gF+lBjrmD4MfblgPlNn/9hmL4ECiXSauz7+sHiBDVK1kbKcTQvbKw8EWHVk/5XFXLG6ht9stAkhnx+/4+B3HMI+P7/ZeBOWr67ut/sYY4aHn76fi8/X8W2B6ypfvtt/s7iDlYhw0Fl7Ey4PtTkeKgtx+Hn7FykqM6QMsySk8PVETdF9s2AB/hyfoCcyGT6ZN6cIEQ1uQZ+P49efzLWdLMnyOw61kTK2X2mVfr33CZM3ZIeVV+Hpb75GBHZaeQIr1dT26z1KQWMiwcNffMbn8+cxafQY9py4OpWhUNcXGmO6bdTYWtKp3D/Dxk5YpsDRlKb9TtuDTCrDPX97mGQsSbgizBF/2p+djtqm2KEZM+hYEjIMrVxbS1rdDsdDPh9rjl6qCBENfqdsuAllgSDXTH2HhdnqWMtWVvH+Tz+iwI4rrcI5W27TocN6f1ipppaTf7ZRv49bKmY21LPXvXcSS6WIpdNE/H4uf/sNHj7wMOuJYkw/qqypYJtDNuflu18nEVuy+TpUFuTQc/YrYmSlQ0Q46Hd7s//pP6e5Pkr5iDJ8A/Bz3Qw/QmluHh9IloQMQ6uNGs26Sy/De7N/JJldkiVA0Ofn4LXWLm5wg5SI8Iv1J/OL9SejqgPWF2Q4OvelF1gUj7fsu4ml0yQyGc57+QVu+PneRY7OmKHl1KuOI1Ie5qkbXiCdzjBymRp+9e9jWWPTicUOraT4fD6qavuv5Loxw5ElIcPUDXvszUWvvcyDX3xGMpNhw2XH8uett2d0WXmxQyuqxUlZX2YsLAHpP6rKa9Onddj476ry6vRpxQnKmCEsEAzwy8uP4YR/HkEimqCsqsx+phlTKDYTYoaDskCAC7bdgQu23WFQf3Kvqjz1zdfc9+nHZNRl79Um8fOJq+N3elZzYVZjA2e98CxvzpgOwGbjluei7XZg2Upb7lNsPsch064hI9Dj/8bGmO7zB/z4R9hbBGPMwLGfMGbQJiAAv3v+GZ78+iui6RQA783+kce//pIb99i7268rkU6zX7Y8cSb7ifv/ZvzAvvfdzctHHkvIb/9MikVE2GPViTz65Zek3CWJSNDnY49VVytiZMYYY0w/KtGGggPJPko0g9bn8+fx+NdftiQg4O0XeGfWTN6YOb3b4zz97dc0JZMtCQh4y32akgme/+7bfo3Z9Nwft9yGCbW1lAUChP1+ygIBJtSO5A9bbF3s0IwxxhjTS/YRrxm03pwxHdft+LFBNJXifz/8wGbjlu/WOD8sWkRzKtXheCyVZlr9wj7HafqmKhTmsYMP590fZ/FN3QJWqR3Jz5YdO6hn8IwxxpgOhtlMiCUhZtCqDofx+xySbtv9AiGfj5pIpNvjTBw1ivJAoEMiEgn4mThyVL/EavpGRNhw7HJsOHa5YodijBkgi3uU+AP21sSY4cCWY5lBa8eVJ+TsVC4i7Dlx9W6Ps92KKzOmvIJAq43OAcdhmYpKtllhpX6J1RhjCiWVTPHW41N57rZXmDt9XrHD6dLcGfM5a+cL2K38UHYrP5Szd72IeTMXFDssYwrPOqabUtacTPLMt18zPxpl8rJjWW/pZYbtspSKYJBb9tyX4x9/mEQ64zX6EeGKnXdjqYqKbo/jdxweOOBgLn79NZ78+ksAdpswkd9ttiW+fq7A9FNTI/d++jHfL1zIz8Yux96rTaIsEOjXexhjhq9vP5zGmdv/hXQqjbpKJp1hr1N24Rd/O6wkf1ck40l+vcnZLJxTj5vxmuhOfe5Dfr3p2dz2zZUEgj3/+ZjJZHj0qmd47KpniEcTbLHvxhx6zr7d7uuRiCWY/d1capeupmqk9QIxZqCIauFTo8mTJ+uUKVMKft/B7tO5czj0of+Sdl2SmQwBx8fGyy3HtbvvNazLlWZclw/mzCbjKusuvQyOCO/MmkksleJnY8dSFQoXO0QAPvhpNoe1+u8X8QeoiYR55MDDGFlWVuzwjDGDnOu6HDL+JBb8WNfmeLg8xDn3/paNdl2/SJHl9+Ld/+OyE64l1hRvczxSGeb/rj+JrQ7YtMdjXnTIZbzx6BQS0QQA/qCfUcvWct3H/yJS3vnvg//+61Fu+9N9iOOQTqbZdK+fccZNJxOKhHochykdIjJVVScXO47ORJYZpysd9dsBvcdnf/ttSX0fbCakhP3Y2MD5r77Ey9O+b0kyWu9bSLsub82cwb2ffsyha61TrDCLzuc4bLDMWAA+mTuHox95gES2r0Qq43LOllt3+f2pj8f5csF8lq6oYPyI6l7FkUin8TtOztkTVeX/nn2KaKp1Ja8UqeYMl7/9Bn/ZZvte3dMYYxb74p1viDZGOxyPNyd44trnSjIJmfX1bGLN8Q7HE80JZn49u8fjzfhyFq8/8i7JWLLlWDqZZtG8el644zV2P2GHvNe+ev+b3HrefS3JC8Cbj7zLZSdcx+9uO6XHsRhjOjd8Pz4vcc3JJHvfexfPffctiUyG5lQqdwWndJr7Pv24CBGWnlQmwxEP38+CWIymZJKmZJJEJs2Fr73Mp3Pn5LxGVbnkzdfZ+MZrOO6xh9jpjls5+IF7aUh0/KWYz0dzfmL3u29njauvYI2rr+CM556mOZls85z5sSizGhs6XJt2XZ759psevU5jjMklGUvmXXKV641+KVhhzfE5ZyeCZSFWWHNcj8f74p1v8Pk6vrWJNyf46JVPO7327r8+2CYBAUjGU7xy/5tEG2M9jsWYHhtme0IsCSlRj3z5OU3JJG43lst15znDwRszppPOriluLZXJcE+eRO2xr77gxvenkMhkaMwmLe/N/pHTnnmyW/ec1dDAIQ/ex2fz5uKqksxkeOyrLzju8YfbPC/k85Fv6WPYmiEaY/rB6htPQHOULQ+Xh9j24M2LEFHXNtljA2qXqcEf8LU5Hm+K869jr+LRq5/p0XhjxuWuaBgI+ll2laU7vbbup/qcxx1HaFrY1KM4jDFdsySkRH0ydw6xdMeZj/bCfj/7rr5GASIqfU3JZM5EP6NKfTz3p4DXvzeFWDrd5ljKdXl9xnQWxrr+5OuWD98jlWlbIjiZyfDBT7P5pm5JdZeqUJjJy44l12eUa4we0+V9jDGmK6FIiP+74SRCkSA+v/emPlweZuV1V2T7w7cscnS5+QN+rnjjQrY/fEsCobab0BvrmrnujNt59raXuz3eWluuTu0yNTjtZkN8AR+7Htf5stc1N18NcTr+lA5FQowcW9vtGIzplYGeBSnBz6stCSlRq40aTSTPJ+SLS8mWBQKss9TSHDKM94O0tuFyy5Fq1zMEvO/TTitPyHnNwnjuRMMnDg2JRM5zrX05fz4pt+PsS8BxmLaobaPDo9bJvR77xe+/ZUG04zpuY4zpqa0O2JSr3/s7+/xmN3Y4civOuPlk/vXSn3pVZapQqkZW8tvrTyJS0XHzdyKa4PY/3dftsRzH4Z8vnsekTVYlEPITjARZaoXRXPTkH/LOkix29PkHESkPt0lgQmUhTrrsKHw+XydXGmN6w9aBlKi9VpvE5W+/SSKTaVluFXAclq+u5rC11mV+tJmfLbscm41fPmevjLnNTdTFYqxUU0twmPzwHF1Wzm822pR/v/Mm8XQaxUtA1hqzFDutkjsJ2WL8Cjzw2Sek2y2Vivj9LFdV1eU91116Gd75cSbJHLMhq7ZrdPj6jB9yfhDh9/l4+Yfv2WnlCXwydw7V4TATR44qyXKaxpjSN27iWI7/++HFDqNHMukMjXW5lzzN/3FhzuP5jBo7kktfPZ9F8+pJxpKMHte9n6fLrbosV029mDsveIBPX/+CpVYYw8Fn7c16267Vo/sb01tSgrMVA8mSkBJVFQrx4AGH8IeXnuOtmTNwRNhi/PKMH1HDx3N+YqsVVmTj5cZ1SEDq43FOeepx3vlxJgHHhwics8XWHLDG8PgheuLkDZm87Fju+eQjGpMJdp0wkV1XWTVvCeNfb7gJz377NU3JJCnXRfCWuJ2/zXbd6hFy+DrrcvtH75N23ZZkMezzs/UKK3aosuVzHByg/byJAG9Mn84fX3qegOOQdpVxVVXctOc+LFuZOxF6c8Z07vrkI5qSCXZfdTX2WHW1QZ1szmtuZmZDPSvW1FAd7n63e2PM0OAP+Bm93Cjmzpjf4dy4icv2aszq0SN6fM3YVZbhzFt+lfd8JpPhlfve5NlbX0ZE2Omordly/01whnGZfGN6y/qEDAKuKs99+zWnPfsUadcl7bqUBQJMqB3JPfseSKjVsq1DH7yPKT/OarNEKOL3c9PP92Gj5XpeaWQ4mBdt5sb3pvLmzOmMHzGCX6z/M9ZZqvMNjK1NW7SQC197hTdm/EBZIMAha63Dr362MYF2ScHHc+dw4P33EG+3ByWQLevb+rhPhJVrannq0CM7fIJ3xdtvcO3Ud1v2skT8AdYYM4a79jlg0PWLSaTTnP7cUzz/3bcEfT6SmQwHrbk2f9xym5wzfMaYoeuV+97gH8f8h0R0SXXBUCTIeQ+ewc92Wrd4gWWpKn/e759MffZD4s3ect1weYhNfj6Zs+/8TXGDM50aFH1Clh6nKx8+sH1CPv2n9QkxPZR2Xc54/pk2b1KjqRRfLpjPfZ9+zOHrrAfArMYG3pv9Y4c9CrF0muvee9eSkDxGl5Xz+817v2lzheoart9jry6ft9aYpThxg59x9ZR3AcURQYGJtaP4cO5PbZ6bUWVGQz1f1S1gYqtlXXObm7hqyjttln/F0ik+mzeXZ775mt1Wndjr11EMF772Ms9/9x2JTKalt8t9n37MuKoRHLPeBsUNzhhTUFsdsCnBSJCbz7mbn76fy7iJy3LsXw9l/e3Xzvn85vpmXrnvTebNWsDqG63K5J3WGdAZiU/f+LJNAgJe6d83HpnCl1O+ZeLklQfs3sYMRZaEDAIft3uDulg8nebRr75oSULmNzcT8Pla3sy1NruxcUBjNN3z6402Zc+Jk3hp2neE/H52XGkVTnjikZzP9TkOi9pV6Hpr5gwCjtNhD0o0leK5774ZVElI2nX572efksi0nRmKpdPc+P5US0KMGYY22WMym+zR9Qe13344jf/b+jwy6Qzx5gSRijDLrzGOf7543oB1N3//hY/bzNIslk6mef+Fjy0JMX1W7D0hIrIzcDngA25Q1b+1O38psE32yzJgjKpWZ89lgMX9EKar6s+7up8lIYNA2OfP2wskElhS8WSZyso2HbkXCzgOm41ffsDiMz2zfHU1R627pFLW9iuuzGdz5xJv92Y87bqsOWapNseqQuGcGywdEaojg2svRTKTIZ2jmhmQt6SyMcaoKhccdCnN9UuqCsaa4nz30TQeuPRxDjl73wG5b2VtBYFwoE03dvB6kFTVVgzIPc0wU8QkRER8wH+AHYCZwLsi8qiqfrb4Oap6WqvnnwKs12qImKqu25N7Dq4F5MPUpNFjqMmxWTfiD3Boq/K8Z7/wXM4+FCG/n+PX/9kARjh4JNJpnv32a+7+5CO+W1hX7HAAOHStdViqooKwb8lnAhG/n99ttgXlwWCb5242bjwBp+MG9KDPx0GDrPhAWSDAuBG5N45usOzYAkdjjBks5s2Yz9wf5nU4noylePbWVwbsvlsfuClOjj4iOMKW+28yYPc1pkA2BL5R1e9UNQncA+zZyfMPBu7uyw0tCRkERIQbfr43IyMRygNByvwBQj4fB66xFjuutAoA86NR/jfjBzI5ZkxWqRnJ6PLyQoddcr6YP49Nb7qO0599mgtefYnd776ds55/Nm8n80KpDIV49KDDOHWjTdhgmWXZaeVVuHnPfTkyR1+RgM/H7Xvvx+iyMioCQSqCQcJ+P3/ealtWGzW6CNH3zfnbbE/E72/ZhO4ToTwQ4OwttipyZMaYktVJ0YqBLG1ePXoEf374d1TUlFNWFaGsMkJlbQUXPPZ7Kqrtd6zpo8I0KxwlIlNaPY5vFcFYYEarr2dmj3UgIssDKwIvtjoczo75lojs1Z2XbMuxBomJI0fxxjEn8Nr0H1gYj7Hhssu1+RS5LhbNuVcA8jfkG05UleMee7jD9+LRrz5n0/Hj2WPV1YoUmacyFOKEyRtywuQNu3zupNFjeOOYE5g6+0diqRSTlx3bYcZksNhs3PLcv//BXDP1Hb6uq2OdpZbmxA02ZPnq6mKHZowpUWPGjWKZlZZi+uczaf0ZUigSZKejt8l/YT9Yf7u1+O9PN/D5W18jAqtvvGpLd3pjBoH5/VQd6yDgflVt/aZzeVWdJSIrAS+KyMeq+m1ng1gSMogEfD62XXGlnOeWH1ENORZj+UXYdNz4gQ1sEPhi/rycyVgsneaujz8sehLSUz7HYcOxyxU7jH6x+ugxXL7z7sUOwxgziPzxvt/y263OJZVIk4wnCYQCrDp5Zfb5zW4Dfm9/wM9aW6w+4Pcxw4uQ611cQc0CWpdRXS57LJeDgF+2PqCqs7L//52IvIy3X8SSkOEg5Pdz1uZbcuFrL7f0j/A7DhF/gJ1XnkDGdbvVfG+oSmYyOHn+eeeqJmaMMaZ0LT9pHHf+cA3/e/Bt5s+qY/WNJrD2VpMGdDmWMUPcu8AEEVkRL/k4CDik/ZNEZDWgBniz1bEaIKqqCREZBWwG/L2rG1oSMoQcstY6jBsxguumvsv0+noaE3Fi6TQnPfkoEb+ff+6wC1utsGKxwyyKSaPH5EzCwn4/e060T7SK5Zu6Bbw5cwa14QjbrbQSYX+g64uGiPp4nJTrMqqsrNihGDMohctCbH9Y73s8AcybuYA7zr+fqc9+SPWYKvY/fU+2sk3mpliKuEVVVdMi8ivgGbwSvTep6qci8hdgiqo+mn3qQcA92nZD7erAtSLi4u03/1vrqlr5WMf0ISjjumx1yw381NzUprRvxO/nyUOOHLbr7V+Z9j0nPfkorirJTIayQICJI0dx1z4HtOk6bwaeqnLWC8/y6FdfoKr4s13j79h7/w5liYean5oaOe2ZJ3lv9o+ICOOrRvCvnXZlrSH+us3wlU6lmfnVbCqqyxg1dmSxw2mxYPZCjl/7/2iuj5JJezPi4fIQB/5uLw47Z78iR2f602DomF621Dhd5ZCB7Zj+8WXWMd0MsLdmzaA+Ee/QWyTlutz9yUd96g4+mG21woo8d/jR3P/ZJ8xtbmbL5VdguxVXxt9qhmRGfT1/euUF/jf9BwI+H/usNonfb74VZYHh8wl9ITz59Vc89tWXxLNLBxcviTvusYd5/ZjjW6plDTUZ1+XA++9lVmNDy7/PbxbWccgD9/HSkcfarIgpacl4kieuf56X7v4f4bIQe5y0E5vvs1GnS6Bevvd1Lj/pejLpDOlUhtU2msAf7/stNWNyl+cupPsveYxoY6wlAQGvA/rdf32IvX+9K+VV9u/RFFaxmxUWmiUhQ9C85mjO42nXZXZTQ4GjKS1jK6s4daNNc56rj8fZ6947WxK4lOty32ef8Pn8edy330G21rgf3fPpR8TSHRtrNiUTfDJ3DmsvtXQRohp4b8yYTl0s1uEDgrSb4f7PPuHEblRHM6YY0qk0v93qXKZ9OqOla/inb37JLi9vx6/+fWzOa76c8i3/PPaqNl3GP3vzS87Z/a/8552/5bymkD548RPSyXSH4/6An2mfzGCNTSf26/1SyRQ/fjuH6tFVjBhV1a9jGzMYDd+dykPY+sssQ9p1Oxwv8wfYfPwKhQ9okPjvZ58QS6favEFMZjJ8Nm8eH82dU8TIhp5cpaTBq/GfytNFfSjwZkA6/ttMZDJ8v2hhESIypntef+gdpn06s01CkYylePTqZ5j++cyc1zx42eMkY20/bMikMvzw2Ux++GxGzmsKaakVRudsOZJOphi5bE2/3uupG19g/6V+wSkbn8XB407kvL3/TrRx8JfPnz9rAV+++82QeC0lYeD7hJQUS0KGoPEjqtln9UlEWu1zCPl8LFtZyc8HWSnaQvp03pyW5UGtiXgbqE3/2Wvi6m3+fi7miLD2mKE5CwKw1pilcv4eKAsE+Jl1iTcl7N2n3ycRTXQ4rq5y3Rm357xm7vT5OZvB+gM+Fsxe1N8h9tgBp/+cYKRtj6VA0M+kTSey9Apj+u0+7z3/Ef859Saa66PEGuOkEineffp9Ljr08n67R6HFmmKcs8dfOXLCKZy5w184YOlfcOcF9xe9+a8ZXCwJGaIu2GYHLthmB9ZZamkm1I7k5Mkb8eCBh9oG7E6sPmoM4Tzfn5VragsczdC236Q1WWepZVr22gR9PsJ+P5fttBsB39Bt/LXGmKXYeOy4Nn/PAo7DqLIydl+1f5d+GNOfqpeqznvuo9dyF8HZYIe1CYQ77qdLJVKsst4KpFNp7rjgfg4aezx71RzJBQddytzp8/or5C5N2mQi/3fjyVSNrCBcHiIQCrD+DmvzpwdO79f73HPxw21mkABSiTTvPfcRC+cs6td7Fco/jrmK957/mGQ8RbQhRiKW5J6LH+aV+94odmiD2zCbCbF3pEOUiLD36pPYe/VJxQ6l4BLpNM999w0/1C9itZGj2XqFFbvVI2X/SWty9ZS3SaTTLf9Wgz4fE2pHss4Q3aNQLAGfj9v33o9XfpjG/6ZPY1RZGXutNollK4f+Oulrdt+TG96bwj2ffkQyk2HnVVblNxttMqzKE5vBZ6ejtubeix/OeS6Tyr2E8ue/3JnHr32O+vmNLXsvwuUh9vvtHlTVVvKX/f/JO0++TyLmvUF/7f43+eDFj7np88upGlnZMs7c6fP45PUvqR4zgnW2noSvkw8qGuoaefza5/jktc8Zv/pY9vzlLiyzUv7Kc9scuBlb7rsxs7+fS2VN+YDs1Zg3I/dMeiDoZ+Gcemo6SfBKUXN9M289NoVUou3KgXhzgnv//jBbH7hZkSIzg40lIWZI+bGxgX3vu5umZIJYKk0k4GeZyiru3/8gqkLhlufFUinu/uQjHv3qC8oCAQ5bax12WWVVHjjgEP740vO8PWsmfsdhj1Uncu6W29qmdOCdWTP56/9e4csF81mqvIJfb7gxe6++Rq/H8zkO2664EtuuuFI/Rln6gj4fJ/9sI07+2UbFDsWYbhs3cSxjJyzDrK9ntzkuIqy77Zo5r6mqreTq9/7BvRc/zNtPTKVqZCX7nrY7W+y7MTO/ns3bT7xHMr5kz4jrKrHmBE9e/zwH/X5vVJWrT7uFJ657Dl/AhyCUV5fxjxfOY+wqy3S437yZCzh5gzOJNsZIxlO8/8LHPHHd8/z16XNYc7P8S5F9fh/LTeg4Xn9ZZ+s1mP3dnDZVuABcVcZOGHwfcDUubMbx+YCOy5cXzhnexW/6RK06ljGD2u9feJb50WYy2XWpzakUPyxayMWvv8aF2+4AeJuiD7j/Hr5dWNeyB+Sjn37inVkz+dPW23HnPge0rGu15MMzdfYsjnrkgZbv1w/1izjnpedpSCY4cp31ixydMUNLc30zjt9HpDzc9ZML6Jx7T+O3W55LMpEik8oQDAcIhoOcdMlRea+pGTOCE/91JCf+68g2x7//6Af8QX+bJAQgGUvy6ZtfAvDq/W/x1I0veM/JPi/WFOfcPS/mhk8u7fDz+caz76Khrgk34xV/SKe8ssD/OvYqbv7iir6+/B5TVd556v2WJWbiCOp6v1tCZSGOufBgQpFQwePqq9HjRhIqC3bYI+Q4+RNSY3KxPSFmyEhmMrw5Y3pLArJYynV54usvW75+6puv+H7hwjab0KPpFPd++jEz6usBL/mwBGSJf7z+vw6b9mPpNJe+9UbOSmzGmJ777qMfOHH9M9h3zLHsXXsU/8/eWYdHcXVx+J31jQsJBAIEd3d3L+5taSmFuhv19itV6hSoUYfi7u7uENwhIUCIJ6szO98fgS3LbpJNSEgC8z5Pn6eZnblzZ0l277nnnN/vre4fk3il6KimVa5fgSlHvmXQyw/QuFt9hrzRl9+PfUdk1dK5HiuiYkkk0f2zQ6PTUL5mJACLJi3HkuG60JVlmasX4rl04rLbtbuX73cGILdy5Xw8qQlpuZ7jnTLpxd/5eOg37F5xAEmUUKkE9EYdtVpW490ZL9P/+Z53fU75gVqt5vkfHkfv819Tv1qrxhhg5NH/DSnEmd0DKD0hCgrFk+xUOW59aeOFc5g8eFSoVSr2XI6lbGDhm2gVNU4kXPd43CqKJFnMhPn4ur3mkGW2XrzA8YR4ygUG0TGq4j3ddK6gcCekXE/llXbvk5Hyn8/T/nXRvNLuA34/9h0qL/ra7gbhZUsw+vOH73icyg0qULFOOU7tP+fi1aHVaejzdDcATOkWj9eq1GrMHl4z+hmyDDY8NcgXJJdOxLL8t3XYzP81pEuiA61BxSP/G0rDTnXu6nzym/ZDW1EiMpRZ4xcSd+4qddvWZOjYfoSXLVHYU1MoRihBiMI9g16joVlkWXbGXHLJhmhVKnpVqer8uaSvHxqVym0HX0AgxGi8a/MtTpQNDCTlmvuXvlqlIlDvXjKSZrUyfO5MzqckY5Mk9GoNgXo9c4YMp5Sfv9v5Cgr3Oyv/3ID9NuM8SZRIvJLEgXXRNOxct8DnkJqQRmpiOhEVwlFr1EiShCAIbgGQJEkc2ngUU6qZOm1quDSR54ZPl7/Dt0/+zLaFu5EdMuVqRvLKL08SXi4MgHaDW3LxWKzLQh5ArVFRqV55t/H6PNudvz+c6aJEpdFpaNazoUtp2+n955g5fgExJ+Oo2bIaQ1/v47xnfrFvzWHX3a8bWNIt7Fq+r9gHIQC1W1Wn9kJF9j8/UXpCFBSKMV906sbAWf+SYbdhstvx0Wop6efH2FZtnecMrVWHvw7udwlCBDK9GlqVc/9iU4CXm7fk2WWLXUqyjBoNo+o3Quchu/H19i2cTkzAduM9Fh02LKKdN9eu4s++A+/avBUUiguXjrsvtgEcksyVc9cK9N4ZqSa+eOQH9qw8gFqjRq1RExYZysXjsQiCQIs+jXnxxzEEhQVy7vAFxnb7GGuGFYRMqdnHPh7G4Ff75Pq+fkG+vDfzFWxWO6JNxMffdROo77PdWDttE1fOXcOSYUWtUaPRqnn9j2fRaN2XL/1e6MGZA+fYMm8nGp0GSXRQoXZZXv3taec5u1fs53+DvsJmsSM7ZM5HX2Tt1E1M3PV5vjan+wX5otaoAdesu1anwT/EL9/uo6BQnFGCEIV7ijIBAWwcOZoVZ05xITmZ6iVK0LFCJTS37ORFBQXzQ/cHeHX1chwOGUmWCff1ZUrvfi7nKfxHh6iKfNG5G59u3sh1UwZGrZYxDRvzbJPmHs9feOK4MwC5iSTLbL14EasoKn41CkiixLIpa1n+21okUaLzw23p+2x3dAZdzhffg9RqWY0NM7e69UAAVGpQoUDvPW7w1xzadBS7VXTKrt5aFrZ98R7OR1/kl8Nf82b3T0i6kuxy/V8fzKJG86rZKlBlh06vRad3L5cy+hmZtOtz1s/Yyq7l+wmLDKXXE50pW83V2PPMwfN8//QvHN95Go1OQ4s+jWnVrynlapShcv3/3jtZlvnu6V9cMiWiXUJKM/P729N4f7b3/iCn95/j+K7ThJUNpXHXejcCjv9o2bcx3z/zi9t1glpF54fauh1XUACKZN9GQaKsBBTuOfQaDX2r1cj2nE4VK7F79NMcjb+GQaulakio0oieA72rVueBKtWw3AgiVNm8X44s+3Pus09YhSz5aPDX7F19yKmw89fJmWyZv4tvNv4vWx+Ie5X2w1rxz7jZ2G2i03dDZ9BSo3kVqjWu5NUY1y8ncu1CPGWrl8E/2Lvd9muXrnN48zE3z4dbkewSCXFJzP9+ORYPvRg2s5UlP63KcxCSHTqDjm4jO9BtZAePr1+PTeCVtu9jSjMDmUaI2xftIeV6Kl+t/dDl3JTrqW4BFGS6vh9Yf8Sr+Yh2kQ8HfJl5viyj0qjxC/Lh203jKFn+v5Iuo5+RT5e9w/t9v3BK88oOmdf/fI6S5cNwOBwcWBfNxWOxlK1emgad6hSZvh+FwkMpx1JQuE/QqtXUK5W39Pu55CRWnTmFLEO3ylWoEBScz7MrmgiCgFGbc4Nnj8pVmHf8qEvJm0oQaFK6jJIFUeDE7tMuAQiA1Wzj3KEL7FlxgGa9GhXi7AoHg4+eiTs/5493p7N1/i60Og3dR3XgwXdyLl+0mq18/vAP7Fq+D61ei91qp/cz3Xjyy0dy3FxJjEvyKJV7O6JN4vKpuMza1duQ5UzviMJg5viFbk3qdqud4ztPcf7IJaJqlQXgXPRF5n+/FDELY0VvS6TmfbeUA+uinQaLAFaTlU+Gf8uEbZ+6nFu7VXVmxf3Kka0nsNtE6rSpjt6oJy0pnVfavc/V8/GIdgmNVk3JqDC+2fiR18FjVqRcT+XghiMY/Y006FjbY9magkJRQfntVChSJFvM/Lx3N6vOnMZfp2Nk/Yb0rVajULIU++MuM/toNGbRTq8q1ehYoRIqQeDXvbv5Zsc2HHLmAvv7ndt5pXlLxjRqkut7SA4Hv+3fy9+H9pNhs9O2fBRvtGxDmYDi7Rw+tlVbdsbGEG/KcPbmGDUaPu/crbCnplAEOLL1BA7JfTFoTrdwcOPR+zIIgUxPjVd+eYpXfnkqV9dNfP53di3PNP67GUws+Wk1pSuVcipNZUW5GpFZLsxvRaNV0+yBRqz+Z5PbawZfPW0HNSfm5GUmvfgHB9ZHozfq6DG6E4+NG1ZgJXY2q51lv67xqIyoUqu4dOIyUbXKsnXBLj576HvsNtHp03Ereh89g1/t7dU9l01Z4xKAADgkB6f3nyPpWgrB4a7qihqthnrtXU1df3juNy4ei3XKCdutdmJOxjH5pT8Y+9fzXs3DE3O+Wcwf707PDDyEzKb8z5a/Q9VG3mXSFAqZIiqjW5AouT+FIkO6zUbv6VP548A+ziUncejaVd5Zt4aPNq3P1TgW0U5cWtod+VdM2r2Dh+bNYsaRwyw8cZznli/hycULOJeUxDc7tmGVROwOB3aHA6sk8s2ObZxPzr2e/+trVvDdzm1cTksjxWph6ckT9JnxDwkmU84XF2GCjUZWPjySLzp14+lGTfmgXUc2jhxDucCgwp6aQhEgqGQgGp37HpjOoKVEmZBCmFHxxWa1s3baZrdMhtVkZc7Xi3K83sffyEPvDMDgm7VpnkanoXTlUjR/oBFPfjUCvY8OQZW5MWTw1VOhTjkadqrD883fZu+qg4g2kYwUE4smreB/g76+swfMhq3zd+HwEFRAZsN8VK1IJFHi69E/YjXb3DxEtHoNWr2WB57qQq8nunh1z6zK1gRBcJEazgpTmpn1M7a4zUW0iWyctd2rOXji6I6T/Pn+DGwWO6Y0M6ZUM6nX03irxyeI9pznpaBQGCiZEIUiw5yj0SSYTdhu2SE1i3ZmRB/iyUZNcpR2FR0OPt+ykX+jDwGgEVQ8Vr8BzzRpnqsSoLi0NH7Yud2lsdomSaw9fxaDVu3MgNyKQ3aw6sxpnshFNiQ2NZXlp05iveV5HciY7HamHT7IC81aeD1WUUSnVtOrajV6Va1W2FNRKGK06teEic//5nZcpVHT8cHWhTCj4ovVZPW4uw+QmpDu1RgPvj2QyKqlmfXlIpKuJlOzVTUs6Rb2r41GrVbRYXhrxox/GEEQ6PNMd6o1qcySX1aTmpBG6/7NaD+0JdM/m4/NYnPJStgsdvatOcTDFZ8hMS6JUhVKMvrzh2jZJ/dZY09cOHopy4V/RIVwylYrw7noi1meE1IqiMl7xxMQ4r3EcLshLVnwwzK3YCSsbKhXAfSCH5ZludvtyWjRW5b9ugab2b2kTrSKHNp49K5IPCvkA/dZJkQJQhTumC0XLzDt8AFSrFZ6Va7KoJq181T3v/nieTdXbgCtSs2hq1dyDELGb93Ev9GHXMb4YfdOftm3lzdbt+HReg29mseWSxeybKzecP58ltfltmLs+PV4tGq1SxACYJUk9sTF5m4wBYVihN6o5+v1H/LhgK9IiEtCEDIlTd+Z8TJBYYpZaG7wC/IltHQwVy/EuxwXBIG6bWtme60syxzZdoJzhy5QunIpJmz/xKvm6GpNKlOtSWWXYyd2nfbYVyLaRK6ez5zbpeOxfPrgd7w19UVa9Wua431yolyNSIx+BreeEI1WzaPjhgHgG2B0NobfTkhEcK4CEICH3hnA9sV7uB6biCXdgs6gRa1R89bUF70qG940Z0eWr9VsUTXL13IiIyXDs2GvgEdjRwWFooAShNzHXE1PZ9ym9aw9dxa1SqBXlWq806YdAR7M57Ji4q7t/LhnF+YbC/+DV+KYeTSa2YOG5ToQKeMfgFoQXIwGITM7EO6bfbOeTZKYdvigxyDGKomM37qZCD9/ulaqkuM8fDRatzncxGS3o/XwJa0SBLp5MfatRAYGInkoGdOoVFQKVkpSFO5tKtQpz58nJxBz8jKS6KB8zUhFoe42ZFkmestxYk9foXL9KCp7kOoVBIEXf3qC/w380ul9odao0fvoGP1F1s7m5gwLb3b7mLMHLyA7HKg0KkIjgvlm0zi3vgZvqFQ/iv3rDmersgVgNdn49c2puQpC0pLSWf7bOo7tOElU7bI88GRXQiOCaT2gGb+9NQ2bxYYkZn6WqrVqwsuF0frG+OHlwqhQtzyn9p51yTQYfPX0f6FXrp/TN9CXnw98xeY5Ozi8+RgRlcLp+mgHl/cs6WoylgwrJaPC3II630CfLMd+9H9Dcj2fm7QZ2II9Kw+6STyLNpG67bIPRhWKBgL3nzqW0hNyn2IR7fSfNY2VZ05hlURMdjsLjh9l6JyZ2cirunLdZGLi7p3OAATALIqcSUxkyakTuZ7TI/UaoL1NmlMtCET4+VOvZKlsr023WbMMHG7Oa/KeXV7No0OFilm+plapeLF5S/RqNTq1Gp1KjV6t5o1WbXPd71AttAQ1w8LRqlyfWadWM9LLrI2CQnFGEATKVitDVK2ySgByGynXU3my/mu80+tTJr3wGy+1eY83unyEzeJuaNikW32+2/wxbQe3oGK98vQc3YmfD3xFueplPIycyV/vz+DU3rNYMixYzTbMaRbizl7j2yd+ytN8+zzTDa0uZ+U8gLgzV70e99rFeEZVf5G/P5jJlnk7mfnFAkZVf5HT+8+h02uZsP1TWvRpgkanQaPT0GZAM77f9rGLb8eHc18jsmoEBj8DPgFGtHotvZ7sQvuhLd3uZzVbuXbpOnZb1mphWp2GGs2rMPi13gx5ra8zAEmIS+Lldu/zUNTTjKn7Cg+We5p9aw65XNvv+Z5u/TeCAOVrRVKvfW2v35fbaTe4BdUaV3KOrVIJ6H10jBk/4o4Vt7JDlmWO7TzF6n82cnr/uQK7j8K9ieAxfVfANG7cWN6zZ89dv6/Cf8w7doT3N6zFZHf9oPXVapncqw9tykXlOMaK06d4Y/UK0u3uX4pdKlbm5wf65npea8+d4c01KzGLIpLDQc2wcCb17E1JXz9mH43m1317SLZYaFm2HK+2aOVc+DtkmaZTfiTRbM5y7JK+fmx//Emv5vHcssUsO33S5ZgA1CtZinlDH+JSSgorz5wCoFulKpQNzFsJSarVyttrV7H67GkAygUG8VmnrjQunfXiQUFB4d7nw4FfsnPJXhflKp1BS/8XejL686wzHN4yMGwUqQlpbsdVahWL0/9Bp8+9otXZQxeY8MyvHN1xEq1Og6ASXIwBb1KyfBhTz032asxxQ79hy9wdbg3oVRpVZPLuL7yemyzLnNxzhoS4JKo1qUxohKusuiRJ/PbWNBZNWgkCqNVqHn5/EINe6Y0gCFy/nMjJPWcwp5n5+3+zSbicCEBoRDDvzXqVSvWjGF3nFWJvZPZuovfR8/OBLylTOcI5jylvTmX+hOVodRpkWSYoPJDxa96nVFS418/jCUmU2DJvJ5vn7sAv2I8eozt57TGTF9KTMxjb9SMuHotFEAQcDpnqzSrzyZK30BuzFjooDARB2CvLcuPCnkd2+IaVlav3e6VA77FvyitF6n1QgpD7lE82b+C3/XvdjuvUat5o2YZRDXKWyNx+6SJPLFlIxm1BiEoQGFKzNp926pqnuUkOB+eSk/DT6Zx9IJ9t2cjUQwecWRe1IOCr07H8wUeJ8M88Z96xI7y7bjUWD9KfKkGgR+Uq/NDDOxnGdJuNwbOncz45CaskYdRoMWo1zBo0jIoFUCplEe1YRYlAg/elcAoKCvcmdpudPv4jPErnBoYFMOeqe1N/bukb9AimVM+bNtWbVeaLVe/j42/M09iSJKFSqVg2ZQ0/vvyXix+M3kdHn2e7U7tldeq1r4lvoG+2Y/UJGOGxp0GlVrEw5W8MPvmz2P3jvenM/Xapy1wNPnqem/g4Zw6cZ+kvq1Fr1ZjT3OfiG+jD+3Ne5YP+X7qZOaq1avo9152nvh7pcvz65USO7ThFcMlAarWsViwzgZ89PIFNc7a7NP5rDVr6PN3V7XkLGyUIyaSoBSFKT8h9RmxqKmk2K5WCQ/DRat0yIVqV2utFdtMykfjptJjsNhdBB51azUN16nk1htluZ+mpE5xMuE6NEuH0rFIVvUZD5ZBQ5znJFjN/H9zv0sAtyTJmu50p+/fwXttMJ90BNWoRbDTywfq1xKSlOs9VCwIGjZaXm7fyak4AfjodS4aPYMP5cxyJv0ZkQAA9Klf1yqgvLxg0WgyaghlbQUGheCGJjmykZ7M3FfSWFn2asGHGVo9N22cOnOenV//KtV/JTW463vca0wXZIfPXB7NIiU/FP8QXm8XG0p9Ws/Tn1Yh2iWe/f4yeozt7HMecbnbz5LiJSq1Crcm+ojwtKR2VWoVvQNZ9GJAZNM3/fplLAAJgMVmZ8uY0LBmWzKb7LAwdJVFiy9ydqDwEEpJd4rKH8rMSpUNoM6BZtvMqyjgcDjbN3u4m/2u32Fn554YiF4QUF4RCSAwUJkoQUkw5lZDA+eQkqoSGEuWFW/eV9DSeXrqI49fj0ahUqAUVGkHl0giuUakI9/WlTbnyXs1BrVLxT//BPLZwHskWM4IgIDkcfNiuI7XCS+Z4fWxaKgNm/kuG3eY0tPtq+xbmD33QpRH9VGICOg8qUnaHg92xMS7HOkRVpMNjFdl04TyTd+8kNi2VRhGlebF5y1y7mqtVKjpVrESniorRU1ak22yk26yE+/p5/AJWUFDIPQYfPVUaVuTE7tMux1VqFc0fyB8jxyfGP8yhjUeIv5Tg9prdKrJu2maPQYhoFzm24xSyLFOjeZUc+0AeeLIrvZ7ogindwsPln8aS4RpUTH7xD2o0q0KFOu7fOwsnrshSdbBFn8ZZ3vtc9EXGPzqR80cuAZmqU2P/fp7wsiU8nm8z2zz22gCkxKd6Vp26BavJhs6ow+5BCljvo6NBpzrZXl8ckR0ykoeqA8gMRBQUvEEJQooZGTYbY5Ys4MCVODQqFXZJol35Ckzo8QC625q6byLLMo8smMO5pCQkWXYu5vVqNfVLRXDgShyCINC1YmX+174Tai8kGm9SOSSUTSNHc+jqFdJsNhpGlMbHy2zBe+vWkGg2OYMgk92OVRQZt2m9S9lUab8AF++Qm6gEIcsArG35KNqWj/L6ObJDlmUcspyr9+VeJ91m4801K1l99gwqAQINBj7p2IVOFZSATUEhP3h1ylO83PZ97DYRm9mGwUePT6APY8aPyJfxQ0oF8/ux7+kbMMJj1sVuE5Fl2aVM6ODGI/xv4FfO7IlKpeLdmS/TqEv2mW9BEDi4PtqjD4bdJrL893U88+1jbq9tnL3Npb/COZ5KyNIJPj05g1favk96cobzWPSW47zU+l3+OTPJpWH9JgZfA8Glgrgek+j2mlav8Sg97Hq9nma9GmJKzTQivKlQpdFpCCwRQLeRHbK9vjii1qip2bwqR7ef4NYYTaUSaNy9fqHNq1hzHzqmK0FIMeOjTevYF3fZZVG+6eJ5Juzcxmst23i85tC1q1xOS3NTjxIdDqqEhDJz0LBMabg87GSfTUpkwfGjWESRzhUrY7why+uQ5Wx3xh2yzOaL593mJMkya86ecTlWJiCAZpFl2RlzySUbolOrc2UO6A3HrsdzPSODWuHh6NUaPtq0noUnjmGXJBqUiuDjjl2oXiIsX+9ZHHlu2WJ2xF7C7sj897iWkcHzy5cwc9Aw6niRBVNQUMiemxLGK35fz4Ujl6jevApdRrTLc5+GJww+ehp2qcfe1QddDA8FlUCDjrURBIHEK0n8+PKfbFu42+Ni/MP+X/L32Uk5yvqa0yweMwoOyUF6UoaHK8Do5/lZdQZtlsaAa6dtcstIOCQHGckmdi3fT4vejbly/ho/PDeFvasOodaq6TC0JaM+Hs73z/zq0kiv99HTql8TNs/Z4THLAaA36qjSsCL1O9SmXvtaVG9amQUTl2NKM9O6fzOGv9U/X//NihIv//IkL7Z6F7vVjs1iR++jw+Br4OlvRhb21BSKCUoQUoyQHA4WnjjulhWwiCLTow9nGYRcz8jwXKsqy8Smpea5jGZ69CHGbVqPKElIssy0w4eoHRZOTFoqcelphPn48mKzFjx4oz8k1ZrZsBegN/wX9Hj4UlIJ7hmHiT168/baVaw6exoBCDYYGdexM7XzacEbn5HBYwvnci45CY1KhU2SCDEauW4yYb/h5bHvShxDZs9gzSOP5ehbci8Tm5rKztgYt99DmyTx697dTOjxQCHNTEHh3iIoLJBhY/u5HTelmVn9z0b2rz1M2aqlGfRaHwJDc2e6d5PnJz7Oc83ewma2YTXb0Bt16Iw6nps4GpvFxvPN3ybhclKWhn8OWWbjzG30e75Htvep16GWx0Z7g68+S8+Qvs9259S+sy7eF4JKoFSFkkRWLe3xmtjTV9x6OyAz43L1fDwZqSaea/YWaQlpOBwykiixbvoWzhy6wIfz3mDqR7OJPX2FSvWjeGzcMCIqliR6y3FS4lOxmm0IKgGVWiC0dCg+fga6jmxP3+d6IAgCgiDQc0xneo7x3ONS1Em8kkTC5SQiq0ZkGQDeSvmaZTMD5d/WcfbQBao2rkT3UR3xC8pebEAha+43nxAlCClGSLKM6MHcDsAsZp0urluylMdyJoNGQ7vy7uZX3pBoNvHRxnUumQmzaGf3LU7f8aYMPtm8gQSTifUXznHkWmZzXq3wknzTtQddKlZm9dnTLs+kVanoVcXdNdZPp2NCjwfIsNnIsNsI8/HNVzWRp5ct4kTCdZfMTFx6utt5dofE1EMHeaWF903u9xqxaano1Cqst/1KOWSZ88lJhTMpBYX7hPiYBJ5q8BqpienO0o2ZXy7koXcGcPFYLDarnU4PtqHNoObOBvHsKF2plDPjcubAOSrVr0D3UR0ICPFn7bTNpCWmZxmAQGb9f2qiu9Tv7ZQoHcJD7w5k+mfzsZmtyHJmAFKzZTWa9/bc59J2cAuObDvBkp9Xo9FlPot/sB8fLXgjy/tUb1rFo4u6WqOmcsMKrPlnI9YMq0sJmt0qEnMyDoOPju+2fOw25i+HvmbFb2vZu/oQpSqE0/fZ7pSvWTbHZy4umDMsfP7wBHavOIBWr0GySzz4zgAefHtgjtcGhQUy7M3+d2GWCvciShBSjNCp1dQKC+fwNVelDZUg0DKyXJbXhfn68mi9Bkw9dNAZrOjUakr4+DCkVt4a5jZdOI9GpXJrFr8dsyjy3c5tmRriNxb4h65eYdDs6Swa9hDHrl8jPiMDm+RAp1ZR2j+Ad9q0z3I8X50OX13u9euz43JaKkeuXc3W7PAmVkni2PX4fL1/caNaaAmPQa1WpaJZ5L3zxaygUBT54bkppCa4bpDIDpmp4+Y6fz6wLpo1Uzfx0cKxbo7dnggI8WfIa33cjp87fMGjPO6t6H10NOxc16u5P/TOQOq1q8myKWsxpZppP7QlbQZmHSwJgsAz3z3GoFd7c3TbCYJLBlGnbY1sn6nNwGb8/eEsrl6Id0rH6gxaqjSsQK2W1Vj15wYsHjIlskPmwtEYareu4faab4APA1/uzcCXvZN4L258M+Yn9qw8gN1qd6qvTf90PhEVS9Fh2P274VYoKJkQhaLMJx27MGzuTOySA7tDQq9WY9BoeKdt+2yve7NVW+qGl+KPg/tItVroVrEKoxs2xi+PC3qNSkWmfV/OyOBSC+yQZayiyK7YWFY//BibLp7nTGIiVUNL0Lpc+buuspRqtXoVUEFmM3/dkvd3z0OgwcDI+g35++B+p2+LCgEfrZbHvfCXUVBQyDu7VxzI8RxLhpWDG46yf+3hHJvGs6Ns9TIY/PRY0t0X7ZCZyWjUtR61WlbzesyaLatRrkYkPgFGNFrvliDhZUsQPtSzstXtaHVaftjxKX9/MIuNs7eh1qjpNrI9w98egCAIVKxXHoOP3i0QEVQC5WpEev0cWSHLMgfWR3Ni9xlKlg+jVb8m6Az5u3GWH5jSzGSkmDD46dk6f5eb9LPFZGXm+AVKEKJQoChBSDGjdnhJVj08kr8PHuD49XjqlSrFw3XrE+aTfQ2mIAj0qlqNXlW9/7LIjvZRFXHInkvDvMFktxOTmopapcqU1Y2qmC/zyok1Z0/z+ZZNXEhJppSfPy81b0mfqtU9Kl8JN/5z3PKzQaPhwdp5/1K/V3ijZRsqBgUzZf9ekixmWkaW49UWrZ3mkgoKCgWDt2WolgwLO5ftu6MgpN2Qlvz+9r/YzHanspVKpUKr11C7TQ26jexA28HNvZ7Tuhlb+Onlv0hLSketUfPAU10Y8/nDHhWrsiM1IY2Lx2IILx/mUXbXP9iPZyeM4tkJo9xe6/JIO6Z+NAebxeYsydLqNERWjaB26+q5msftWM1WxnYdx9mDF7BZ7OiMWia/+DvfbvmYyCoRdzR2fmHOsPDNmJ/YOn8XgkrA4KNHzqLMO+lqyl2enYLSE6JQ5CntH8CbrdsW6hz8dDom9uzNc8sWO0utbvZ23N7jIQiCW/mOj1ZLrfDwXN1zz+VYvt6+hZMJ1ykfGMTLzVvRJhcyvOvOneWFFUux3Ni9j01L5f31a7BLEp906MLra1ZgkyQcsoxBrSHQYKBrxUosPHkciyjSqmw53mvbgVCf7I2v7gcEQWBwrToMzmM5n4KCgvec2HOGqR/N5sLRGPxDfEmMS87xGo1OjX/wnQloGHz0/LDjU757+lf2rjqIIAi07NuY5yeNyVEN63Z2rzzAN6N/dKpPiTaRJT+tQrJLPPu9e7DgCYfDwU+v/MXSX1aj1WuxW+006lKPt6e/5LVzum+ADz/s/JSJz//G3lUHUWs1dBjakqe/HXnHfYYzxy/k1N6zThUxc5qEJd3KZw9+x6TdX9zR2PnFZw9+z97VB52ZD1tWZpAqgXrta97NqSnchwg5mfAUBI0bN5b37Nlz1++rkP+kWi2sPnsGiyjSvnwFjsRf5Yutm7mYkkxp/wBeat6S3/bt4XRSojMQ0anVVA4OYeGwh7323tgZc4nHFs1zBhAARo2Gr7v0oLuHRnZPdJ/6JycT3Y25Qo0+7Br9FEfir/HngX3EpqXSrnwFHqxTlwC9wauxFRQUFAqC/esO816fz7GZbchy5gaAN9/beqOOX6O/IaJC/pSPOhwOpwJUbojeepwfX/6Dk3vOenxda9AybuFY/IJ8qdKoYrb9HgsmLmfKm9Nc1K+0eg01WlSlfrvalKtRhpb9muRooFhQPFzxGa6ed+8Z1Oo1TLvwU64Dt/wmIS6JRyo961FqWaVS4bixgajWqDH46pm85wtKVyp1t6dZIAiCsFeW5caFPY/s8C1RVq7V6+UCvcfuv18tUu+DkglRuCMC9AYG1qjl/LlMQABdK1VxOadLxcpM3LWdBSeOAdCvWg2ea9oiV+Z/n27Z6BKAQGbT+ydbNtKtchWvvhgvpHhOLSdZzFglkdrhJfmqa/Yyk3lBlmVmHjnMj3t2kWA2USe8JG+1bkfdkvfGh7uCgkLBMemF3128K24GIEHhgWi0anRGHc16NWTVXxtwSJmBgkNy8Pofz+ZbAAJ41eB+O6f3n+PNbh97lMy9id1i538DvwLAN9CHj5e8RaV6UR7PnfvtErex7FaRQxuOcmjDUYx+Bn4Z+w8/bP+UkFKejWwLioMbj5CcZfmSZzn6u831mAQ0Os/mi+HlS1C+ZiRxZ69Rp00Nhr/Vn5LlFU+su4qslGMpKOQ7fjodb7Zux5ut2+V5jJMJ1z0ej0tPwyZJ6DU5/ypHBgRwJsndETdQb0CvLrg/hR927eDnvbucTdw7Y2MYPncmj9ZtwOJTJ0i2mGkYUYa327SjWqh3zZcKCgr3Pg6HgwtHYzy+lpaUznLLdOZ9v5Sp4+ZgSbei99HReUQ7xnzxsNflSQXJPx/NxmbOOgC5yU0FLnO6hTc6f8T0mJ/R6d2zGWlJ7rLpt49js9iZ+PxvvD/7tWzPlWWZMwfOkxyfSrUmle6odO2n1/5i/vfLPDrCCwKUrVaa4JJBeR4/vyhbvQySB68WtVZNk+71eWHSmEKYlcL9TO63NhQUCoGsGu99tTp0XmjhA7zWsjWG24IVo0bDC828b6zMLRbRzs97dzsDkJuYRZFf9u8hNi2VDLudzRfPM3DWv4rPhoKCghNBEPAJ8Gwa5x/ix8JJK/jj3RmkJ2UgiRKmVDMr/1jPxlnb7vJMPXP20IVcJwDsNpE9WSiA1WtXK8fPakmU2L54b7Yla/ExCYyp8wovt32Pj4d+w7AyT/Dvp3OzPD87Ns3ZztxvlngMQDRaNb5Bvrw17cU8jZ3f+PgbGfJGX/S3BKiqG83pnkwxFQoBuYD/K2IoQYhCseD5Zi0wegggxjRs5HUA0a1SFcZ37kZp/0wFpxI+PrzVuh2P1G3g9TzMdjvxGRle1WQDXE5LQ5XF9By3jWEVRX7cs8vrueQVuySx/vxZ5h07Qkyqon6ioFBUEQSBAS/2Qu/jKvGq99Ez+NXeTPt4rlt5ktVk5e8PZ93NaWZJ+VplvVVydyI7HKQmeDY/HPPFwxj9DWi02W88SaLEkW0nsnz9vd6fc+nEZSwZVjJSTNgsdv79dD67lu/P3VxlmQnPTsny9YhKpZh2/keiahUd/6QR7w/m5Z+fpELdcgSXDKTdkJZM3vMF4eWU0iuFu49SjqVQoCw/fZLvd27jSno6NUuEM7ZVG+qVyr1UYe+q1dgTG8Pik8eRAbWgYlSDRjzTpHmuxnmganUeqFodhyznyo/EbLfz7vo1LD11AgEIMhgY16EznStWzva6MB/fLF3ub0eSZQ5eveL1nPLCyYTrPDRvFhZRQkZGcjgYXrse77VtX2DZIAUFhbzz8PuDMkuvpqxFo9UgihJ9nunKgJd68esbUz1ek3DZvew0OyRJ4sC6aOJjEqnetHK+LZpHvDeIvSsPItpFt9cEIbMBWrytPMghOajXvpbb+QCRVUvz66GvmfXVIo5uP0lKfCoJsYlIt2UhZIfMm90+ZtSnwxnwQi+X1y6diCXm1GW3zIXVZGX+90tp2sP7TamU66mkJ2dk+XrlBhXw8fecySosBEGg00Nt6PRQm8KeisJtCCg9IQrFEIcsk2AyEaDXe9Ubcbf49/BBPtm8wVmKtCP2EsPnzWL6wKFUDy3B0lMn2BcXR4XgYAZUr0mw0fOH9eFrV3l0/hxEhwOVSoXocPBo/Qa80iLvJkq5NUR8eeUyNl4451T4upqRwQsrljJ9wJBsgyp/vZ6BNWox+2g09hyCEQGoFFxwzZSyLDN60XwSzGaX47OOHKZ5ZKSboICCgkLho1areW7C4zw2bhjXLiVQsnyYc2FbKiqMKx7UmMp44UlhNVtZ/fcm1v27mVP7zt5Q3gKHQ6ZZr4a88+9LufbvuJ1qTSrT7/nuzP12qcfscVB4IGlJGc5sjsFXT/dRHYmomHVDfXi5MJ6b8DgASddSeLHlO1y/nIj9tmZrq8nKb29Oo+sj7fEL+q+cNy0pI8vnSr6emqvnM/oZyPKrRIC+z3bP1XgKCvcbRWfFqpAnFhw/ysebN5BhsyEgMLhWbd5t0x6tl30SBYXkcPDlts1uvRAWUeTzLRu5nJZGgtmEyW7HoNEwYed2ZgwaSo0SYW7jjFo4j2SrxeX4nwf20bJsOVqVLV/gz3ItI52NF865OapbRZEf9+7ip159s70+KijIrfQKMj1Ubg1MDBoNTzdu5vW84tLSSLKYqRQc4lXweTT+GokWs9txk2hn6uGDShCicN8giRIHNx4lI8VE3bY1CCwRkC/jxp6O43psIhXqlCMgxDvjztP7zzH14zmcO3yRCnXK8fC7g6jcoILbeb6BvlQIdO2NGzN+BONHTnRRz9IbdTwxfkS297SarbzQ8h1iT13xqFy1a9k+Fv24kv7P9/TqGbJjyOt9WTR5pZsik86o44N5r3Fm/3nW/rsZg4+eB57sSos+3quHBocH8vux73i++duc3n/O7XWNTsORrcdp1quR81jl+lHIDvfPY51BS+v+TXPxZKA36mk3uCWbZm/HbnP9rms/tFWunOQVFIAioaJ2N1GCkGLM5gvneXvdahfp2tlHohEdDj7p2KUQZwaJZjMW0V2FA2D/lTgXc0OLKGJB5PXVy1ky/BGXc/fGXcYquqfyzaLIjOhDdyUIiUtLQ6tWuwUhMnA+OTnbax2yzKTdO5E8fLD4anWYRRHRIVHGP4BxHTpTOzxnSc0ks5nnli9mX9xlNCo1IPNOm/YMq1032+vMophlBshsd5dsVFC4Fzl76AJju47LNGkTMk3zHv1oGENe65PnMdOS0vmg33hO7jmDRqfBbrUz4KVejPrkwWzLHA9vPsZbPT654QEiE3fmKntWHuTzFe9Qu3WNHO/bdlALtHotf7w7nbizVylTJYLHP32QJt2zLyla+ccGYk/FuQQvt2I12Vjy46p8CUKCSwbx3MTHmfjcb8iyjEOSUWvVDHq1N9WbVKF6kyr0eiLv31carYbyNSM5c+Cc2/pNlmV8A13NZXUGHc9OGMUPz03BZrYjyzI6o47QiGD6PedZov30/nMs+nElSVeSaf5AIzqPaIvemNnc/eJPT5CRYmLv6kzjQ9Fqp9dTXXn2u8fy/EyFxeHNx/j307lcPn2FGi2q8fC7A4msWrqwp6VwD6MEIcWYCbu2u3lnWCSReceO8FbrdvjpdFlcWfAE6PVZpqlvd0+/yamEBFIsFgIN/xkEmu32LBsbM2x3Z+FcMTgEu4c5awSBxhHZf0Cb7HYysljgWyWRw08/j0UU8dVqve7JeHrZIvbHXcbucDgDo3Gb1hMVFEzzyKxruetkEeAYNBr6VK3u1b0VFIozkiTxZvePSb7mKsjw94ezqNmiKrVb5e3v4PMREzi28xSiTcR6w4F6wQ/LqVC7HB0fzLr2ftKLv7tkImRZxmqyMunF3/lx75de3btF78a06O2ePbCYrMz4bB6r/t6ILMt0eqgND70zEKOfkS3zd2YZgNzEasn+9dzQY1QnGnWuy6Y5OxDtEi37NqFc9TL5Nn6fZ7qxZf4ul/dSEDJ9R2p6yEZ0G9mB8jUjmT9hOQmXE2nWqyE9x3TGN8DH7dzV/2zk+6d+wW6143DIHFgXzcJJK/h+2ycYfQ0YfQ2MW/Qm1y5d59rF65SrUcbrLFhRYvPcHXzx6A/O34sr5+PZtmAXE7Z/WqQa6+917reeEEUdqxgTk+q5flUtqEg0m+7ybFzRazSMqFPfTdEqO2RwMzBsXLoMkodeCqNGQ++7tHD21+t5vEFjl2dRCQIGrZanGmefvvfRavHXedbrrxAUjEalwk+n8zoAiUlN4dDVK279JWZR5Nd9u7O9Vq/R8GXn7hg0GjQ33mcfrZZqoSUYUquOV/f3hFUUOZ2YQJLZvdSrKGKXJKYdOkDfGVPpO2Mq/xzc7zHIVLj3iN5yHEuGe/mRzWxlyU+r8jRmakIa+9ceRrytHMeSYWX214uzvfbsoQsej5856Pm4tzgcDl7v9D9mf72Y+EsJXI9JZN53y3i57ftIkkRAqF/WvQxkOny3HdQiy9eP7TzFWz0+ZnjZJxnbbRxHt2etRHWT8HJhDHqlN8PG9ssyADFnWIjeepyYk5dzHO9WaraoxujPHkRn0OITYMTobyC0TAifr3wvS5PF6k2r8NbUF/hq3YcMfrWPxwDEYrIy4ZlfsZptOG6UcFlMVi6fvsLyKWtdn69sCWq3ql4sAxCHw8HE539zCUwdkgNLhoXf3v63EGemcK+jZEKKMfVKlmL12dNu0s8qlUApv8L/IHyjVRtUKoG/Dx7AKoo4shGpVgFNy0S6ZW98dTrGdejMu+vXYJckJFnGR6ulbngpHqh69+ptX23RivJBQfyydzeJZhPNypTltZatiQwIzPY6lSDwSvOWfLplo0t/jEGj4Y1WbXM9j+smkzOAuJ0r6dkbeQF0q1yFZSUeYeaRw1zLyKBDVAW6VaqS5x6iqYcO8MXWzYCM3eGgY1RFvuraAx+tu9FYUUCWZZ5YspBdsZec/x6nExNYffYMf/UbqCiE3eOY0yweF9+yTLYqR9mRkWJCrVFjt7qXjWYlNXsTvyBf0hLd/279gz37InnLgXXRnD9yyaUPw261c/n0FXYt20+fZ7qzY8lej9kQg6+B0NLBPPj2ACRRYtonc1k0eSXmNDO1W9egw/BWTHzuN2fG53psIke2HOejhWNp2Dn7ktDsWDhpOb+OnYZao0KyS5SrGcm4RW8SGuGdWEe/53vSeUQ7jmw97syA5MXl/VZO7jmDSu0+htVsY+Ps7Qx4sZeHq4ofKdfTPBpByjIc2Xq8EGZ0n1JEvTwKEiUIKca83KIVWy5dwGy3O39vjRoNLzdv5bWBX0GiVqkY26otLzdvReNfJ5Nuyzq9b9Bo+aqLZyWRATVqUSe8FLOOHibZbKZTxcp0rlgpy8V4QSAIAoNr1mZwzdq5vvahuvUxaLR8u3MrV9PTiQoK5q3W7WhbPirXY5X298fmoUdGq1J5PV5UUDBjW7XFIcuZkoB5WHg7ZJnf9u/h621bsN2SlVl//iyvr17OpJ55r68vSPbExbL7coxLQGgWRfZduczO2Jhsy9kUij912lRHtLlnvQy+mQ3GeSG8fAn0Pnq3DItKraJBp+w/Lwa81IsZn893bSz30THgpQfyNJebnNxzBruHcipzuoWTe87w6P+GMnLcMP54ZzoanQaH5ECtUVO/Q21a9GlMh2Gt0Bl0fD5iAlvm7XQGHPvWHmLfmkNu41rNNia/9AdTor/N03wPrI/m17HTXMqpzh48z3t9Pmfy7i+8HscvyNelCf1O8QkwejQhhDsPFIsSvgHGLL8Hgktmv9GmoHAnKEFIMaZaaAn+7T+Yz7Zs4nhCPKX8/HmuSXN63cUMgTfo1GqCDIZsgxBJdnAxJSXLDE6V0FDeadO+gGaYiVUUSbfZCDYacy3hmxMDa9ZiYE3P2vfe8ueBfYzfutnty0KrUhGgN/B4A+9UZY5dj+f99WvYF3cZvVrDgBo1eadNe4xeZi/OJiXyyPw5XMlIdzdclCTWnjtLssVMkKFo6eMD7IqNdeujgszeo12xMVQKDmHa4YMcvx5PnZIlGV67LiFG9zINheKJb6AvT379CL+8/jc2ix3ZIWPw1VOpXhTth+UtCFGr1bz44xN88cgE55iCSsAhOVj99yaO7TjFSz89SZ027o3mw9/qT0p8Kst+XZPpAWIX6Tm6M8Pf6n9HzxlePgydQYc53VVV0OCrp2T5TAXCQS/3ptvIDhzddgK/YD9qNK/ikjm4HpvApjk7sFtv6WnLZpf2wrEYZFnO06bG3O+WuKl0SaKDi8diuHQilrLV8q9/JDdUqhdFaOlgLp++6iIxbPDV0zeLJvbiiM6go/OIdqyZuilTsOEGeh89w8be2e+iQu4QvLMVu2dQgpBiiizL/LJvNxN37UAGJIdMk9Jl6Fa5aMqsPlavIV9t3+Im2XsTqyTx0LxZVC8Rxjdde1IlNPSuzc0qiozbtJ65x44gA4F6PR+060jPKkUnmNsVG8OX2zZjkVzfP61KxcN16vNU46aU8Ml5sRyXlsaQ2TPIsGd+0VgkkbnHjnAhJZl/+g/O8XqHLPPIgjnEpadluR7RqFQkmvMehFhFkeWnT7H3cizlgoIYUL0moV48mzeU8PHBoNZgEl3FAgwaDQ5ZpvM/v2OTJKySxMYL55iyby/zhz5IVFDB+bco3F36PN2Nak0qs/SX1aQlpNF6QHPaDWmBRpv3r8M2A5pRsvxHzP56MbuX78ecbkFGxiE5uHgslrd6fMLkPV+49UKo1Wqe/X4UIz8ayrWL1wkvVwLfwDvfYW/dvyk/vvwHFpPVKUcrCKDVa2k35L9eD/9gvywzBxePxaIzaF2DkGwICPHLczljYlyyx+NqjYaU62mULaSPYkEQ+GTp27zR+SPSktIRBAHRJjLk9b406Va/cCZVQDw7YRRWk5XNc3eg1mZmx4a/2Y/OI3JfNqyg4C1KEFJMmX/8KBN2bndZ1M85dgS9WsM7bdsX3sSy4NH6DTmbnMT06EMePTMg0zH8aPw1hs6ZwabHxtw1da93169h6ckTTqWpeJOJ11avIMTo47E8J9VqYeHxY5xLTqJuyVL0qFy1wE0i/ziw12MAp1WrGVSzFmG+3i1cph4+gN1xm9+JJLE37jKnExOoHJJ98HfwShwpFku2ZasqQcixVyYrUq0W+s/8l6sZ6U4PmR92bmfawCFZqnvlhp6Vq/LJ5g1ux9WCik0Xz5N2S7bOKknYHQ7GbVrPb30G3PG9FYoO1RpXolrjSvk6ZtVGlRj18XC2LdjlVsJjt9qZ881iXvnlKY/X+gb6UqFO/pX36Aw6vtvyMZ89PIEzB84jAOVrleXNqS9g9PNuc6B05VJeByB6Hz2DXs17CWbzBxpxLvqim+GgJEpUqh+V53HzgzKVI/jn7CSObjtByvU0arasRnB4/pQonTl4noMbjhBYIoCW/Zpg9M1UhkxNSOPXN6eyZe5OBJVAh+GtGfXJcI/N8/mFTq/lzX9e4JnvHyPhchIRFUti8PEsqqJQgCg9IblHEITuwPeAGpgiy/Ln+TGuQtZM2r3ToxHgv9EHeaNVm0I3K7wdlSAwrkNnhtWuw8BZ07OU6ZXJXPwtPXmcoTn4XuQHqVYLi08ed5uPRRSZtHuHWxByOjGBwbMz528WRXy0Wr7buY35Qx7K0vE9P7jd5fwmakEgyWLx+JonjsZf8/jea1UqziYl5hiEpNls2ZaqGTUa3mzVNs89ST/s2kFsWqpzjjdLp15ZuYzVI+5cd99fr2dq/8E8s3SR0wAzQK9nYvcHGDxnhtv5Dllm66WLd3xfhfuDuHPX0Oq1bsZ8mRmRmLs6lzKVI5i44zNSrqciyzJBYblbOJeKCqdRl3rsXX3Q7XluRaUS6Pd8D4a+kb1pa3b0e74HK35fR9K1FGcgovfRM/rzh5wL88JEpVJ55dviLQ6Hgy8encjW+TtxSDIarZofnpvCF6veo2K98jzf4m2uXYhHtGd+Di6fsoboLcf4ce/4O262z4mAEP9iqfClUDy54yBEEAQ1MAnoAsQAuwVBWCTL8tE7HVsha+JNnpVcRIcDs2gvckHITWqFlWRK7/68uGIJ6Tabm9QsgFm0E5PmWX44v7mWkYFWpfK4ML+Qkux27PXVK0i1Wp2bFSa7nctpaXy1fYvTINIqiqw8c4oT169TKSSEnlWqYtDcmVpU14qVib521a2fwe5wULdkKa/HqRNeku0xl9ye1+5w5BiAANQvFYHNQ6OmAJQLDOKDdh1pH+Xu9uwtS0+d8PhvcSk1hfiMDK8zPtlRt2QpNj82hpOJCciyTLXQEkBmVsnTvfVqJWF8P3DhWAzTxs3hxJ4zRFYtzUPvDKBmi9zVAZWvGelxwa7RqanerHBKZe/EDf6dGS/x82t/s/LPDS69AjfRGXW8P+uVO24G9w/246f9X7Lgh+XsWLKXkFJBDHipFw065l06vCizYeY2ti3Y5RQkuJlx+qDfeJ76ZiRJV5KdAUjm6yJxZ66yb81hGnetVyhzVrg73G8+Ifnx7doUOC3L8lkAQRBmAH2BIhOEJFvMzD9+lAvJyTSIKE33SlUKvHymIJBlmV2xMeyMjSHMx9djo3eI0ZilL0VRoXW58uwa/TTTow/x6ZaNbgtr3xsSvHeDyIAAj27mkFmicyvpNhtH4q+5ZUtFh4PZR6PpWaUqVUNLMGDmvyRbzGTY7fhotXyxdTPzhj5IGf/sFwOJZhNLTp4gxWqhZdlyNCxV2lljPbx2XaZHHyIuLc3ZF2LUaHijVZtcla2NqNuAvw4ewC5JzufQqzW0jCxHxeCQHK8P0Ot5q3Vbvti6CYsoIt+YR4WgYOYMGX7HwZZW5Tl4lmU5X9XQBEFwBh836VutOguPH8d2S7maXq1m8B0KCigUfU4fOMfLbd7HZrbicMhcPn2FgxuieW9m7hbYoRHBdHqoDetnbHU2WguCgN6oZ+AdKl7lhrSkdA5vOoZPgJE6bWugzuOmlN6o54VJY3h+4mjORV/i7Z6fYEo1OXsjHnx7QL6pUfkH+zHi/cGMeD/n3rTizvIpaz361ZjSzexeud9NUAAyA5WzB88rQYjCPUV+rMTLAJdu+TkGaJYP4+YLx67HM2zOTOyShEUSmXPsCBN2bmfekAddnLnvBnlVDoHMhe6YxfPZHRuLWbR7LHcxaDS817ZDsfA6UKtUPFSnHvOPH+Vo/DVnP4ZOraZsQCAdKlS8K/MwaLTUCgtnb5y7OdbltFSum0zOhu/sypBEh4MnFi+gQnAwV9PTEG8ENia7Haso8t66NfzeN+u+gu2XLjJ68QJkWcYmify0ZzftykfxQ48HUKtU+Op0LBr2MNOjD7H67GlCjT6MrN+QpmUic/W8Yb6+zBsynP9tWs/OmEsYNFqG1qrNqy1aez3GI/UaUCe8JP8cPkCiyUz3ylXoX71mvgT2Q2vVYeKuHS4N+GpBoE7JUgVa7gbwXtuOnEtK4kj8NdSCClF20DiiDK+19P69USie/PL6P1gyXBd+VpONH577jaY9G+bqM/Wln58gsmoEC35YTkaKiXodavPE+IcJi7w7YhvzJizltzenodFpQM6U/P185XtUrFs+z2MKgkDFOuWYdn4y0VuOk5aYTu3W1XNd4lUQSKLExtnb2TR7Gz6BPvQa04VaHlzSAUxpZpb8tIqtC3YRWCKAfi/0pGGnu59tEe2eBVoEQSC0dAgGX3fJZ61BS+nKd2dzTqGQkMk0ZylEcmqvEARhJPAlEHvj0ERZlqfceO1R4N0bxz+WZfmvHO8n3+EDC4IwCOguy/LoGz+PAJrJsvzcbec9ATwBUK5cuUYXLtyZI6y39Jj2FycSrrsc06rUPFynHu+161Dg9xcdDibs3M7fB/eTZrNSIyycD9t1pHHp3EkOTj98kI83b3DrA9Gp1AQbjZQPDOKFZi1oWbZcPs6+4DHb7fy4Zyfzjh1FkmX6VqvBc02b37WmdID+M6dx8OoVt+P+Oj0/P9DXpS9kxPzZ7Ii5lGX2JCvUgsCJ5172GMiIDgdNfv2RFKvrIsio0fJZpy70qZZ/tchFHZsk8cTiBey+HIPjRvYjUG9g5qBhlAnIe1lJbjgaf42zSYlUCS3hli1RuDfpEzDC4+6zWqNm7vXfC7QhOD85tvMUr3f60M2EMLhkINNjfs5zRqSoIokSY7uO48Tu01gyrAiCgM6oY8QHgxn6umuPijndzDONx3LtUoKztEzvo+eRD4cw5LW762u0/Le1TH7pD7dAwz/Ej7/PTOSxqi+QmpDmdGlXqVWUKBPCX6d+uCMVt/sZQRD2yrLsnY59IeEXXFau1+nFAr3HtrmvZ/k+3GivOMkt7RXA8FvbK24EIY09rPFDgD1AYzLDqb1AI1mWk7KbT37UN8QCt3bvRvJfhOREluVfZFluLMty47CwsHy4bc4kmk2cTXJ/frtDYsmpE3dlDu+vX8OU/XtItWX2ERyNv8ajC+Zw/Hp8rsaZc+yIR3UkjVrFlN79mDFoaKEEIMkWM8tOnWDN2dNYRO+UVG7FqNXySovWbBn1BNsff5I3W7e9qwEIQJWQUNQeggObJBF528L3yy7difD3z7WPSHY7qfuvXEaSPffGzD4anav7FHd0ajV/9hvI9IFDebdtB77v/gAbRo6+awEIQM2wcB6oWl0JQO4jAsM8/35ptOpipRC09OdV2Mzun8NWk43Dm45x4VgMHw3+iqFlnuC5Zm+xffGeQphl/rFl/i5O7D7jXMzLsozVZOWv92dydPsJJPG/0splU9YSf0sAAtw4dwbpyZ57LAuKLo+0o2aLahj8MqsxdAYteh897854Gb9AX77f9gm129RArVGh1qhp2LkO32/9WAlA7gMEuWD/ywFne4UsyzbgZnuFN3QDVsuynHgj8FgNeHagvoX8+I3eDVQRBKECmcHHMODBfBj3jsms6ff8rmvvgtt2kjmzF8UquUui/rhnF9937+X1WNktYu9W+ZUsy2y5dIElJ0+gUanw1+n56+A+NCo1AoAAvzzQr9i5To9u2Jilp064BHl6tZrmkWXdzBPtkoOhNesw7fBBrmSku42lFoTMeulbGu41KhWdK1TKMnARyObfNpvXbudmz9DZ5CSqhITSKKJ0sSjN80TdkqVy1XCvoHAnDH2jLz+9+reLYZ7eqKPnmM6oNcUne5CWlIHH6gYBzh+9xPt9v3B6hyTGJfHJ8O948qsR9H6q292fbD6wZd5OtzI6yOyfeK3j/zD46nnxxydoN7gF2xftcTq/34osy0RvPUHzXg3vxpQB0Gg1fLbiHfatOcz+tYcICg+k00NtCCmV6UdUulIpvl7/P2wWGwgCOv2d9dopFCMKvhqrhCAIt+4+/CLL8i83/t/b9oqBgiC0JTNr8rIsy5eyuDbHkp87DkJkWRYFQXgOWElmDdnvsiwfudNx84NAg4H6pSLYF3fZpXxGr1YzpFbB14FeSk1Bq1a7BSEOWebY9Wu5Gmtwzdoci7/mlg3x1+moXqLgM0uyLDN2zUqWnTqJSbQj8N/fyq3PN2bxfHaOfhofL923iwJVQ0vwa+/+vLNuNbFpqQhAtRJhHLp6haoTvyXCz583W7XFKom8t34tDtnhEmTcRC0IVAwOQQbi0lKxShJ6tZpQHx/+16FTlvevXyrCY1Dso9EyuFZtt+PR167y/c5tHIuPp3JIKC82a0HF4BCGz53JxdQUHLKMShCoEhLKP/0H3/XMkoJCcaPXE12Ij0lg7jdLUGvU2G0i7Ye1Ysz4hwt7armi9YBm7FtzyK3MR7SJ7F110MW8EDIzAb+99S89Hu9ULHfZ/UN8UakEZ9nSrditduxWO18+NpFSUWEElwryOIbdKvLvJ3No1rPBXd20UalUNO5aL9tGc51B+exWyHeu32FZ2mJguizLVkEQngT+AjrmdbB8+dSRZXkZsCw/xspvvunWkyGzZ5BqtSI6JFSCinolS/FkoyYFfu9ygYHYPUh+qgSBmiXCczXWwBq1WH3mNDtiL2EVRfRqDSpB4MdefXNdGpQX9l25zNJTJzHfKLnKLlhff+4svaoWHbdxb2hZthzrHhlFms3KrOjDfLtzmzPgi0tPY+yalYhZBB/GGw3ZFYKCmdKnP2E+vmy+eIFTidepGBRCu6gK2So7aVQqfuzVl1GL5t1oTJfQqdV0qFCRXre5tu++HMPIBXOdylSX09PYdTmG+iUjOJOU6CJ5fCw+ns+3bOTjG9LBCgoKnhEEgcfGDWfY2H5cOXeNEpGh+Af7Ffa0ck37oS1Z8tMqzh66cEuPhJZRnwxn1peLXQKQm0iiRHxMAhEVcjYDTYhLYuGk5ZzYfYZK9aLo91x3wsvdnfJqT/R4vBOr/tzgMcNxE5vZzuxvFjPghZ5snb/LowHjucMXid5ynDpt7p/+O4Wih0ChS/Tm2F4hy3LCLT9OAcbfcm37267dkNMNi9/WRy4p4x/AxpGj2XjhHLGpqdQJL0n9UhF3ZccjyGBkYI1azDt+1EWGVq9W80yT3AmIaVQqfu3dj31XLrMzJoZQHx96Vq6Kv/7u1CuvO3fWq54PhyxjyuE8WZY5ePUKh65eoZSfH+2jKubZ3C4vWEWRVJuVUKOPSwAnCAL+Oj2T9+5yN4KURI+FUQLQplwUr7dsTZmAAC6kpKBXa2gfVSFbvwxZlplz7Ag/7dlFgtlEo4jS/NV3ICcTE0gym2lVthz1SkW4XffxJndxAososiP2ktu5NofEwhPHlCBEQcFLjH5GKtTJu4pUYaPVaflq/YdsmLmNzXN34B/sR68nu1CzeVU2zNhGwuVEt2skyeGVl8jF47G80OJtbJbMDMOhjUdY8vMqvtn4EZXr590b6E6o0rAiT379CD+98heCSuVSTncTWZa5ej6emi2q0bBLHXYu2ed2jiXDykeDvuLFn56gdf8iI+6poHC3ybG9QhCECFmW42782Ac4duP/VwKfCoIQfOPnrsBbOd3wng9CIHMB36lCpUK59//adyLc15c/D+wn1Wal1g11rKp5aHoVBIFGEWVoFJE7Za38wKjRolGpPJoL3opDlmldNusvcZsk8cSSBeyO/U/9yEerY9agYZQPCsrnWbtilyQ+27KRGUcOI8syvlodb7dpx4Aa//lAWESRNKv7Fxl4zv4IgkCEvz9rzp1hws4dqAQBu0OiS8XKfNmlW5a+Gd/v3M6v+3Y7A4oN58+xMzaGRcMeztavI7eCBjn9eykoKNxbaHVauoxoR5cR7VyOP/TuQMYN/dZloa7RaegwtBU+/jnLX09+8XdMqSangqhokxBtEhOe+ZUJ2z7N8rrzRy6xbeFuNFo1bQY1zzHjEh+TwOY5OxDtIs17N6Zc9ey/73o/1Y0Ow1qzc+levho12cXkD0Cr1zpleJv1bMSBddFu6mEAyfGpfD5iAi//8hSdHmyT7T0LG5vVzqzxC1j+2zrsNpE2A5rx6P+GEhCqOJ0Xa2S5UCV6s2qvEAThI2CPLMuLgBcEQegDiEAiMPLGtYmCIIwjM5AB+EiWZfddj9u4Y4nevNC4cWN5z57ircpxv3ExJZnuU/9y8W+4HaNGwzNNmvFsk+ZZnvPz3t18v3ObS2YoszwtjEXDR+TrnG/ngw1rmX002uXeRo2GiT170yEq05dElmWaTvmJBLPJ7fpb+2Buvf7ZJs2YtHunW2N7ryrV+KprD7dxMmw2mkz50c2kUS0I9KlWg689XHOTZlN+It7kruSiFgRkMoPAm6gEgc4VKvHTA96KW+QP2y9dZMKu7VxISaZ2eElebtaSGmG5Kz9UUFDIf5b8vIqJL/yOdGOhrtaoKFEmlG82fUR42ew3xnoah2O3un/+C4LActt0j/K/f7w3nbnfLEG0SwgqAZVK4JnvH6PXGM/Z2ZV/rWfC078C4JAcqDRqBr/Wm5H/G+bV8/314UzmfL3Y2ROj1qjxD/Hj18NfExQWSHpyBg9FPY0p1ZzlGCUiQ5h+8Wev7ldYvNn9Y6I3H3OWoWl0GsLKhPBr9DfojcVHze1uUhwkev2DIuX67QtWonfLwjeK1PtQ8BJRCvcE5QKDGJdNc7UATO0/ONsABGDWkcNui2+HLHMyMYH4jPyRSbyYksxba1fRdeofPLF4AfvjLmO225l1JNrt3mZR5IedO7CKIhk2G4Ig8GqLVs4+j5sYNBqeadwUg0aDUaNBr1ajV6tvKGuddCuRskoSS0+dIMODq/3F1BQ0gvufniTLHLgS53b8Vp5o2NhtbkaNhhF16xOg1ztf89FoCTEaef8ueOHcyopTJ3l88Xx2xsZwJT2dtWfPMGj2dA558GFRUFC4u1jNNtSa/z57JNFBfEwCnz74XY7X6rOQKtbqNag89Lyd3n+Oud8swWq2IYkSok3EZrEz+cU/SIhzl85PupbChKd/xWaxY7PYEe0SNrONOV8v5vT+c1493yMfDOG1356hWpNKlKoQTs8xnfhp/5dOU0W/IF/Gr/mAkuWz7mNJiE3Cbsu93Pzd4uTeM0RvOe7SByPaRJLiU9k4a3shzkwhPyhkid67zn1RjqWQPwysWZulp06w8cJ5l4yAWhDoWqkKDSJK5ziG3eHeqA+ZQUxWr+WGs0mJ9Js5DbPdjiTLnElMZOulC7zXpgOqLNqAjsZfpc5PPyDLMtVLhPFF52580rEL3+7YRlx6GlFBQYxt1ZZOFSoxsn4jVp45hVWS6BBVgaigYKZHH/L8TIJAitWC723qVKV8/bBl8axROZSkjWrQiCSLhT8O7EUlCEiyzPDadXmrdTteat6KeceOcCLhOrXDwulbveZdVcaSZZn/bVrvEujJZAZ6X2zdxLQBQ+7aXBQUFFxJS0pnwQ/L3XxEHJKDk3vOkByfQlBYILIss/rvjUz7eC6JV5KoVC+KJ74cQc8xnW9c/9/iV2fQ0uXR9h57LDfN2e6xCVxQCexYvIdaraqzbeFu1Bo1bQc35+D6I6jU7sGMzWLnu6d/pnyNsjTt2ZDW/ZtmKZssCALthrSk3ZCWWb4P1RpX4p+zk3go6mniLyW4ve4f6udUCrNZbKQnZxAYFlBkjB5P7T2Lp+JgS7qF6K3H6fpo+7s+JwWFvKIEIQq54rNO3eg/axppVisZdju+Wi0BegMfZLHjfi45iVlHDpNgMtE+qiIPVKnG7wf2YbtNNay0fwARfndezzp+62YybDbnR/TNRfB3O7dmqVBldzic5x+Jv8awOTNZ++go+lWv6XZuqI8PD9ZxlVRsUjqSlWdOuZRCQWY2oqSvu8JOsNFIj8pVWXnmlMuC3aDR8HTj7JsiBUHgtZatGd2gEYtOHkclCLSPqoBapSJAr2dk/bundX87aTabxzI2gENXr97l2Sgo3BvcLJnOq5iKKc3MlyMnsXPZvqx3+GXYvmgPLfo0ZvXfG/nrg1nO3pEj207wRpeP+GLV+8ScuMyelQfQ6LVINpHabWrw1NePeh5TEDL/u23BLCCwffEeJr/8J5JNRFAJ/P3hTNoM9JxFlx0yJ3af4cSuM2yau4P53y/ly3UfoNXlXQZeEARGf/YQ3zzxs0uPjMFXz0PvDEQSJX55/R+W/boGWZYx+hkY8+UIuj16dzPLnggvH+YxWNMZdURWdRczUShmFMFsRUGiBCFFjNOJCSSazdQKC3fbQS8KlPTzY/0jj7P89CnOJCVQOSSU7pWqoNe4/yotP3WCV1evQHRkStsuO32SqiGhlA8MIjYtFZPdjkGjQSOo+LZbz3xRLNt9Ocbj33Cy1coLzZozaddOt9Kp28+3OyRmRh/iuaYtvLrnqy1asfnieUx2uzMQMWo0vN+uA+osAp/PO3XFR6tl3rEjyECIwcgH7TrSuHTOogPR164yYv5sJIeMA5lPNm9gRN0GvNW6baGaE/potWhVKo8yxmE+PoUwIwWF4kt8TAITnvmV3Sv2AwLNezfihUmjnYZ23vLJ8G/Zv/awx36Om9htIj++8ic/PDcF5Myfb8VqsvHPR7P5fMW7XD5zhQtHY4isGkHZall/XrUf0pJ53y5xk88VRYn9aw9js9wIiCTALrFpzg6yXIHdOGxJt3D6wHlW/bmBXk/cmepfxwfbYDXb+P2d6aQlpuET4MOD7wyg/ws9mfjCb6z8Y71z7jaLnR+enUJQWCDNehbeRg9Aw851CCwRgNVkwyHdYoqrUStZEIVih9KYXkS4mp7O44vmcS45yalC9XrLNjxWiDvbd4JVFGn862Qy7K47b0aNhjdbtSXUx5e9l2MpExBA/+o1CTbmrM7iDV3++YMzSe6CDDq1mgNPPsu6c+f4Ydd2rmakE+7rx8WUZLc+EYA+VavzXS4c7c8nJzFx1w72xl2mbEAATzduRouy5XK8ziqKZNhtBBuMXgUQksNBy99/Jt7kmnEwarRM6tk7W1ngu8EnmzYwLfqgW/P/R+07M7BmrWyuVFBQuInNYuPRKs+TeCXZudBUa9SElQ3lj+Pfe20seD02gUeqPI/dcuc9DkHhgcy+MiVX10z7eA7/fprpf3Tz861B5zrsXrbfzWBQ76OnzcBmbJq9HVmWkUSHyyL7Vuq1r8VX6z7M03PcjizLWExWDD56BEHAYrIyMGyUS9nZTao3rcwPOz7Ll/veCddjE/jikR+I3noCgMiqEYz963kqNyjcz/+iTHFpTG/YpmAb0zctKVqN6UompIgwevF8TiRcd3F2/2rbZqqGhtIqG8nbosrCE8ewiu59D2ZRZNnpk0wfOJSeVarm+32faNSEDzesvU2pSsMDVath0GjpWaWq877HrsczcNa/bmMYNRrqe/DoyI6ooGCPSlg5oddoPGaRHLKMLMtumZQDV+Mw2d2DJrNoZ3r0oUIPQsa2znSWn3002jn355o0Z0AN99I2BQUFz2yZt5OMFJPLIlwSJVKup7Jz6T5a9Wvq1TgJcclodZp8CUJKV87ZzPB2Hnp3EO2GtmL7oj2ZEr0Dm7Hkp9XsXn4A96yHTK2W1Xls3DA2zdnB5bNXWfH7Oo9zN/oZsrzn3tUHmfvdUlKupdDsgUb0f6FntsaTgiBg9P1vvNTrqVluCF29kDuJ9IKiRJlQvlz7IRkpGYh2ySufFwWFoogShBQBziYlciYp0SUAgcwF+x/79xW7IGT7pYt8sGEtoux5F8tHm/da3pwYVKMWMakp/LJ3D1q1Crsk0bFCBY/KXjVKhNG0TCQ7Yy5hvdGjohYE/HR6BtbI/a792cREJuzaTpLFzIDqtWgeGYlDhlJ+fl6XScWbMnh33WrWnTsLQMuy5fm0YxfKBGR+yVhFiayGMtu9X2jYJYkFJ44x/9gRtGo1w2rXpXulKndczqVRqfioQ2fGtmrLdZOJUn5+HoMsBYX7meuxCditIqUqhHv8m7t4PBZzusXtuM1s49LxWLfjWVGuemmnHG9uEFSCi7u63qjj0Q+H5nocgMgqEQx+tbfz53ZDWzLnm8VuZVqyQ6Zl38aElApm0Cu92TR7O4snr3QbT++jy7IUa863S/jzvRnOPo9zRy6x6s8N/LT/S/yCfL2ab0hEMBqtmtvdogQBqjap7NUYdwvfQO+eSaGYkKmzX9izuKsoq4MiQJLFjFalwv0rB6578IQo6ry/Ya1zUX87PhotD9au5/G1rIhNTWV69EEupqTQLLIs/avXzDKQEQSBl5u3YkzDJpxPTqKknx8BOj2T9+xk7tEjiLKDXlWq8WKzFgToDfzcqy+Tdu9g5pHDWESJjhUqMrZVm1w70f+0Zxfjt212/rz54gUAdCoVkQGBfNe9F7XDs99JFB0OBs+ezuXUVGdAuu3SBfrPmsbGR0dj1GppGBHh1gAPmeVYfapV92quDllm1KJ57IuLw3zD3X7v5ctsqnaezzp19WqMnPDV6YpkT5OCQmESd/YqHw35mgtHY1AJAsElA3lr2ovUbFHN5bwKtcth9DO4BSI6o47ytcp6fT+jn5EH3xnAv5/Nx5rh2YT1dnRGLbVbVefYjlPYLDaCSwXz1NeP0rBzXa/vmx0VapfjwXcGMO3juS5lWi9MHuPsd5EkiQnPeS79iqhUima93MuUTWlm/nx3uktwY7fYSbqawqIfV/LgWwO8mp9Gq2HUJ8P55Y2pLk3reqOex8Z551eioKDgHUoQUgSoUSLcYzOvXq2mYyE5vecVqyhyLtldA/4mw2rXoWOFil6Ptys2hscWzkN0OLA7JNaeO8vPe3exaNjDBBmy7iPx0+moHV4SWZYZPm8WB69cwXrDaHHa4YNsunCepQ8+gl6j4ZUWrXmlRWvvH/I20m02lwDkVmwOB2eTk3hw3iw2jRyd7Zw3nj9HgsmEeEuQIckyJrudZadPMrBGLQwaLeM7d+O1Wxr+fbRa6oSXpG+1Gl7Nd9OF8+y/8l8AAmAS7Sw8cYzHGzSickiol0+uoKDgLaJd5OW275F4JdmZZbhyPp43u33MX6d+ILhkkPPclv2aMOXNadgsdqQbZa0arZrQiBCa9myQq/s++PZAylQpzawvF3D1fDzpyRlo9VpkOXNOyDKyQ8bhkNH76ImoWJIP57+BzqDFZrZh8DW4ZWsyUk2kJqQRXrZElnK5Oc2p3ZCWbF+0B7Ums0yrRJn/PneuXbjuEgC43Ds5w2P26NTes2h0GrcMi81iY+eSvV4HIQB9nulOcMkg/hk3h+uxCVRrXJnHP32QSvWivB5DQSFP3F+JECUIKQr4aLW81bodn23Z6Oxl0KvVlPDx5dF6ufvCKWy0ajV6tcZlgXuTUKORd9t6lji8lJKCTRKpGBzi/IKRZZlXVi1zGcss2rmaLjFp907eadM+x/nsiYsl+tpVZwACYJMkrqSnsfrMaXpVreZ2jVUUWXLqBNsuXaSMvz9Da9V1lkN5Ynr0wRznITocLDx+jEezERo4l5zkJl0MYLLbOZ34n559zyrVqBEWzuwj0SSaTXSsUJFOFSplqcR1O4tPHsfkoXRLlmW2x1xSghAFhXwiLSmdo9tO4BvoQ2piOuY0i0uZE2T2eqz8awPD3ujnPKbVaZmw/RN+fPlPti3cDYJAm4HNePqbkXnyq2g3uAXtBmeq/WWkmtixeC9Wk5XG3euTEp/Koh9XknQlmRa9G9N5RFun67bRz3XTxGq28s2Yn9g8dydqjQqNTsOTXz1C98c65npOZSpHMOiV3h5f8w3ycQZftxNYwrOUe1B4AKKH0jNByCyxyi1tBjbPUjZYQUEhf1CCkCLCw3XrUyUklN8P7CPelEHHqAo8Uq8BAfqsG/CKIipBYFjtOkyPPuSmkPREoyZu559LTuKZpYu4kJKMgECAXs/33XvRtEwkl9PSSDSb3a6xOxysOH3KqyAk+to1j1mmDLud/Vfi3IKQNKuVgbP+5XJ6Gia7Ha1KzW/79/Jr7/60vE3t6nxyEueSk0gyuc/xdiyiSExaarbnVAkJRadWY79tvr5aLTVKuDr8VggK5o1WbbIdzyqKxKalUsLHx/l7FJ+RwbJTJzyer1GpCDLk/fdNlmUSzGaMGo1SiqVw3zPv+yX89ta/aHSaTJEJtRq7B1EJm8XOlbPX3I4Hlwzi7X9fyrf5yLLM0e0n2bV8H36BvrQf1oqwyFDCy5bg1V+f9mqML0dNZvvC3ditduxWIMPKxOd/JywylEZdPJfZOhwOFk5awdxvlpCWlE6dNjUYM34E5WtEZnmfgBB/GnWpx95VB13kgjU6DQ885blktHzNskRWjeDc4YsuDf06o56BL3mvdKigUJgURVfzgkQJQgoIuySx4fw5LqQkUzMsnBaRZXNs+m0WWZZmkd7X+xZVxrZqS5LFzLJTJ9Gr1dgkiSG16vB4A1dVOLskMXzOTOJNGc4MpFm0M2rhPNY+Mgq9RuOx/wEygxpvKOPvj1aldsswGDUaygUGup3/2/69XEpNcfa02B0Sdge8snIZ2x5/EpUgYBHtPLtsMdsuXUKnVnnMXtyOr1ZLo4jsPUDalI+iTEAg55ISnYFIZmBgpFulKl49703+PrifL7dtQUZGdDjoUbkqn3fqytTDB8hKllsGOuex/G/7pYuMXbuSaxkZyLJMxwoV+aJzt2IXRCso5AfRW4/z+zvTsVns//lhAHj4CjD6GajbrmDV42RZ5vMRE9i2cDcWkxWtTsOfH8zkzX9eoM2A7A1Sb5KamMa2BbvdXNCtJivTP5ufZRDy06t/sfzXtVhulFftWraPw5uO8dOBL4mokHWf3Ni/n+fDAV9yePMxZ1AhyzI/vvwX4eXCaNKtvts1Hy95i/f7fM7F47GoNWockoMnv36U2q29K1UtTiTEJTHj8/nsW3OI0NIhDHm9L4275q7fUkGhsFGCkAIgLi2NwbOnk2K1YJMc6NQqKgaH8O+AIffFDrFOreabrj15u3V7YtNSiQoMItDDDvumi+fJsNs9mgW+vmYFLSPLUTW0BMfir7kohxk1Gh6uW9+ruXSIqoifTodFtLuMoVWr6Ve9BpdSUvj70H7OJiXSpHQki04c89hUn263cS4pkUohoXy6eSPbLl3EKklYb5yqEVRZqoHp1GrKBgTSuWL2C3yVIDBr0FA+3byRpadO4JChS8VKvNO2fa4UpladOcUXWze5yBSvPH0SlSCQZDZj85AZAniuaXOMeVAuO5uUyOjF813ut+7cWUYvms+swcNzPZ6CQnFn8Y8rPfpMqFQq1Fq1U3ZWq9cSXj6MNgO9CwTyyvbFezIDkBvN6TeNC8c/+gONu9VzkajNiqSrKWi0arcgBLKWrk1NTGPpz6tdAjFZBqvZxuwvF/HC5DFZ3s8vyJcRHwzmnZ6fOvs8JLuEZJcYN/hrZl2ZgsHHVUCkROkQJu8ZT8zJy6QmpFGxXpTbOfcCCXFJPFnvVTJSTIh2iYvHYjm6/SRPjH+YPs90L+zpKdwJheDdV5goQUgB8MaaFVzJSHfu4tsdEicSrvPtjq1Z9kTci5Tw8aFENk7Z8RkZODws3O0OB1svXmBnzCUgU2lJurFwFh0OulaqzEN1vNvx0arVzBk8nJdWLuXQ1SsAVA4J5euuPTiZkMCjC+YiOiTsDgfbYy5hzyKrITlkDBotsiwz5+gRt0BFlB346XQ0KxNJgslEqNGHA1fjSLPZCDEaebBOPU+boG4E6A183rkbn3fu5tXz3cp1k4lUq4VJu91d4S2SxLJTJ3i0XgO2xVx0y94YNBo6ReUtC/L7/r1u49kdDqLjr3EqIYEqoUqPicK9w8ENR5j2yVzizl6lRvMqjHh/sJtzeGpiuse1hN5HR8fhbYjecgy7VaTD8FYMeb0vWt2dyZZnpJpY+cd6Dm8+RmTV0vR+qgvh5f4r4Vzyy2pnAHIrKrWKg+uP0PyBRjneI6Ki56yFSq2iThaZhpgTl9Hqta7ZIDL7YI7uOJnjPVf/tQGbxT2YE1QC+9YcomUf9xJfgMiqpXMcuzgz4/P5zgDkJlaTlV/fnEb3UR3RGe79zU6FewMlCMlnLKKdnbExbmVEthu+DAUVhCSaTaRYrZQNCETjZYPy3cBkt3MlPY1Sfv5usroNIkpnKQQhg7MkyW61YlRrGFq7DiPqNaBCUO6aDMsEBDB78HBSLBYk2UGI0QdZlun8zx8uTe8WUUQg0yvk1qyJShCoFBxMmYAAJIfDpcn9VqyiyK+9+yPfkMA12e03muDT+WzLJjZfPM9PvfresRfH7SSZzbywYgm7L8feKBfzPD+VINC9clX+jT6EXZKc771eraZRROk8Bwtnk5PcPG4AtCoVsWmpShCicM+wYdZWvho1Gaspc2F87UI8OxbvZcL2T4m6RTq3db+mHN50zE3hSbI7GPPFQ/nq75B4JYlnGo8lPdmE1WRFo9OwYOJyvlj5LjVbVCPpajL71xzO8nqV2rvvC51ey8iPh/HH29OdpVUqlYDBV89D7w30eE14+TCPmRNBJVCuevblqQCS6MhyY1gSHSReSUKr12ZrRljckESJ7Yv3cPbgBUpXLkWbgc2cQgE32bfmkMcmfJVK4OKxWMU5vRhzv/WEFJ3V6j1Cdj4zWfU33AmpVguPL5pHy99/ofe//9B0yo8sOXk83++TWxyyzBdbN9H418n0mTGVxr9O5rPNG13eg2qhJehUoaJX/R1mSWTGkcNYs1hge0OgwUCIMTMzk2yxEJOa4naODKhVKvRqDT5aLb5aLSV9/fixV1+48Vqd8FJu1wlA0zKRxKamMmzuDDZeOO+SjTCLdrZcvMj+K3F5nn9WjFk8n12xMdgkKcsABDLLwmqHl2TO4OE0LROJShAwajQMrlmbXx7ol+f7NyldBr0HxR6bJFG9RIk8j6ugUJRwOBxMfvEPZwCSeUzGkmHht7f/dTm3yyPtKFe9NAbfzMWjIAjofXSMGf9wvhvM/fHeDJKvpToDHtEmYkm38OVjk5BlmQU/LM+yD8whydTv4L0x64AXevHm1Beo1qQSoaVDaDu4BZN2f0GZyhEezy9ROoSmPRuiM7huQOkMWoa80TfH+3UY3tr5Ht6K3Sry25tTebjCMwyJGMOrHT7gemwCqYlpJMe7f64XF1IT0xhd5xXGPzqRfz6azYRnfuWRSs9x5byrcEFo6RCP14s2kaBwxT1dofigZELyGR+tlnolS7Ev7rLLLr9GpaJH5ar5fr+nly5iz+VY7A4HNiRMop2xa1ZSxj+ABhGFl5L+dd8e/j6432VRPPXwAQINBp5p8l/983fdejHryGGmRR/kSno6yWYznjsWMhvZ/zl0gE86enbLzQ3Z9ViE+fjyV7+B7L8SR7iPLy3LlnORv/24Y2eGzZ2JXcos49Kp1ejUal5u3oq+M6eS5EHRC8AmieyMvUTDfPx3OZuUyNHr8W6KWrejVal4q3U7NCoVVUNLMH3gUBejsDvhkboNmHboIHaHxRlkGjUa+lSrQSk/z3KaCgrFjZT4VNJTTG7HZRmObnPd+NEZdHy35WPWTtvM5nk7CSzhT++nu1Gzef5/B+xYvMejnO3VC/GkXE/lyLYTWbqmD3+rf65Ld1r1a0qrfk29Pv/Nf55n8ot/sGbqJiTJQclyJXhh8hgq1895t75J9/q06t+MrfN3YjFZ0Wg1CCoBZJnY01ec5x3efIxHKj+f+ZkGlK1ehjf/eZ7wciWwWUWCwgLyPQNdEEx5cxpXzl1DvKEIZk63YDVZ+Xr0j3y55gPneUNe78vR7SddMm0anYbabWq4+K0oFDNkFJ8QhTvni87dGDx7BhZRxCza8dVqKeHjy2t3YIjniZjUFPbFxbktQC2iyC/7djt37wuDX/fudutLMIsiv+3f4xKEqFUqhtepx/A69TifnESPaX9nWe4kyTKXc5C59RYfrZZ2URXYeP6cy/tn0GgYUbc+FYNDqBjsebepdnhJVjz0KH8c2Mex6/HUDS/Fo/UasPTUCUweGu1voldrnJmY/OJKejpalQpLDud1KF+RIbXquBzLry/lUB8fFg5/mG+2b2Xj+XP46/U8Wq8BjxQzjxsFhezwCTBm2dcVXCrI7ZjOoKPH453o8XinAp1XVo3XspzZ+F6+ZiTRW44hia7fEzqjLtcN8amJaSz4YTk7l+2jROkQBrzYi3rts8+k6I16Xv7lKZ6fNBqryYpPgE+Onz0Oh4PlU9ayaPJKLCYrbQY2xz/En8ASfqQlpbNo0krXZ3XILmVfZw9d4OlGbyAIAoJKILxcGG/8+aybM31RY/OcHc4A5CYOh8yhjUexWe3o9JkZpcZd6/HElyOYMnYqgkpAtInUaVODd2a8XBjTVsgnBEBQGtMV7pSKwSFsGjmaJSePcy45mdrh4XStVAVdHkymsuNqRjo6tcqp0HQTGYhJzZ/Fel5JtnpeFidbLFnuwEcFBfNai1Z8uX2LR9lbo0ZD+yjv3dZzYnznboxcMJfTiYmoVAJ2SaJrxcqMapBzk2ZkQCDv3dbfc/BqXLblUCpBoGc+Z8NqlAjLUSLYR6ulX42ClQAt4x/A1117FOg9FBQKE71RT+cR7VgzdZOL8pXeR58rN+78pvfT3fj7f7NcysQ0WjUNOtXBN8CH/i/2YtWfG5DE/3bNtXoNNZpXcWuoz47UxDSeavA6yfGp2C12TnKGvasP8eRXI+j9VM5CGhqtBk2gd0uOLx+bxJZ5O53N9HFnr+Ljb+TrDR8y97ulbo3unrg16Io9FcfYbh/z25FvCS9bhEtEc7Ev1OfpbnR/rAMXj8USFB6gZEAUiiVKT0gB4avTMbR2Xd5s3ZYHqlbP9wAEoGpICY8LUK1KRcvIch6uuHtUDfX8QV81tES2u2CPN2zM6ocfo0VkWbS3lEDp1WrCff0YVMP7+uWcCDIYWTDsYWYOGsqXXbqz6uHH+K57rzw39lcLLeGxNwIg2GDk7/6D8Nfnr1xksNHI4w0aZdlXo1eriQoMylEeWEFBIWeenTCKtoOao9VrMfobMPjqefi9gXR8MHvj0IJk4MsP0KxXI3RGXeac/AyUrV6GN/58FoDIKhF8uvwdylYrjVqrRqvT0HpAcz5aMDZX95n3/TKSr6U45YUhU5Hp59f+cTaq5wcxJy+zafZ2FzUv2SGTkWLiuWZvExDi77FPJCdEm8jSn1fn2zwLgvZDW6LRun6HqNQqGnSs7cyC3IrOoKNygwpKAHIv4Sjg/4oYSiakGOOv1/N046b8fEvpk1oQ8NPpGN2wcQ5XFyzvt+3AqEXzXDIDBo3GLXvgibKBgUztP5gVZ07x54F9pFmtdK9clZH1GxaIz0qt8JLUCs/aNMtbhtauy6/79rjI92oEFVFBQSx/6FGXvpL85NUWralWIowp+/aQZDZTys+PhBt9KX2r1WB0w8ZFSjFNQaG4otNrGfvX8zzz3WMkXkmmVFSYm3LR7VhMVhZNXsmGmVsx+Orp83Q32g1pmW/lkGqNmvdmvkLMycuc2neOklFh1GhWxWX8Om1q8Pux70lPzkBn0OZJwnXX0n1OfxHX+6s4e+hCvvW7HNt5CrVGDbhnO0SbyPoZWwkMC0C0J7mVLmWHaBO5dOJyvsyxoGjctT5Lf1njcswvyIdXpnjnaK+gUNxQgpBizvNNW1ApOJRf9u0m0WyiTbkonm/agjDf/FVgyS3NI8syfeBQvt+xjZMJ16kSWoKXmrWgXinPKiq3IwgCPSpXLZBm/oIixWJhSK06rDx9iti0VKcYwUcdOhVYAAKZ71XvqtXpXbV6gd1DQUHhP/yD/byShbVZ7bzY6h1iT8Y5DfdO7T3Loc3HeGHi6HydU2TV0jn6Y/gF5f17IahkoMfjkl0iIDRrAYor568RfymBqNplvXrPQkuHZFuWlJGSwbebxrHqzw1snrcDrV6L3WInIS4px7HDyhXdjEFqQhqfPTwB+TaJTavJhlanLNXuF5SeEIVihSAI9KpajV5Vi17DXb2Spfi9b+HVSt8pqVYrmy6cQwbalY8iQJ+1q/D4rZv448B+HLIDtUqFTq3mi87d6FPNs4mXwp1z5NpVZhw5TLLFTNdKVeheqQraAih7VFDIK5tmb+fy6SvOAATAkmFl5e/rGPxqbyIq3HkG9m4x6OUHOLTxqIsik1qjonytskRWcd9cykg1MW7w1xzefCwzULDa6fdCT0Z/9lC2WaB67WsSEOKPOc1zX6FDchBergTPThjFsxNGATC267icgxABSkUV3fd705wdHmMvWZZZP2MrA17sddfnpKBQ0ChBiAeSLWb2xl0mQK+nUUQZVMVA2u9eJMFkYtnpk6RarbQuV556Jd39OQqK5adO8OrqFagFARCQHA6+6NyN3tXcsw374y7z18H9TlWvm2pbb65ZRfuoCtkGLwp5Y3r0IcZtWo9dkpBkmfXnzzH10AH+6T+4QPqvFBTywp6VBzw7lWvURG85XqyCkIad6zLq0+H8/ta/qHUaJJtI+VplGbfov94SSZQwpZnxDfTh69E/cmjTUexW0dlIvmjSCspVK0O3x7Iuy1Wr1Xy94X+82v4Drl6Id31Nq6ZWq+oElnD1wog5mXOZlcGop3L9qFw88d0lI8WE3e5eXma3iWR4kIZWuAdRJHoVpuzbw9fbt6BVq5FlmQC9gb/7DaRSSNFN496LbL5wnqeWLkSWweaQmLx7B90rV+WrLt0LXO89PiODV1etwHKbVPDYNStpXLoMEf6upQcLTxxz6QO5iVolsP78Ofoq2ZB8JdVqZdzG9S7/Pia7nT2XY3l11XK+6tI9Wx8YBYW7RYkyIWi0ajd3a5UgEBTuubwpv5BlmRO7T3N40zGCwgNpPaApRj/jHY054IVe9BjVkTMHzhMYFuBU15JlmX8/ncesLxdis9gx+hkwpZrcZIEtGVZmf7Mo2yAEoGT5MP4+M5Hxj05k46ztaA0aZIdMmcoRvDP9Jbfzo2qXI/7S9Szd1TU6DWWqRlC7ddEqWU28kkTMyThKVy5Foy51+eejWW6eLnqjjsbd6hfOBBUUChjlm/oWdsXG8O2OrVglybmoNNntPLpwLptGjlEyIncJqyjy7PLFtzmOi6w8c4pulSrTtVKVArv3iYTrvL5qhUevEgcyy06f5PHbJHxlyNKROKvjCnlnz+VYNGoVeJCmXn76JJfTUpk1aFiB9uEoKHhDj9GdWDBxuUsQIggCBj8DDTvVyebKO0OSJMYN+Ya9qw5it4lo9Vomvfg749e8T9VGd6aUZ/QzUru168bKjM/nM/2z+c5SrbTE9CyvT72e5tV9VCoVb/7zAo9/9hCn9p0lLDKUyg0qeNyEeuTDIRzcEO0iUyyoBGSHjEanoe2gFjz3w6giY1goiRLfPvkz66dvcZaqtejbhLYDm7P5Fmlig6+eFn0aU71p5UKescLdQSbLSPoeRQlCbuGfQwfcfB5kMhuOD16JK1QH8vsFmyTx58F9SB4cwE12O88sW0yI0cgjdRvwVOOm+ar6dOBKHA/Nm4VFFD1mRCWHA4vortiiVak8nm+TJNpH5ewKnBv2XI5levQh0m1WelSuRq8qVe+7PghfrTbLz2mHLHMi4TqbLp6nQz56yigo5IUylSN4d8YrjH/0ByTRgcPhoESZUMYtGntDAapgWP3XRvauOuhczN7cXf9wwJdMO/9jvi7GHQ4HM8cvdOkVyQqVSqBh57q5Gj8sMpSwyOwrEao1rsSny97hx1f+5NyhCwSE+jP4tT4MeKkXKpXK6+dNS0pnxe/rOLX3LJXqR9Hj8U7ZNt3nlWmfzGXDzK3YLHZnqdr2RXvo9URn3pr2Iqv+3IAsy3R5pB0t+zYpMsGTgkJ+owQht5BssXhcTAqCQJrN5uEVhfxkR8wlnlq6EJsouZVC3cQhy1w3mZi8Zyfnk5P4Kh8N8j7auM7N5f1WtGo1HW9b2EoOB3OPHfF4foSfH0GGOyt/uJWf9+xiwq7tziBp68WLzDhyiKn9B99XEryNS5fBqNWQYff8N2my29kdG6sEIQpFguYPNGL21d84feA8Bl895aqXKfBF5bIpaz32oqQlpXPu8EUq1i2fb/eymm0e73UTQRCQ5cyMhMFXz8hxw/Lt3rdSt21NftwzPs/Xx529ynPN3sJqsmI129i6cDczvljAhG2f5MrU0RsWTVrhkrUBsJltLJ+ylqe/GUnLPk3y9X4KxQfh/kqEKGaFt9K9chWPpm+iw0EDL6VlFfJGqtXK6MXzSbVaswxAbsUiiiw9dYIr6Z5T+6lWK8tPn2T1mdOY7Tm76wJEx1/L9vU+VatTIyzc+XOi2cSv+/ZkGaAmWTyru+SF6yYT3+3chvmWLI1JtBN97SorT5/Kt/sUB9QqFX/2HYiv1rPXgUGtoZRfzlKgCgp3C7VGTbXGlShfI/Ku7GrLHjLJAAICDil/HcsMPnoCS3jOFpSrEUm7oS2p0qgifZ/rzq+Hv6FUVLjHc2VZZs3UTTzTZCyPVH6OH1/5k+T4lHyda3ZMfOE30pLSnUpmNrONjGQT3z/zq8t5NouNgxuOcHTHSRxZvM85kZFq9njcarLmeUwFheKIkgm5hUE1ajEj+hBnkxIxiyICoNdoeLt1u3x3ulZwZeWZ3C+kdWo1pxMTKeXn+gW44PhR3l67OjM7IGRmTyb37EPb8lHZjheg15No9vzloFWpqVEizPnz9ksXGb14AQ6HA0cWtUGRAXfeeHo2KZHf9+9lZ2wMksP9Pia7nRVnThZJieaCpGZYONtGjaHl77+QcVuQqVYJ9PGgYqagUNS42TOW34FJl0facy76ottuu8HXQMV6+ZcFgcy5j/lyBN89+bPL/fRGHc9PfJz6HWp7Nc5Pr/zpksFZNHklm+Zs59dD39yRv4m37Ftz2M2jQ5ZlDm08iizLCILApjnb+WrU5Mx+E1nGx9/Ix0veonL93JXd1mxelUObjrodr1gvCvV9Vl6rcBv3WU+Ikgm5Bb1Gw5zBw3m/XUfalY+if/Wa/DtgCA/XrV/YU7vnSbNaEbPYAQrz8fH4i2qTHJQPDHI5diklhbfXrsYiiaTbbaTbbJjsdp5eupBUq4VUq5VDV68Qb8pwG29U/UZZljUJ/Ce9KzocPLNsMWbRjtXhrop1kySLmYXH3b9ovGVXbAy9p09l5pHDnElKRJTd3x+1IORryVdxwl9vYM6QB6kQFIxBo8Go0VLGP4B/+g++b98TheJBQlwSHw74kh764fQ0DOejwV+RdDU538bvOaYTNZtXxeCXKQ+uM+ow+Bl4f/YrqAqgdLPzQ215a+qLVKhTDqO/kRrNq/DJsre9DkAS4pJY/NNql7Iu0SaSlpDO0l9W5/t8PaHVe96T1Wgzg4LY03GMf3Qi5nQLplQz5jQLCZeTGNvlI+w277LtN3n6u5EY/QzOviCVWoXBR88Lk/LXwFJBoaijZEJuQ6/RMLRWHYbWKjjlEgV3Wpcrz1fbt7gd99Fqebt1O95et9qlX0OvVtOybFnKBrpmGxaeOIbkYbEuCAIvrljKjphL6NRqrJJEl4qVXeRcn2rclBMJ11l88riH66FzxUxVmf1XLnu8x+1cSU/n7XWriTeZGN2wMZAp/xuTmkKF4OAcF8pvr12F2UMj/K1o1WqG3ce/q9VCS7BmxGNcTElBkh1UCApWmjgVijQ2q50XWrxNwuVEp4TttoV7OLX3HH+c+B6N9s6/ljVaDZ+veo8D66I5uOEIwaWC6DCslZu/Rn7Sql9TWvVrmqdrT+87i1avwW51/byzmm3sW3uYoW/0y4cZZk+XEe1Y/ts6lzlodBo6Dm+NIAis+G0doui+6STaJHavOJCrPo7K9Svw84GvmPXlQk7uOUPFelEMeb1PvveeKBQzZBDus2o8JQhRKBJUDS3BwOq1mHf8qHPh7aPR0q58FH2q1SAyMJB3163hVGICWpWK/tVr8l5bV615qyiy6ORxZ8biVmyiyLZLF7E7HE755TVnzzBu03o+7tiFVKsVuyTxffdelDAamRZ9CLskIQgCOrWapxs3JSooGMisq/YWsyjy/c7tDKtdh7fXrmb12dPo1GpsksTQWnV4v11Hj9LPaVYrF1Ozrof20+qwOxy806Y9tcKLj+FZQSAIAuWDggp7GgoKXrFtwS7SktJdPDQkUSIlIZXti/fSZkCzfLmPSqWiYee6uVajKgxCS4d47FVRqVVZ9pDkN6O/eJizhy9wet85ZzN9VO1yPP3dYwAkx6e4eXhApjpYakLWksRZEVGxJC/++MQdz1tBoTijBCF3ictpqXy3YxubLp4nyGDg8fqNGFSztrJrewsfdehEhwoVmXM0GtHhoF/1mnSvXAVBEGgUUYblDz2KVRTRqFQePSA+2LCWC8nJHscWZXf9baskMudoNGeSEtkXdxkQiAoK4quuPehXoxbLTp1AQKB31WouDen1S0WgzUVJg0N28L8N61hz7oyLB83so9FEBgQ6syS3olOrUWUR7IQYjXzRqRtNypRR3NgV7hi7zU5iXDJB4QHojUrvW0Fz6fhlzGnuohXWDCsXj8UA+ROEFCcq1Y+idKVSXDgag3RLtkGr19Dv+fxTQMwOo6+BbzeO4+TeM1w4EkPZ6qWp1qSy8zu6Wa9GbJi1HUu667+dQ3JQv0OtuzJHhfuA+6wnRAlC7gLxpgx6T/+HVKsVSZa5lpHBhxvXcSoxgbfbtC/s6RUZBEGgY4WKdKyQtbRqVk7YZrudBSeOYffQoyEAGpXKc4bE4WDP5VikG3/4pxITeHDuLNY/+jhjW7X1eC+NSsWPvfoyatE8ZFnGJkno1GoMGo1HRSzJIbP01Ek31S+zKPL7/r0egxC9RkOPKlVZfvoktlvc2I0aDU80bEKnindmOKagIMsyM8cv4N9P5iE7ZGRZps+z3Xn8sweV5tgCpFzNSIz+BrdARO+rJ6pW2UKaVeEiCAKfr3yXcUO/5fjOU6g1mT0Sr0x5mgq1y93VuVRtVMmjoWOL3o2p0qACp/aexWL6z0yw15Nd7lq2RkHhXkMJQu4Cfx7YR4bN7lzoQuYC9O9DB3iqcVNCjD6FOLuiTfS1qyw+cRwZmV5VqlEvC6nkNJs1yyIpP52OhhFl2HjhnMfXpdt2HkSHxJyj0TzVOOv65qZlItn62BMsO32SZIuZlpHlSLVZeXLJQhfDS6NGw4AatZgefcjjOMnWrGV8P+7QmeumDPbGXUarUmGTJHpVqebm2K6gkBeW/7aWqePmupjMLZq8Er2Pnkc/HFKIM7u3adm3MVPGBmAz2527/mqtmuDwQJo/cP/+bQeXDGLMFw+z4IdlpCeb6PpIO5r2bFDY03Ki1qj5YvV7rPlnE+umb8Hgo6fXE11o1qthYU9N4V7i/kqEKEHI3WBHzCVsHnbo9Wo1J65fp0XZu7vTU9S4mp7O3GNHuJKeTouyZelSsTIalYrvd2zj5327sYkSMjLTDh9kRN0GvNnaPUNRwscXP50eq9nkclwAWkSW4+UWrdh68XxmWVYOWCWJc8mJOZ4XaDAwvLZrvfUXnbvx8aYNJFvMaFQqHqpTnzdatWH7pYucTU5yG6NRROksx/fV6fin/2DOJScRk5JCldBQNzliBYW88u+n89xcrq0mK/O+XcKI9wcViIqSAmh1WiZs/4TJL/3B1gW7EYTMpu5nvn+sQF3UizqzvlrE3x/OxGaxIztkDm6I5t/P5uEf7Idol+j0UBu6j+qAVqcttDlqdVp6PN6JHo93KrQ5KCjcSyhByF2gfGAQB69ecfOTsDsclPK/vxeVO2Iu8fiieUg3yprmHT9CxeAQvujUlZ/27sZ6SwlTZvZoP32r13Dx7ABQCQLvt+3A2DUrsNwoX1KRWdb0aovWVAkNJcho5LrJNUjxhI9GS+PSkXl6nt5Vq/NAlWqkWq34aLVob5S1jOvQmdGL52OVJByyjFoQMj1ovCjHqxAUTIUbTfEKCvlF0pVkj8ctJiuiTURn8GwGqXDnBJcM4p3pLxf2NIoMSVeT+ev9Gdgs/ylTWU02zh684Pz59P5zbJixlfFr31fKBRXuWYT7rCdE2eq6C4xu2Bj9bR+aWpWKuiVL3deLS4cs8+KKpZhF0dn3YLLbOZ2QwFfbtziNvG7FLkmsPXvG43hNy0Tip9c71aYEQSAyIJCIG4FegC7nplutSkWIj5HeXpr/XUhOZvzWzby+ajlLTh53KmoFGgzOAASgRdlyzBnyIL2qVKV6aAkG1azNkuEj3IKpm+yPu8yba1by/PIlLD99EulGP4vkcLD5wnmmHT7IgStxHt8jBQVvqFgvyuPxsMhQtPrC221WuP/Yvy4atTb7wMJqsnJy31n2rDhwdyaloFAY3BTRKaj/ihhKJuQuUDMsnB969ObttatItVlxyDJty0fxVZfuhT21QuVUYgIZdpvbcYskcjQ+3qNymOqGZK4nxq5ZSZLZ7Mw4SbLMhZRkvtm+lffbdeDhuvX5cttmF78RNVA6IBCHLGOTRLpVqsJLzVti0OS8CFtz9jQvrFiK6HAgOhwsP3OKKfv3MnPgUI8N9DVKhPF99wdyHPfnvbv4fud2rKKIDKw/f5ZZpcvwaccuPDhvNtdNJiSHA5UgULdkKf7oOyDLhn0Fhax48qtHeLPbOFeXax8dT387UlHtU7irGP0MXkmfW9It7Fl9iGa97t/eGQWFewll5XKX6FihItsef5K49DT8dTpFWpXMrENWO/khBgPJFrPbcbWgomeVqm7HraLItpiLbk3mNkli4YmjvN+uAyPq1ufg1SusOH0SrUqNA5ky/gFMHTCYMB/fXM3dJkm8umqFSxO6yW7nZMJ1pkcfYmT9vDUrxpsy+HbHNhdFLJPdzu7LsYxZvICY1BSXZ9x/5TITd+3g1Zat83Q/hfuX2q2q8/X6//HHezM4e+gCZaqU4tEPh3rtcq2gkF807FLXme3NDpVaILhkYI7nKSgUS2RAMStUKChUgkAZ/4JzrC1uVAgKJsLfn3NJSS6CEEaNhqG163I+OZlphw+gVWVmPiTZwYftOxIZ4P4lECNNwAAAJZhJREFUJCNnGdDcXLSrVSq+7daTl5q1JPraVSL8/WlQKiJPu75Hrl1F9iBjYRFFFp88nucgZPuli04lrFsx2e0cux7vdkerJDHraLQShCjkiWpNKvP5incLexoKueDc4Qsc3HCUoPAAWvRpfE94u/z25jRkD2aFt+OQ5Fw5kysoKBRtlCBEodAQBIGfevVl+NyZWEQRySGDADVLhPPF1k2oBRU6lRqbI9Nd/IVmLSnh41nO2KDR0jCiNHvjLrsIAGhVKrpXquJybvmgIHx0Wn7Zu5t31q2mpJ8fYxo2plXZ8l7P3aDRuAkN3MRHm/d6el+tznMZGlkr94kelNcUFBTuLRwOB+NHTmLL3B3Isoxaq0b9jJrPV7zLlXPX2DJ/F/4hvvQc05nK9SsU9nS95uLxWJb+stqlKT0r9D56UhPS7sKscub8kUtcOh5LuRplKF/z/vR3UchfBOT7rjFdCUIU7hpmu51DV6/gq9NRKywcQRCoHBLK1lFPsuH8WeJNJioEBTN60Xw3Y7/ZR4/wfNMW2Y7/ReduDJw1HYsoYhbt+Gq1hPr48EarNi7nxWdk0PPfv0i1WrE7HJxIuM7u2Bjeat2Oh+vW9+pZqpcII8RoxGR3/eL00Wp5sE49r8bwROty5T06pes0Gsr4+3MmyVXmV6tS0fW2IEtBQeHeY/30rWydvxOr+UYPz41F+8tt3kOtVWPJsKJSq1j11wae/nYkvcZ0KcTZ/kfStRSQZYJLBnl8fd9qzx5KHpFlQiL+E3Mxp5u5eCyWkIhgwiJD73Cm3pF8PZXnmr7J1QvxAKjVKmq3qcEnS94qElmpy2eusPrvDaQlptO0ZyMad6unyG0rFFmUIEThrjD/+FHeW7cGlUrAIcuEGn34o+8AKgaHoFOrnQvpvw7uy2LHX2bpqRPZljlFBQWzceRolp48ztnkJGqHl6RrxcpuTds/793lDEBuYhZFPt+6icE1a3vV5C0IAlN69+ehebMyZXcdMpLsYFCNWm6Zl9yg12j4o+8ARt2QLUYGu0PirVZtaVImkmFzZmJzSFhEER+tlmCDkddaKKVYCgr3Okt/XY0lw+p23G4TsdsyN20ckgOrycbkl/6k/ZCW+AbmrtctP7l0IpZPH/yeC0cvAVCueiRvTXvBLWvgE2C84Y+SfSZEo1NTuWFFIqtkGtZO/2we0z6ei1qrRrSJ1G1Xk3dnvoJvQMGZ/8qyzBN1XiHpaorzmCQ6OLjhCL+88Q/P/zC6wO7tDRtnbWP8Y5OQRAnJLrHyr43UaVODcYvGKrLGxQUlE6JwP+KQZae0bX5zLP4a76xb7dLEbban8NC82Wx5bAzqW3ZpTHa7x/Ii0eFwyzp4wk+nY+htBoK3s/niBZcA5CYqQeBUYgK1w0vmeB+AqqEl2DbqSTZfvECSxUyT0mUoFxjk1bXZ0SCiNDtHP822Sxcxi3ZaRJYlyGAEYMPIx5l37ChnkhJpUCqCB6pW80rJS0FBoXgj2sScT7qBRqvm8ObjhebAbjFZeanNe6QlpDt79c4eOs/Lbd9n2vnJGP2MznNb9W/KxOd/cxtDo9OgN+qQJAeSXaJu2xq8Pf0lADbN2c60T+ZlZoVu6Jcc3HCU8Y9O5H/z3yiw5zq08ahLAOJEhhW/rSvUIMScYeGrUZOxmf9Tu7OkWzi86SgbZ22n43Bls0qh6KEEIfc5O2Iu8eGGtZxMTCBAp2dk/YY837S5S2Bwp0w7fAj7bY3WMpBus7H7cizNI//bGWtfvgI/7NqBJLp+4WrVatpH5U+dc7ivL6cSE9yO2yWJUGPudtG0ajUdK1TMl3ndii6L5w0yGBnVQJGnVFC43+j8cDvOHrrgIqmcJTIYfAuvNGjLvJ3YLXYXsRBZBrvVzsbZO+j+WAfncd8AH8YtepMP+o93nu8QHbzx13O07NuE2NNX8A/2dSnnmvXlQqwm16yQ3Wpn94oDpCamERBSMCbAJ/Z49qjKvL/3QWJBEL3lOCqN+/e2JcPKun83K0FIcUHJhCjcLxy+dpVRi+Y5MxSpNiu/7ttNssXMh+075dt9EswZbtK5AIIASbfJ8NYIC2dIzdrMPnoEs5iZ+fDRaBlQoyY1w8LzZT5jGjZhX9xlF78QrUpFw4jSTmNDBQUFhcJAEiXmfreUJT+twmqy0qp/Ux75cAg9Rndkw6xtnN53FnO6xcVQ0m51zRLrDFrqtKlxt6fu5NrF6//1rtyCJcNK/KXrbsfrta/F7KtTOLTxKKJdom67mhh9M2Xsy1Uv43a+x2wEoNaoSE1IL7AgJKJCeGZJscP9+yyyWkSB3NNbtLqsl3M6g+4uzkRBwXuUIOQ+ZuKuTEO8WzGLIjOPHOaVFq0J0OfPTlrHCpXYdOG8y6IfMjMPjUu7f8F80K4jXStVYcHxowD0rV6DlpHl8mUuAG3LR/FGqzaM37oFtSBgd0g0KFWaST1759s9FBQUFPLCx8O+ZfeK/c6Mx/Ipa9m5dB9Tor/hq3UfsHvFAfatOURIqSA6j2jHqr82MPWj2Wi0GhAyy5g+Xf7OjT6LwqFak0rojDos6RaX40Y/A1UbV/J4jVanpVEX70Q9Gnauw+q/NyKJrmW1OoOWiAr5s1nliea9G+Ef4k/K9VS318b+/XyB3dcbareujub/7d15fFTV/f/x15k9IYSETSAgICISRbYAIlqwgCwKgoqggigu1ap16a+K2qrV6hf3atVWtLbuWFfUiggK2lpBQEBlUzbZArJvWWY7vz9mjIkZJJDlTjLv5+MxDzJ3Zu79hJtM5nPPOZ9Pgq7zgXp+hl42wIGI5JCpT4ikkhXbtyVcBO51u9m0dw+Z/iaHvW9rLbuLi0j3+hh+zLE8u/gL1uzcWZKIpHm8XNYtL2GTQGMMJ7U6kpNaVV3i8VPjO3fj3NxOfLtjO43S09W/pQrtCwZZu2snzTLqH7CksoiU993S9Xw+bWGZef3hUIQ92/cy8/lPGHblIHoN7UavoT8W6Dhv4kgGT/gli2d9Tb0G6XTt3ymWkDioa/9OtDmuFasXry0pvesNeGnZoQU9Bnep9P7H3TaKT9+aR+HeQsKh2FRff7qPXz8yoVqTL6/Py1/m3sOfxjzMtwtWg4XsIxpw65Tr6JB3dLUdtyI8Xg93vT2RW4bcQ9RGiUYsNhrljCtOo/vAn18nKeIUJSEprGPjJqzfvbtcIhKKRCr1oXz6ym/548cfsb2wAJcxnJN7PC+dNYo3ly/nvW9XkOkPMLZTZ/pW0RqPw5Xm9XLCEc0cjaEusdby0JxPefqLBXjdsYaLA49qxwMDh1So4phIqvtmwWrc7sTz+r/6zzKGXTko4euymzag3+g+1R1ehblcLu7/8HZeue8tZjz7MdZaBo77BaMnjqyScrFNj2zC5MUP8Mp9U1k8ewlHtG7C6BvP5PiTq38KWvO2R/D43Ens27WfaDRabVO/EomEI6xctBZfwEub41qV6ymV27sDUzZNZu67C9i3az/dBpxA86MqVmhFkoP6hEidMm/TBu76ZDbLt20lyx/g0m55XNotD5cxXNOzd7lpUmkeD+cd35n6hzkVa96mDVz/wXtlKmG9vnQJhaEQD5w2hNPbd2DR5k1k+v1Yaw+rW7kkp1eXfs0zCxdQHAlTHK9D8OHqVdw++0MmDUj84UlEfnRE68Sjz16/l5xjKr7mYN+u/bz56Hv8b+rnZDbK5Kxrh9Lr9JotaBFI9zP+jtGMv2N0pfbz/bqt7Nmxj9a5LfH6flwH0zinEVc9MqGyYR62jKyaLX/8+bSFTBr7KJFwhGg0SnazLO6aelO5kseBdD99zz2pRmMTOVxKQuqwr7/fwkVvvV6SZGwrLOCRuf9jR2EhE0/+BblNmvLsiHP40yezWbJ1C1mBNC7p2p3Lu/c47GM+/vncMgkIQFEkzDvfLCc7EOD5rxbjc7ux1tKkXj2eHzGKnExNhaoLnlwwr9y6n6JIhKkrlvHHfv01GiJyEJ1O6UijnIbkr9pcZr2Dx+vm9ArO69+/p4Aru9/IjvydJVOhln62gjETR3LBrWdXS9zVYeeWXfzx7Af49ovVJetdrv7LJQwc19fp0Grc5rXfc+eoB8pURstftYUru93IHW/+jp5DyvfPmvPuAp666QU2rdxMkyMbcfFd53HqmOQZLZMDcHgkxBgzGHgEcANPW2sn/eTxG4BLgTCwFZhgrf0u/lgE+Cr+1HXW2uEHO57aaNZhj879rFxCUBgO89yXC9kfjL2Z5bXI4a0xF/DtNTcw77IruSKvZ6X6hazdvTPhdrdx8eJXXxKMRNgXDLI/FGLd7t1c9s6bh30sSS47CgsTbo9ay/5QBcqKiqQ4YwwPzrqDE/oeh8fnwev30vKY5kz64A80zqlYR/B/T57Jzs27ShIQiE3neunu19mzY2+Vx7xp1Wbe+PO/mfr4+2zPT/z+fzh+P2wSyz9fSbAoRMHeQgr2FPLIlZNZOuebKjtGbfH+Mx8RCZfvnxUKhrnjrAd4/s5Xy2yf8+4C/jT6IdYt20A4FCZ/1RYevPQJpj87q6ZCllrIGOMGHgeGALnAecaY3J88bSGQZ609AXgNuK/UY4XW2i7x20ETEFASUqct37414cJztzHk76v6P0YAXY5onjCJCUbCFEXKJkRRa1m7exerd+6ollikZuW1yCFR+tooPZ3sQFqCR0Tkpxo2y+a+Gbfx6uaneWHN4/xj+aPknnhMhV8/998LEpbH9fq9rJh34D4Xh+Ole17nsk438PTNL/LUjc9zYburmPniJ5Xe73fLNvDd0vXlPngHC4O88ed3K73/2mb7xh2Eg+WTEIiVZ3550pvs3LKrZNvTE18o9zNQXBDkmVters4wpdJsbCSkOm8/ryew0lq72lobBKYAZ5aJ0NpZ1tqC+N05QMvKfMdKQuqw9g0TXzkLR6M0y6iexXTX9DyRwE+m3aR5PDRKUAULwONysTdYdVfJQ5EIbyxbwkVvvc4V/57K7LVryjTMkupz40mnkO714o4noQYIeDzc2a+/1v6IHKKMrHo0bJZ9yK9rnNMo4e9bOBiu0vfC1V9+x0t3v0GwKESoOERxYZBgUYiHL/sbu7Ym7uNRUbu27MadYPqmtbB1fflGs3Vd3qAuBOJ9UxLxej18+cmykvubVm1O+LydW3YRCoYSPiYC5ADrS93fEN92IJcA00rdDxhj5htj5hhjRlTkgEpC6rDf9OydMCE4v1NnMnzV07yoXcNGvDbqPPq2bkOmz0/brGzu6NefsZ0643eXL51oiFXpqgqRaJSLpr7OH2bN5JN1a/lg1Uqueu8dJn1a+StzcnDtGzXi3fMu5KyOx3F0dkP6t23HiyNHMeAoZ0tXiqSSs64dii/NW257sCjEHSPv49d5N5K/ZkuljzNryn8JBct3CXe5XXz29vxK7btdlzaEE3xY9ga85A3qUql910Z9RvbkyI45uBJUTvtB/YYZJV83PTLx39TMhhmOl2+Wn2GpiZGQxvFE4Yfb5YcTqjFmLJAH3F9qc2trbR5wPvBnY0zipkClKAmpwzo3a85Tw0aUjIhk+v1c0b0nt5xcvQv7jm3chH+ceTaLrriaDy+cwKjc47moSzea169fkhS5jSHg8XD3LwfiS5CcHI5Za1ezeMvmMoujC8Mhnlu8kA17KndlTiqmdVYW9w4YxAfjLmbysBF0bd7C6ZBEUkqHHkdz7V8vJ61+gLSMH6+eW2sJFYdZtWgtv+13O5FI4uk9FRWN2oQjK9aCTdBR/FBkZNXjgt+fTaDej1UavT4PmY3qc+bVgyu179rI4/Xw0Md/5KzrTse4yo9yBer56dzvx6n7F981Bn962QuNgXQ/424fpVFp2WatzSt1m1zqsY1A6XJrLePbyjDGDABuBYZba4t/2G6t3Rj/dzUwG+h6sGCUEtdxfVq1ZvrYi4haW6kF55VV3+/n3fMu5NWlXzN77WqaZdTnwhO60LFJ1XW3/WjNagpC5a+euYyL/61fx7nHdaqyY4mIJKuB4/rSd1RvHvvNM8x4dnZJQz+IJQ/7dhXwxcyv6FGJUYW+o3oz9bFpZSo2AdholF5nVL4c8Pm3nE3bTq15/eF32fX9bk4c1p1Rvx1eo305kok/zc+v7r+QNse34i9X/R23x4WNWjKy6/F/027FXepiXt9zTyIUDPH3m19i+6YdZDbO5MLbRx2wz4wkEWc7ps8D2htj2hJLPsYQG9UoYYzpCjwJDLbWfl9qezZQYK0tNsY0BvpQdtF6QkpCUoSTCcgP0r1exnfuyvjOB02OD0t2Whoel4twtOxvscsYGgQOPJ9WRKSu8QV8REKRMgnID2w0yvZNlatkdUz3dpx59RCm/mUaoWAYl8vgcru44qHxNGp+6GtZEuk9LI/ew/KqZF91xaDxp/KLc3qzbM63pNcPcExeu4QNIAeM7cuAsX0Jh8KaglWLONms0FobNsZcDUwnVqL3GWvtEmPMncB8a+3bxKZfZQCvxkfVfijF2xF40hgTJTbLapK1dunBjqmfTKkzzsk9nn8s+qJcEuJ2Gfq1drY7u4hITety6vF88tpnFO0vLrM9GrV0PLF9pfd/2aSx9D//FD6d+jler4dfjOpNi3bNKr3fZLDh23xevucNls35hpYdWjBm4shDqlJWndLqBejWv2Ij+0pA5FBYa98D3vvJtttKfZ2wYZG19n/AIU830U+n1Blts7K5f8Bgbpo5HZfLYK0l4PHy9+Ej1ShPRFJO33N7M+XeN8lf8z2heN8Qf7qfk4bn0bpjpSprljjqhNYcdULrKtlXsli7ZD2/6X0LxYVBopEoG77ZxBczv+T3U27gxCqYaiZyQClWzVOfzOSwrN21k/s+/Q+fbVhPpt/PhC7dGNe5q+PTvk4/pgO/bHsU8/M3EvB46NasBe4EQ9XJZltBAa8u/Ypvd2ynW7MWjDw2l3rVVMFMRFKDL+Dj0c/u4dUH32H2lE/xp/kYduUghlz6S6dDS2pPT3yBov1FJZ8HrY312Xj0qqfodXo3Le4WqSLGiR4KeXl5dv78ypXwE+ds3reXwS8+y75gkGj85yfN4+Hsjsdx56kJR+rkZyzbtpXRr00hFIlQHImQ5vGS6fcxdcxYmtbLOPgORESkyoxoOJ79uwrKbff4PLyyaXLKLo6vzYwxC+LlY5NWg0Bze1Lr8dV6jPe/uTep/h+S/xKxJJ1nFn5BYShckoAAFIbDvLr0a7YVlH/jlp9304z32RcMUhwvmVkYDrGtoIB7P/2Pw5GJiKSerMaZCbe7XOZnmwaKyKFREiKHbEH+RkLR8hVXfG43K3ekXjfbytgfDLJ827Zy2yPW8uGaVQ5EJCKS2kb9bniZHiUAvjQvA8f3xecv3whSpGpUc6PCJFxvoiREDtlR2dm4E8yJDUai5NRPfAVJEvO4XLG28Qkk6jB/qPYUF/P5xg2s2VW5cpwiIrVJOBSmcH/RYb126KUDOOu60/EFfKRnpuH1e+kzohe/fvjiKo5SJLVpYbocsku79eC9b78p05nc53bTK6clrRo0cDCy2sfv8dC3dVs+/m5NmdLCfrebc3Mr11zxr/Pm8ujnc/C5XYSiUTo2bsLkM0bQKD29smGLiCSlooJiHrvm73z00n+JRiLktG/OdX/7FZ1O6VjhfRhjuPiu8xh94wg2rdpM45yGZDXR3zapAUk4WlGdNBIih6xDo8ZMHjaCVpkN8Lpc+Nxuhhx9DI8PHXbQ1+4oLGDZtq0UJuhsnqom9T+NtlnZpHu9pHu9pHk89GjRkqt7nnjY+5y5eiWPzZtDcSTM3mCQonCYr77fwtXT3qnCyEVEksudox5k1sv/JVQcIhKOsm7ZRm4ecjfrV2w85H2l10/j6C5tlYCIVBONhMhh6dOqNbPHX8Lu4iLSPN6D9uEoCof43YzpzFi9Ep/LTcRGuarHify6R68aijh5NUpP5/0LxjNv00bW7d5FbpOm5DZpWql9PvXF/DIjVQDhaJRFm/PJ37uX5vVV3UVE6pb8NVtYPOtrgkVlL3KFikO89tA7XP/kFQ5FJlJBKTYSoiREDpsxhqxAWoWe+/uPZjJz9UqCkQjBeBWox+fNoWVmJsM7VHyYvK4yxtAzpyU9c6qmgdiOwsKE2z0uN7uKi5SEiEidk7/6e7x+b7kkJBqJsnbJBoeiEpED0XQsqXYFoRDvfruipATtDwrDYf46/3OHoqrb+rVpizdBk0aXgXbZDR2ISESkerXObUmouPxUX4/PTccT2zsQkQAU7i/i41c/Y8ZzH7M9X0VSDsgCUVu9tySjkRCpdnuKizAHKAGlviLV41fde/L2iuXsLi4iGIlggIDHw+19f4mvCqpuiYgkm0bNszn1/JOZPeVTiguCQGyU2Z/m5+zrznA4utS0aNbX3HbmvWBiM40i4QgT/nQe59xw8DWkUvcpCZFq17ReBhk+H8WFZdcouIyhR4sch6Kq2xqnpzPtggv556KF/GfdWppn1OeSbt3p3lz/3yJSdwSLQyye9TXhUITO/Y7j+id/Rcv2LXjrsWkU7C6gc7/juPz+cTRp2cjpUFNOUUExt424l8J9ZUsl//MPU+jc7zjadzvKociSlQUbPfjT6hAlIVLtXMZwW99TmThzesliaZcxpHm8/LZ3H4ejq7sapqVzQ+8+3KD/YxGpg778ZCm3nXkvNr6YNxKKcP1TVzDmphGMuWmEs8EJ86YtTDgLIlQc4oNnZysJESUhUjOGHXMsTdPr8cT8z1m3exd5LVpwVY8TaZOV7XRoIiJSyxTuK+TW0++haH9xme0PX/Y3OvZqT4t2zRyKLHVYa1n44Vf85/U5eANeThvfj6O7tC15PFgUKkkQS4tGLUWH2UiyzlN1LJHq0atlK3q1bOV0GCIiUstYazEmdlW9cF8h1/b5fbkEBGJrDmY8/zHj7xhd0yGmFGstk8Y9yv+mzqNofzEul+G9p2Yy/o+jGfXb4QB0G3gCkXCk3GsD9fyccnbvmg5ZkpCqY4mIiEhS+vdTMxidczmnuc9lbNtfM/uVT3no8if5blnikrvhUIR9O/fXcJSpZ+FHX5ckIBAb3SguCPKPP0wpqYCV3bQBl903Fn+aD5c79nEzUM9PzyHd6DG4i1OhJy9Vxzo0xpj7gWFAEFgFXGyt3VUFcYmIiEgKe+dv03ny/z1PcUHsg+6W77bywIQnCIfCRMOJF/AGMgL0HpZXk2GmpP++OTfhSJTb7WL+9EUMuuhUAEZcPZROp+Qy47mPKdpfRJ+Rvcg7rXPJqJaktspOx5oB3GytDRtj7gVuBm6qfFjiJGstn3y3lpeXfElRKMzwDscy7Jhj8aq0q4iI1ABrLc/e/q+SBOQHxYVBDlDxHYDuAzrRtX+nao5OfhjdiEbKJoPGZfAFfGW2tevchnYPtqnB6GoxrQmpOGvtB6XuzgHOqVw4kgwmffoJL3y5mMJwrOnTvE0beGPZUp4dcTbuBA3wREREqlIoGGbP9r2JHzzA57Tckzpw22v/T1fZa8BpF/blnSemx5LCUmzU0uv0bg5FVQekWBJSlZ8oJwDTDvSgMeZyY8x8Y8z8rVu3VuFhpSqt372b5xYvLElAINbZfNGWfGavXeNgZCIikiq8Pg9ZTTITPtakVWP86T5crliy4fF5yMiqx8TnrsGlC2U1om2n1kz4v/Px+r2kZQRIqx8gUM/P7a//jvT6aU6HJ7XEQUdCjDEzgUS17m611k6NP+dWIAy8eKD9WGsnA5MB8vLyUivVq0U+27AOl3EBZStaFIRCfLhmFf2PaudMYCIikjKMMVx01xieuO6fZaZk+dN9XP2XCTRr05RXH3ybDSs2cdzJx3LO9WfQOEcNCWvSWb85nVNH92H+9MX4Al56Du1KWoYSkMNnU24k5KBJiLV2wM89boy5CDgD6G8TFYSWWiXTH8CVYCjb43KRnaY3FxERqRlDLx2A1+/ln3+YwraNO2h+1BFcdu9YThreA4Cbnr3G4Qgl+4gsBl7Y1+kwpJaqbHWswcCNQF9rbUHVhCROOrVNW9yuxEnIObnHOxCRiIikqoHj+jJwnD7kSgqwQDRx1be6qrKTJx8D6gMzjDGLjDF/q4KYxEF+j4fnRpxDo7R0Mrw+Mnw+0j1e7hswiLbqbi4iIiIiVaCy1bGOrqpAJHmccEQz5lzyKxbkb6I4EiaveQ5pXq/TYYmIiIjUXSm2qqGyfUKkjnK7XPTMael0GFLKnuJi/vTJLN75ZjnhaJQ+R7bmrn4DaNWggdOhiYiIiBwS1bITqQWstYx981WmrlhOcSRCxFr+u+47Rv7rRfYUl+9aKyIiIrWMtdV7SzJKQkRqgfn5G1m9cweh6I+lk6PWUhgK8cayJQ5GJiIiInLoNB1LpBZYtWMHiSpgF4bDLNum5p8iIiK1m4Vo8o1WVCclIVJnFIfDPDL3M/619CuKwxFObdOWm0/uS/P69Z0OrdKObtgIk6B/S5rHQ26Tpg5EJCIiInL4lIRInXHZO28xb9MGiiOxKUvTVn7DnI3rmTluApl+v8PRVU735i1ol92QFdu3EYx/fy5jSPN6OevYXIejExERkUqxYK36hIjUOsu2fs+C/I0lCQhAxFr2B4N1Ys2EMYYXRo5iRIeOBDwePC4XfVu34c1zL6B+LU+wREREJPVoJETqhGXbtuJKMF2pMBxm4eZ8Lqr5kKpcfb+fSQMGMWnAIKdDERERkaqWYmtCNBIidULrrCwS/er63W6OadioxuMRERERkQNTEiJ1QrdmLWjTIAuvq+yPtNft5tzjOzkUlYiIiEgFqU+ISO1jjOGFs0Yx4Kh2eF0u3MZwQtNmvHLOGJqk13M6PBEREREpRWtCpM7ICqTx+NDhBCMRojZKwON1OiQRERGRg7MWoqlVHUtJiNQ5PrcbcDsdhoiIiIgcgJIQERERERGnJeG6jeqkNSEiIiIiIlKjNBIiIiIiIuIwqzUhIiIiIiJSc5KzjG510nQsERERERGpURoJERERERFxkgWiGgkRERERERGpNhoJERERERFxmk2thekaCRERERERkRqlkRAREREREQdZwGpNiIiIiIiISPXRSIiIiIiIiJOs1ZoQERERERGR6qQkRERERETEYTZqq/V2MMaYwcaYFcaYlcaYiQke9xtjXok/PtcY06bUYzfHt68wxgyqyPerJEREREREJIUZY9zA48AQIBc4zxiT+5OnXQLstNYeDTwM3Bt/bS4wBjgOGAw8Ed/fz1ISIiIiIiLiNBut3tvP6wmstNauttYGgSnAmT95zpnAs/GvXwP6G2NMfPsUa22xtXYNsDK+v5+lJEREREREJLXlAOtL3d8Q35bwOdbaMLAbaFTB15bjSHWsBQsWbDPGfOfEsZNMY2Cb00FIGTonyUfnJDnpvCQfnZPko3OSHFo7HcDB7GXn9Jn2tcbVfJiAMWZ+qfuTrbWTq/mYB+RIEmKtbeLEcZONMWa+tTbP6TjkRzonyUfnJDnpvCQfnZPko3MiFWWtHexwCBuBVqXut4xvS/ScDcYYD9AA2F7B15aj6VgiIiIiIqltHtDeGNPWGOMjttD87Z88521gfPzrc4CPrLU2vn1MvHpWW6A98PnBDqhmhSIiIiIiKcxaGzbGXA1MB9zAM9baJcaYO4H51tq3gb8DzxtjVgI7iCUqxJ/3L2ApEAaustZGDnZMJSHOcmwenhyQzkny0TlJTjovyUfnJPnonEitYa19D3jvJ9tuK/V1ETDqAK+9G7j7UI5nYqMoIiIiIiIiNUNrQkREREREpEYpCXGQMeZ+Y8xyY8yXxpg3jTFZTseUyowxg40xK4wxK40xE52OJ9UZY1oZY2YZY5YaY5YYY651OiaJMca4jTELjTHvOh2LxBhjsowxr8X/piwzxvR2OqZUZ4y5Pv7e9bUx5mVjTMDpmESSiZIQZ80AjrfWngB8A9zscDwpyxjjBh4HhgC5wHnGmFxno0p5YeC31tpc4ETgKp2TpHEtsMzpIKSMR4D3rbXHAp3R+XGUMSYH+A2QZ609nthC3zHORiWSXJSEOMha+0G84yTAHGJ1lcUZPYGV1trV1togMAU40+GYUpq1Nt9a+0X8673EPlQdtAOrVC9jTEvgdOBpp2ORGGNMA+AXxCrXYK0NWmt3ORqUQKz4T1q8n0I6sMnheESSipKQ5DEBmOZ0ECksB1hf6v4G9IE3aRhj2gBdgbkOhyLwZ+BGIOpwHPKjtsBW4B/xaXJPG2PqOR1UKrPWbgQeANYB+cBua+0HzkYlklyUhFQzY8zM+HzQn97OLPWcW4lNPXnRuUhFkpMxJgN4HbjOWrvH6XhSmTHmDOB7a+0Cp2ORMjxAN+Cv1tquwH5A69ocZIzJJjaa3hZoAdQzxox1NiqR5KI+IdXMWjvg5x43xlwEnAH0t6qX7KSNQKtS91vGt4mDjDFeYgnIi9baN5yOR+gDDDfGDAUCQKYx5gVrrT5cOWsDsMFa+8NI4WsoCXHaAGCNtXYrgDHmDeAk4AVHoxJJIhoJcZAxZjCxaQ3DrbUFTseT4uYB7Y0xbY0xPmILCN92OKaUZowxxOa4L7PWPuR0PALW2puttS2ttW2I/Y58pATEedbazcB6Y0yH+Kb+xDoXi3PWAScaY9Lj72X9UbEAkTI0EuKsxwA/MCP2HsUca+0VzoaUmqy1YWPM1cB0YlVMnrHWLnE4rFTXBxgHfGWMWRTfdku8o6uIlHUN8GL8Ispq4GKH40lp1tq5xpjXgC+ITbdeiLqni5ShjukiIiIiIlKjNB1LRERERERqlJIQERERERGpUUpCRERERESkRikJERERERGRGqUkREREREREapSSEBERERERqVFKQkREREREpEYpCRERERERkRr1/wFch42u9Wt3pgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAIXCAYAAADqonO1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd0VNXax/HvzqROEnrvvQlIExAQUKooxXZRr16xodgb\niu2CqNjAVxQ7iAIWFBXxIoICkaIgVUDpAQIEAiQISSZlyn7/SEBQEgJJZpLw+6w1y5yZc/Z+ZpaL\nOc/s/extrLWIiIiIiIicraBAByAiIiIiIsWbkgoREREREckXJRUiIiIiIpIvSipERERERCRflFSI\niIiIiEi+KKkQEREREZF8yXNSYYyZZIxJMMasO+G5ssaYecaYzcaYucaY0oUTpoiIiIiI5JcxpoYx\nZoEx5ndjzHpjzH05nPe6MWarMWatMabV6do9k5GKyUCfvz03AvjRWtsYWAA8fgbtiYiIiIiIf3mA\nh6y15wEXAncbY5qceIIx5lKgvrW2IXAH8M7pGs1zUmGtXQIc/tvTA4GPsv/+CBiU1/ZERERERMS/\nrLX7rbVrs/9OATYC1f922kBgSvY5y4HSxpjKubWb35qKStbahGMBApXy2Z6IiIiIiPiBMaYO0ApY\n/reXqgO7Tzjeyz8Tj5MUdKG2LeD2RERERESkgBljooAZwP3ZIxb5EpzP6xOMMZWttQnGmCrAgZxO\nNMYo4RARERERv7DWmkDHkJsyxtgj/ukqwVpb5cQnjDHBZCUUU62135zimr1AzROOa2Q/l6MzTSpM\n9uOYWcAQ4CXgJuBUQR1nrfKKQBk1ahSjRo0KdBjnJH32gaXPP7D0+QeOPvvA0ucfWMYU6XwCgCPA\nKD/0MwpOVQvxAfCHtXZ8DpfNAu4GphtjOgJ/Hit5yEmekwpjzCdAd6C8MSYOGAm8CHxhjLkF2AX8\nK6/tiYiIiIicy/I7ZehsGGM6A/8G1htj1pBVvvAEUBuw1tr3rLXfGWP6GWO2AanAzadrN8/vxVp7\nfQ4v9cxrGyIiIiIiEjjW2qWAIw/n3XMm7QYiQZIA6N69e6BDOGfpsw8sff6Bpc8/cPTZB5Y+f8mL\nkEAHUICMv+ocjDFWNRUiIiIiUtiMMUW+UNsYY1/yQz+P4Z+idY1UiIiIiIgEQEm6ES/ofSpERERE\nROQcU5ISJBERERGRYqMk1VRopEJERERERPJFIxUiIiIiIgFQkm7ENVIhIiIiIiL5UpISJBERERGR\nYkM1FSIiIiIiItk0UiEiIiIiEgAl6UZcIxUiIiIiIpIvJSlBEhEREREpNlRTISIiIiIikk0jFSIi\nIiIiAVCSbsQ1UiEiIiIiIvlSkhIkEREREZFiQzUVIiIiIiIi2TRSISIiIiISABqpEBERERERyaaR\nChERERGRAChJN+IaqRARERERkXwpSQmSiIiIiEixoZoKERERERGRbBqpEBEREREJgJJ0I66RChER\nERERyZeSlCCJiIiIiBQbJammQkmFiIiIiEgAlKQbcU1/EhERERGRfClJCZKIiIiISLFRkqY/aaRC\nRERERETyRSMVIiIiIiIBUJJuxDVSISIiIiIi+VKSEiQRERERkWJDNRUiIiIiIiLZNFIhIiIiIhIA\nJelGXCMVIiIiIiKSLyUpQRIRERERKTZUUyEiIiIiIpJNIxUiIiIiIgGgkQoREREREZFsSipERERE\nRAIg2A+PUzHGTDLGJBhj1uXweiljzCxjzFpjzHpjzJDTvRclFSIiIiIi55bJQJ9cXr8b+N1a2wq4\nGBhnjMm1bEI1FSIiIiIiARDijztxzz+fstYuMcbUzuUqC0Rn/x0NJFprT9HSX5RUiIiIiIjIiSYA\ns4wx8UAUMPh0FyipEBEREREJgOAAjVTkQR9gjbX2EmNMfeAHY0xLa21KThcoqRARERERKSEWe2GJ\nL9/N3Ay8AGCt3W6M2QE0AVbmdIGSChERERGRAAhxFHyblzjgkhOOX0zN8VST/TiVXUBPYKkxpjLQ\nCIjNrV8lFSIiIiIi5xBjzCdAd6C8MSYOGAmEAtZa+x7wHPDhCUvOPmqtTcq1TWttIYZ8QkfGWH/1\nJSIiIiLnLmMM1tqcfoUvEowxNrN04fcTegS/fBbap0JERERERPJF059ERERERALAL/tU+IlGKkRE\nREREJF9KUH4kIiIiIlKMFMLqT4GikQoREREREckXjVSIiIiIiARCCboT10iFiIiIiIjkSwnKj0RE\nREREipESdCeukQoREREREcmXEpQfiYiIiIgUIyXoTlwjFSIiIiIiki8lKD8SERERESlGtE+FiIiI\niIhIlgIZqTDGPAjcCviA9cDN1trMgmhbRERERKREKkFzhvI9UmGMqQbcC7Sx1rYk6+O5Nr/tioiI\niIhI8VBQ+ZEDiDTG+AAnEF9A7YqIiIiIlEwaqfiLtTYeGAfEAXuBP621P+a3XRERERERKR7ynR8Z\nY8oAA4HawBFghjHmemvtJ38/d9SoUcf/7t69O927d89v9yIiIiJyjouJiSEmJibQYZy5ErT6k7HW\n5q8BY64G+lhrb88+vhHoYK2952/n2fz2JSIiIiJyOsYYrLUm0HHkxhhjbSs/9LMWv3wWBTGTKw7o\naIwJBzKAHsCKAmhXRERERKTkUk3FX6y1vwIzgDXAb4AB3stvuyIiIiIiUjzke/pTnjvS9CcRERER\n8YNiM/2pox/6Weaf6U/aUVtERERERPKlBM3kEhEREREpRkrQ6k8aqRARERERkXzRSIWIiIiISCCU\noDtxjVSIiIiIiEi+lKD8SEREihqfz8f27dsBqF+/PkFB+i1LROS4EnQnXoLeioiIFCWpqalc2rMn\nf6xbB0Dz889n9g8/EBkZGeDIRESKiBJ0J66fjEREpFD898knSV67lrtdLu5yuTi6Zg0jn3wy0GGJ\niEghKEH5kYiIFCVrV6ygaXr68V+vGqens3blyoDGJCJSpGhJWRERkdw1a9mSbWFhWMAC28PCaNqi\nRaDDEhGRQmCstf7pyBjrr75ERCTwjhw5wiVdupCwcycAVerWZf7ixZQuXTqwgYlIiWeMwVprAh1H\nbowx1g7wQz+z8MtnoaRCREQKjdvtZu3atRhjOP/88wkJCQl0SCJyDlBScUI/fkoqNP1JREQKTUhI\nCBdccAHt2rUr8QnF0qVLubBNG5rUrctD991HZmZmoEMSkaIu2A8PP74VERERyYfNmzdzWe/e9HS5\naAnMmTiRlJQU3vvgg0CHJiLiFxqpEBERyaf//e9/NHW7aQFUAy5LS2P69OmBDktEijqHHx5+oqRC\nREQkn8LDw8kI/mvw3wWEh4UFLiARET9TUiEiIpJP1113HYdKl2ZOcDDLgC+dTv47enSgwxKRok41\nFSIiInJMuXLlWLVuHa/93/9xKCGBYQMHMmCAH5Z1EREpIrSkrIiIiIiUKMVmSdkb/dDPVC0pKyIi\nIiIixYCSChERERGRQAjQ6k/GmEnGmARjzLqcQjPGdDfGrDHGbDDGLDzdW1FSISIiIiJybpkM9Mnp\nRWNMaeBN4HJrbXPgmtM1qEJtERGRIsLn87Fw4UIOHjxIx44dqVOnTqBDEpHCFKA7cWvtEmNM7VxO\nuR740lq7N/v8Q6drU0mFiIhIEeDz+biyf39WLVpERWOI9Xr5/Ouv6d27d6BDE5FzTyMgJHvaUxTw\nurV2am4XKKkQEREpAmbOnMlvP/3EkNRUgoEdwJB//5v4gwcDHZqIFJZCuBOP2Qsx8fluJhhoA1wC\nRAK/GGN+sdZuy+0CERERCbA9e/ZQxeM5/sVcEziQlIS1FmOK9MqYIlKEdK+e9TjmmVVn1cwe4JC1\nNh1IN8YsAs4HckwqVKgtIiJSBHTo0IEtDgeJgAV+cTho06KFEgqRkiywO2qb7MepfAN0McY4jDFO\noAOw8XRvRURERAKsQ4cOjBk3jgfvvx9rLQ3q1WP2rFmBDktESiBjzCdAd6C8MSYOGAmEAtZa+561\ndpMxZi6wDvAC71lr/8itTSUVIiIiRcTtQ4eyd+9epk6ahCczkyVLlnD99dcHOiwRKSw57CNR2Ky1\np/2HxVo7Fhib1zaVVIiIiBQRL44Zw9RXX6WPy0U6cN/tt1O+fHn69MlxOXkRkSJBNRUiIiJFxPSp\nU7nY5aIqUBdo73Ix/eOPAx2WiBSWwNZUFCglFSIiIkVEZFQUKSccpwQFEV2qVMDiERHJK01/EhGR\nYiEtLY1169bhdDpp3rx5iVwVafRLL3HNwIEcdLnIcDjYGhXFRw8/HOiwRKSwlKA78RL0VkREpKTa\nuXMn3Tt3xqSkkOLx0Ll7d2Z88w3BwSXra6xnz57Mi4nhi+nTCQ0L45Pbb6dOnTqBDktE5LQ0/UlE\nRIq8oUOG0DAhgSFHj3Kny8XGmBgmTpwY6LAKRdu2bfG63YwbO5YmjRpx1x134PV6Ax2WiBQGhx8e\nflKyfuIREZFiLzU1lR9//JEDBw7w3TffsHvXLrZt386/sm+sg4HaLhe/r1tX4H37fD727t1LVFQU\nZcuWLfD28+L1117j64kTuSczEwN8PW0aL9aowZNPPx2QeHKTlJREfHw8derUISoqKtDhiEgAaaRC\nRESKjMTERNq0aMGjN9zAmDvuYN7s2dTZsIFa6el8DfiATCDW6aRV27YF2vf+/ftp0aQJzRs0oFql\nSjx0331Yawu0j7yYN3s27VwuooBIslaAmjd7tt/jOJ3JH3xA7erV6dupE7WqVWPBggWBDkmk+NHq\nTyIici5Yv349g6+8kn49evDhhx/+4yY7MTGRJ0aMYMi//80nn3yS75vw50ePpuzevVyfksIQa+kI\nbAIGWUuyMbztdPJmeDjtL7uMm2++OV99/d2V/ftTeutWHszM5D6Ph2lvv83nn39eoH3kRZXq1Tng\n+GvOwoGgIKpUrer3OHKzY8cOHrznHoakp3N7cjL9k5O5etAgMjIyAh2aiASIpj+JiMgpbdmyha4X\nXkgHl4toa3li2TKO/Pkn9z/wAABHjx6lfevWVNi/n4puN8NnzmT71q08PXLkWfe5a/t2qmVmHj+u\nCWwja4QiODSUGXPmUKtWLWrXrl3gqz+tXrWKOwEDOIEWHg/TP/uMwYMHF2g/p/PM88/TYc4cjrhc\nGGBvWBg/j83zprZ+sWnTJqqHhlIhLQ2AeoDD5yM+Pp66desGNjiR4qQE3YlrpEJEpAj4/vvvuW3I\nEB564AHi4uICHQ4AU6dM4by0NC60lubAZS4Xr59wcztz5kycSUn0c7u5APiXy8WLL7yQr9GKrj17\nss7pJB1wAz8D4cCXTif9+vWja9eu1KlTp3CWk7WW7dl/eslKZhwBWF2qZs2arNu4kXtef527xo9n\n3caN1K9f3+9x5KZ+/frEZ2ZyJPt4L5BpLVWqVAlkWCISQCUoPxIRKZ6mTpnCQ8OGcYHLxWaHg3Yf\nfcTq9eupUaNGQOOy1mJOSBCCsp87Jj09nfATjsMBj9ebdd1Z3vTfe999bNywgXEffogB6tWuTZPG\njbmwa1ceeuSRs3wneVOnXj3mx8ayAUgG0oOCGDp0aKH2mZMKFSpw6623BqTvvGjUqBFPjx7NM08/\nTaWwMA663Xz08cdEREQEOjSR4qUE3YkbfxWhGWNsIAreRESKukZ16tBl1y5qZx/PCQ6m39NP89//\n/jegcW3atIkL27XjwtRUSgGLnU4eGjWKh4cPB2D37t20Ou88OicnUxn4JSKC8/v35+Pp0/Pdd3p6\nOj6fD6fTme+28mrLli306NaN5MOHSfd6efyJJxj5zDN+67842rlzJ3FxcTRu3JjKlSsHOhyR44wx\nWGuL9A6Zxhhrx/ihnyfwy2dRgvIjEZHiKSM9nfATjsM9HtKz56oHUpMmTViweDHPPv00iUeOMOrG\nG7nt9tuPv16zZk3mL1rEQ3ffzfaEBHr26cNL48YVSN/h4eGnP6mANWrUiNi4OOLi4ihbtizlypXz\newzFTZ06dbQ5n0h++HEficKmkQoRkQB7csQIPnvjDS52uTgK/OB0Mn/xYtq0aRPo0CQPrLUsXbqU\nffv20bZtW+rVqxfokETOecVmpOIlP/TzmEYqRETOCaOff56wsDC++OQTokuV4stXXlFCUUxYa7nl\nP//h+6+/prLDwU6PhymffsqAAQMCHZqIFAcl6E5cIxUiIiJnacGCBdw4YABDUlMJBfYAX0RGcjg5\nuXBWqBKRPCk2IxUFM2M0934e1kiFiIhIkRYXF0dVIDT7uDrgSk8nLS3Nr0XmIlJMlaA7ce1TISIi\ncpbatWtHrLUczD5eaQz1atVSQiEi5xwlFSIikitrLdOmTePhhx7ivffew+PxBDqk4z6cPJn6NWtS\no1IlRgwfjtfrPeM2kpOTmTZtGhMnTjzjjQebN2/O/731FpPDwnglNJRNNWvyzZw5ZxyDiJyjHH54\n+IlqKkREJFd33HILcz//nAapqcQ5nTTp2pVvvvsuYDUDu3fvZu3atWzfvp3nnnySgS4X4cD3Tif/\nefhhRo4enee2Dh8+TIc2bQg9eJAIa9keFMT8RYto3br1GcXk8Xg4cuQI5cqVUy2FSBFQbGoqJvih\nn3v8U1OhpEJERHIUHx9P43r1uDcjgzDAA7wfGcmcxYvP+Ma7IMyZM4frrr6amsHB7ExN5SKvlw7Z\nr8UBvzZsyPotW/Lc3tNPPcX3r7zC5ZmZAKwGDnfowKJlywo8dhHxn2KTVLzjh37uVKG2iIgEWGpq\nKs7gYEIzMoCsL40oh4Pk5GS/x2Kt5d+DB3OVy0Ut4DvgzxNePwqUKlXqjNrct2cPFbMTCoAqwKb9\n+wsgWhGRc4uSChERyVHdunUpV6UKP+3cSUuvl61BQaSFhQVklMLlcpHiclEz+7gT8A7gCQoi3FrW\nRUQwc+zYM2qz16WX8tAXX9DY5SIC+CU8nB69ehVw5HmXkpLCjBkzcLlc9OnTh/r16wcsFhHxgxJ0\nJ67pTyIikqv4+HhuueEG1q1fT4P69Zk4ZQqNGjUKSCwNatfmvLg42gCJwJTwcG649VbKlinDVVdf\nTatWrc6oPWstzz/7LC+MGYPb42FQ//589MknREREFEr8uTly5Agd2rQhOCGBSK+XLQ4Hs+fNo1On\nTn6PRaS4KzbTnyb6oZ/bVFMhIiJykj/++IO+PXqQfOQIGV4v4994g9uHDs13u9ZafD4fDsdfS6XM\nnDmTb2bMoFzFijw8fDjVqlXLdz+5GTNmDDOeeYaB2dOxNgA7W7ZkxW+/nfbazMxMvv/+e1JTU+nW\nrVuhxypS1BWbpGKyH/q5WTUVIiIiJ2nWrBk79uxh//79lCtXrsBGFIwxJyUUb06YwOjHHqOdy8UW\nh4N206ax9vffqVSpUoH0dyoJ8fGUP6G+oxKw8uDBnC/I5nK56N6pE0nbtxNtDPcAP8TE0KZNm0KL\nVUTk77RPhYiIFCsOh4Pq1asX6hSl50eN4gqXi/ZAb6+XasnJfPLJJ4XWH0Cvvn1Z53RyCMgAloSH\n06N379Ne9+6775K2eTM3pKQwKDmZrsnJ3HnLLYUaq4gUkGA/PPxESYWIiBRJ+/btY/LkyUybNo2j\nR4/6rd9169ZxNDWVg8CxSbthXi8Z2StgFZbLL7+cx599lqmRkYwLDqZx3768/tZbp71u986dVElP\n59jchhpkfXYiUgyUoKRCNRUiIlLk/PHHH3Tr1ImaHg+ZgKtsWX5ds4YKFSrkel1mZiYLFizA5XJx\n0UUXUbFixTPq94NJk3j43nup6Xaz2+OhMtAUWBgZybKVK2nSpMlZv6czYa3N8yZ6X3/9NXffeCPX\np6biBL4PDaXuZZcx/auvSEpK4r9PPMHWjRu5oFMnnh41irCwsMINXqQIKDY1FZ/6oZ/rVKgtIiLn\nqEt79MAsXEiH7O+NOSEhdLnnHsa++mqO16SlpdG9UycObt9OJJDgcLBg8WKaN2+epz4zMzMpW6oU\nt2RkUAHIBCYYQ90mTXh70iQuvPDC/L+xQvLMyJGMGTMGgM4dO/LVt98SERFBu5Ytidy5kzqZmfwe\nEUGdrl2ZNWeOdv2WEq/YJBVf+KGfa/yTVGj6k4iIFDn74uOpesIPUZXdbuJ37871mgkTJpC2aRM3\nJidzdXIyHY4cYVgeagt2795N/z59aFq3Lr7MTI79jh8K1I2O5ulnny30hOK7777j8REjePPNN0lP\nTz/j60c+8wypaWkcPnKEBYsXU6ZMGX755RdS9u2jb2YmTYFBaWn8FBPDfm3uJyKFQEmFiMgp7N+/\nn76XXEKF0qVp1awZq1atCnRI55QevXuzLCKCDCAZWBMZSc++fXO9Zuf27VRNTz/+xVbLWvbs2ZPr\nNenp6XTv3JnU+fPpHR9Pa2uZCHiA3cBOj4e2bdvm/w3lIDExkX59+3LjoEEse+kl3ho+nEu6dMHt\ndp9xW8HBwTidzpOeM3//O+vX23zFLCIFyOGHh59oSVkRkb+x1tKvVy+iNm3iJo+HnUeP0ueSS/h9\nyxYqV64c6PCKpLlz57JwwQKqVK3K7bffTmRkJN9//z0/zJ1LxcqVGTZsGKVLl85ze2Nefpn9+/cz\n9ssvCQoK4qG77+bmW27BWktMTAyxsbGUKlWKpk2b0rRpUxwOB126dWPW1Kmcn7079srQUDqeZuO4\n3377Dc+RI3TzegGoTNb+EM+T9V38yvPPs2XLFi7q2JEDiYlc0Lo1n8+cWSD7QCQmJtK6eXP27t/P\n/UBpwJeWxrTNm5k7dy6XX355vtrv2LEjYRUrMi89nbpuNxvCw+l04YVUrVo137GLiPxdgSQVxpjS\nwESgOeADbrHWLi+ItkVE/O3QoUNs2bqVRzweDNAS2AL88ssvDBo0KMDRFT2vjx/Pc088QXOXi0Ph\n4Xz43nvcPHQozz/5JC1dLhLDwvjw/fdZ+dtvREVF5anNsLAwPp4+nSleL0FBQcdrAO689VZmfvYZ\n6enpeH0+QkNDadSiBfMWLuTaa69lzapVjB8/HocxtGvThrcn5r5dbUREBOleL16ykggPWV9iw4BF\n0dGEhYXxryuuYKDLRQ3g59Wr6d+3L6vWrcvHJ5Zl0qRJVEhMJB6Izn4uCChtTIGsdhUeHs7i5ct5\nfPhwtmzcSO9OnRj9/PN+qafYv38/brebGjVqqH5DJDcl6Of9gpr+NB74zlrbFDgf2FhA7YqI+F1k\nZCQer5fU7GMvcMTnO6Nf2s8V1lqeGDGCa10uugFXpqeTvns3Tz3+ONe4XFwEDMrIIDghgS++OPOK\nRIfDcfymdOXKlXz12WfUdrmo4/PxEHBPZiaZGzbw9BNPYIzh5bFjOZKcTPyBAyz65RfKlCmTa/vN\nmzenXadOfBERwXJgKlCX7OlPXi9paWnUDwqiHlk1Ft28XjZs3Ehqauo/2vL5fGf03o78+Sel3G5q\nAXOAP8neRdtaunbtekZt5aRChQq8P3kyPy1bxiuvvlqoe3sAuN1urhk0iIZ16tCicWO6duzo1+WA\nRSRw8p1UGGNKARfZ7I3GrbUea63+BRGRYsvpdDJixAg+joxkITDd6aRx27YFdqNXkvh8PjLcbkpl\nHxug1N+eA4jyeklJSclXX/v376dSSAhJQDOyvsCCgEYZGaxfs+b4eeHh4adNJo4JCgpi5uzZ3DFm\nDBEDBnAkKoqdoaF8EhHBxI8+olmzZhwiK7EESAIcQUGEh4cfbyMuLo4Lzj+fkJAQKpcrx+zZs/PU\n92WXX846p5MOZCUUbwPzwsNp17Yt4//v/0hKSspTO0XJ/40bx/p587g/I4P709JI++03HnnggUCH\nJVJ0aZ+KExow5nzgPeAPskYpVgL3W2vT/naelpQVkWLl22+/Zfny5dSuXZshQ4YQEhIS6JCKpMt6\n9yZh0SI6Z2SwH5gXGUmnTp3Ys3gxXdPTOQDMdTpZvno1jRs3Put+9uzZQ/PGjanhchEMDMx+/n9h\nYVx0++289sYb+X4vPp+PQ4cOUbZsWUJCQvB6vVzepw9bli2jitvN5uBgnh83jjvuvPP4NS2aNKHy\n1q108vnYA3zldLJq3Trq169/2v6++uorRjz4IMmpqVSqWJGjcXGc73KxLzSUP6tXZ/X69URGRub7\nffnLNQMH4pk1i1bZxzuB35o1Y/XvvwcwKjkXFZslZb/zQz/9isk+FcaYtsAy4EJr7UpjzGvAEWvt\nyL+dZ0eO/Oup7t27071793z1LSIigXf06FHuuOUWYhYupFLFikx4/33atGnDvcOG8cPcuVQoX57x\n77xTICM9c+fO5bprriE1OZkwYwgPD6d+06bMi4khOjr69A2cBa/Xy4wZM4iPj6djx44nLS+bnJxM\nxXLlGJFdfwMwKzqah95+m3//+9957iMzM5OoyEge8niIIGsn78+ionhhyhSuuOKKAn0/hemJESP4\n/rXX6J+RQRCwMDiYyv37M/2rrwIdmpRwMTExxMTEHD9+5plnikdSMdcP/fQpPklFZeAXa2297OMu\nwGPW2v5/O08jFSIixZDH48Htdhf6fPy8staSmppKbGwsxhiaNWuGw+HHdRNP4PV6KRUZyc0ZGVQk\nqxZjYlgYU779ll69euW5nbS0NEpHR/Oo18ux8bAvo6N58v33GTx4cGGEni87duwgISGBpk2bnlRr\nlJKSwiVdurB/+3ZCgoKgdGkWL1tWIKtliZyJYjNSUYKSinzXVFhrE4DdxphG2U/1IGsqlIiIFHNj\nnnuOyIgISkdHc8lFF3H48OFAh4QxhqioKFq2bEmLFi0CllBAViH5yNGjmQTMBN4Hkt1uNv1xZl+D\nERERXNa3L7PCw9kF/BwUxIGQEHr06FEIUefP448+Sqtmzbi+b18a1K7N8uV/LfYYFRXF0hUr+GTO\nHCZ98w3rN21SQiGSG9VU/K2RrLqKiUAIEAvcbK098rdzNFIhIlKMzJo1izuuu47rXS4igbmhodS+\n9FI+nzkz0KEVKaNHj2bGM89Qy+cjGogCfqxalR3x8WfUTlpaGo8PH86ihQupUbMmr06YQIMGDQol\n5rO1aNEi/tWvHzelpuIka6nHn6tUIW7fvkCHJnKSYjNSMd8P/fT450iFMWYScDmQYK1tmeO1xlwA\n/AwMttYxUC8RAAAgAElEQVTmOo+xQPIXa+1vwAUF0ZaIiBQNSxYvppnLdXwVp46ZmXyxdGlAYyqK\nvB4PpfnrSzAB8J7h8rKQNVrx2oQJBRlagdu8eTO1reXYvt2NgS8SEnC73VrIQORsBG6fisnAG8CU\nnE4wxgQBLwJ5mqRVUPtUiIhIEZeRkcGZjBjXqFmThPBwjl2xB6hWpUqhxFacDb72WjZERLAS2ArM\ndjq57YTVoUqSZs2asQM4tjjwH0CtatWUUIgUM9baJcDp5rPeC8wADuSlTSUVIiIlXGxsLC2aNCHS\n6aRc6dLMzGX6UmZmJi+++CL9+vVjy5YthDZsyLSoKL6JjmZhVBRvf/CBHyMvHpo1a8a8hQvxXHIJ\nO9q25cFnn+XpkSNPf2Ex1LlzZ+5++GHeCQ9nUqlSLCpblhnffBPosESKL4cfHmfBGFMNGGStfRvI\n0zSyAqmpyFNHqqkQEQmIZg0bUjM2lo4+H/HADKeTX9eupWHDhied5/F46NC2LRvWraMhkAb8GRXF\na2+9hcPhoHXr1mzbtg2Hw8HFF1+c42pQqampxMXFUa1atRK9C3lGRgZbt26lVKlS1KpVK9Dh+FV8\nfDwHDhygYcOGxWofDTl3FJuaiiUF327Maoj5az9Qnpl86tWfjDG1gW9PVVNhjPkcGGut/dUYMxn4\nn7X2y9z6DdxMLhERKXRHjx4ldudO/uXzYYAaQD2Hg19//fUfScWCBQvY9vvv9AA6ZD/3bUoKK5cv\n55HHHqNz+/ZEulx4rCWkUiWWrlhB2bJl/9HG1YMGEU7WKkhvv/8+N9xww/HXV69ezZ0338ze+Hg6\nd+7Mu5Mn/6ONQEpKSmLHjh3Url2bChUq5Hjejh076NG1KxlHjpDidnPtddfxzqRJGFOk72EKTLVq\n1bSqk0hBKIQ78e7tsx7HPDP5rJppB3xmsv5RqwBcaoxxW2tn5XSBpj+JiJRgkZGRBAcHczD72A0k\nWEuVU9RGHD16FOPzceIr1YG9u3fzyP33U//gQa49epR/JycTvXs3z/5tik9aWhpXDxrEgORk7khO\n5j/p6dw9dChxcXEA7Nu3j17du1N93TquOnSIXXPmMOiyywrlfZ8pay2Dr76ayuXL07FdO2pWqcK0\nadNyPP+m666jQXw8Q5OTuTs9nbmff8706dP9GLH/ZGZmBjoEESkchhymNllr62U/6pJVV3FXbgkF\nKKkQESnRHA4H77z3Hp86nfwvMpIpUVF06d2bSy655B/ndu7cGU9wMIuAdOAoWfslXDZwIDtjY6nl\n9QJZ30A1MjOJ3bbtpOv37NlDqLXUzT6uBFQLDWXz5s1A1nKkNYFWQHmgb2Ymy1esICUlhbzYu3cv\nEyZMYMKECewr4CVMx48fzw9ffskw4D6gotfL0JtvJiEh4ZTn/7FxI82zV3gKA+qkprJ+3boCjSnQ\nVq5cSZ3q1YkID6dmlSosW7YsX+3Fx8dzw+DBdG7XjkcefJD09PQCilSkGAvQPhXGmE/IWiq2kTEm\nzhhzszHmDmPM0FOcnqf6BU1/EhEp4W648UbOb9WK2bNns23bNpo0aUJ8fDzVq1c/6byqVasyLyaG\nQZdeystHjxJkDPfecw9Dbr6ZdWvWsGDzZmqlp+MFNjid3NatG5BVQ3H/3Xczf948jqam8htwPnAE\n2JeZSb169YCsUZNka/GR9YtWKlnfVGFhYad9D1u3bqXTBRdQJyMDC4x++ml+WbmS+vXr5/vzSU5O\n5sVRozgCvANcDHQDZvl8xMbGUrly5X9c06hBAzatWUMHa3EDcZGR3Nq06UnneDweXh07lmVLltCg\nSROefPrpYlNjkpqaSr/evel2+DBDgE0JCVzepw/b4+LO6j0kJyfTuX17aiUkUM/jYd7vv7Nl0yZm\nzZlT4LGLyOlZa68/g3Nvyct5KtQWETkHrF27lou7dKFJZiY+Y9jhdLJ89Wrq1q17yvN9Ph/GmOM1\nAmlpafzriiv4ccGCrKlC11zDB1On4nA4uLJ/f3b8+CMXpqezH/gfUCM6miSPh5HPPsuDDz8MZE2j\n6dqxIykbN1IlPZ0/IiMZ+tBDjBo9+rTx/+uKK4j95huaWUsN4NegIKpcfTXTCmDK0X+uu461n3/O\nAJ+PVLIWba8DbAwKInbv3lNOFdu8eTOXXHQRoRkZHPV46N2vHx9Pn05Q0F8TAK67+mpWz5nDeS4X\ncWFheOrVY/maNXlKogJtzZo1DOzenVuPHj3+3EelSvHJ3Ll07NjxjNubPXs2D193HdclJwPgAcaF\nhrJ3//4iVVMjJUexKdRe64d+Wp26ULugaaRCROQc8NSjj9IpNZVjtXsxHg9jRo/m/cmnruA78eYY\nsjZm+/b77/nzzz9xOBxER0cD4PV6+d+cOQz3egkFKgO7IiK4eOhQ7r777pOSltDQUBYuXcp7773H\n7l27uPuii7jiiitOG3tqaio//vADwdZyEEgGOvt8HNy//8w/iFP4aeFC+vt8hABlgDZADPDMs8+e\nMqEAaNy4MVt27GD9+vWUKlWKpk2bnlSkfejQIWZ9+y0PZGYSCrTMyOCjPXtYunTpKaeeFTWVKlXi\ncEYGKWTtEO4CEjMzTzlqkxcOhwMvWSNTBvCRVcfy9//PRKT4UlIhInIOSDp0iBMnCpX1+Ug8eDDH\n83NSpkyZk46DgoIICQ4mNTupsEBaUBBt2rQ55ShIREQE999//xn1Ofbll6mWkcFVZE2bigEWBQXx\nbB4SkryoVLky+xISqEhW/PscDobddRdPPPFErtdFRkbm+Ku91+vFYczxJeINEGIMHo+nQGIubNWr\nV+eRRx/lzXHjqAvsBO6+554cR7ZOp1u3bgRXrMj3GRnUzMxkvdPJoH79is10MJFCc5b7SBRF+olA\nROQcMOiaa1jqdJJE1taoy51OBl1zTb7bNcYwctQopjud/AzMCg2FqlUZOHBgvts+ZsvGjdTzeI5/\nYTUAQiIiuOKqqwqk/QnvvcfCqCi+dTr5LCqKoAYNGDNmTI7n+3w+vv32W9566y1WrFhxynMqVapE\n+/bt+V94ODuAhcHBuKOj6dSpU75i3bdvH5d06UJkeDj1a9YkJiYmX+3lZuTo0Xw9bx63vfYaM77/\nnjEvvXTWbUVERLB0xQra33YbaT17ctPjjzP1008LMFoRCTTVVIiInAN8Ph9PPPYYk95/H4fDwUPD\nhzP8sccKbF+Fr7/+mvnz5lG1enXuve8+SpUqleO5brebca+8klXA3LgxT40c+Y8RkBO9MX48rz/x\nBP9yuQgGZgLxwcG4w8L4/Kuv6N27d77j37VrF/PnzycyMpIBAwbkuLGftZbBV17J8h9/pKrXyxZj\neGHcOO64886TzvN6vWzevJlXX36Z31avpl6DBrz6xhv/KI4/U+3OP5/IP/6gicfDTrKSw9/++IPa\ntWufdJ7b7WbMc8+xZMECatevz/MvvXTWU5dEiqNiU1Ox0Q/9NPVPTYWSChER8avrrr6aNdkFzLvD\nwkivU4cVv/2WYwGz1+tlyA03MGPGDKzHQxXgOsgqCi9ThgNJSX7bdC4mJoZ/9+/PLSkpBAOJwMTQ\nUI6kpBASEgJkLa3bu3t3EvbtI93j4a677uLlV189ZYypqak8dN99LF64kOo1ajD+nXdo1qwZkLUR\n33+ffJLtmzfToUsX7r3/fqpXqUI7j4c1ZNV/JAJPP/ccTz755EntXnfNNaydPZtWaWnsCQ5mb5Uq\nrNu4kaioqEL9fESKCiUVJ/SjpEJEREqapKQkalStyoPZBcwWmBIdzXtffUXPnj1zvfa1115j8uOP\n0zc9nWPjCM8FBZHqcvltRaXPP/+cF267jUHZqxhZ4JXQUHbv20e5cuUAuKRLF1i2jK5eL2nAx5GR\nvDF16imL0i/v04e9P/3EBRkZ7DWGX0uVYsPmzZQuXZq2LVsSvWsXtTMz2RARQUb58sTu2UNZ4HYg\nAvgdWFqhAntPqI9JSUmhQtmyPOzxEJr93KfR0bw8bRoDBgwoxE9HpOgoNknFVj/001CrP4mISBH3\nyy+/sGjRIipVqsT1119/2pt7j8dD0N8KmIONwZu9sV5u9u/fz4b0dP4g61f65kCD2rX9ukRr+/bt\n2eH1sgOoBSwLCqJWzZonLYv627p1DPF6MYATaJCayurVq/+RVKSlpTFv/nwe83oJBqpbyx6vl4UL\nF1KxYkXS9+/nmsxMDNAwLY2X9+yhHhAJx5OqJsCXiYn4fL5/rKRkcvhbRKQwqFBbRETOykcffshl\nPXvyv6ee4qV77+Xizp3JzMzM9ZqKFSvS+cIL+TY8nFj+KmDu3Llzrtd98MEHvPrSS9Qi60Y9Glju\ncDDzu+/yFGt8fDxTp07lyy+/JC0tLU/XxMbGsnz5co6esFdDnTp1mP7VV3xfvjzPBwVxqGlTvvvh\nh5OmNtWpVYtje417gL2RkafcpC84OBhjDBnZx5asnczDwsKw1mbtE5L9miHrC7stsIusjQMha6Si\nfq1aJyUUUVFRDBwwgK8iItgEzA8JIb1UKS6++OI8vW8R8SOHHx5+oulPIiJyxqy1lI2O5vrUVCqT\nte/AJ1FRPDdxIoMHD871WpfLxePDh7P855+p16ABY8ePp1q1arn3FRXFQJeLemTdeL8HHA0K4vCR\nI6etE1i7di09unallrW4gLDq1Vm6YsXxvTZO5ZEHHmDiu+9SLjSUlKAg5vz4I23btj3pnL+PDsyf\nP58Xn3mGpMOH2R4bS9WQEP70eGjftStfffstDsc/v92HP/wwn7/7Li1SU9kXFkZGrVqs+O03rLWc\n36wZVeLjqe12syooiCSfj2FkLan7C1AqJISg6Gjmzp9Pq1atTmo3MzOT50ePZklMDLXr1WPMyy/n\nuOeGSElUbKY/xfqhn3qqqRARkSLK5/MRGhLC4z7f8Xm0cyIiuGncOIYNG1agfaWlpREdFcVTPt/x\nX+6/BLaGhuJKTz9tkfZF7dtTbsUK2pA1GvBNWBhXP/UUTz711CnPnz9/PjcMHMhNqalEABuANTVr\nsi0uLsc+lixZQv8+fbjE5SIUmB8RwX+GDeNfgwdzwQUX5BijtZaPPvqIn378kZp16/LwI48c37vh\nwIEDjHjkEbZt3kzTFi345uuvqZKRgQX2h4Xx0ccf07VrV5xOZ67vX+RcVGySipz/WSm4fmqppkJE\nRIqooKAgunXuzI/LltHV7WY/sImsTc4KWkREBLWrV2ft7t20Bg4DW8na8Tovqz7Fx8fTIvtvA1TO\nyGBPdoJgreWN8eP5dMoUoqOjGTlmDJs2baKO13u8bqEp8NWePaesWzhm0rvv0sHlomX2cXBaGj/9\n8ANjx43LNTZjDEOGDGHIkCH/eK1SpUp8MGXK8ePnX3yR2bNnY4zhsssuo3z58qd97yIi/qKkQkRE\nzsrnX3/NjYMH8+bSpZQvW5ZPJk48vhxqQZs5ezZ9e/RgUXIyaR4Pjzz2GI8++mieru3avTvLZszg\nsowM0oD1Tic39+gBwMsvvsibzz9Pt9RUDgM9L76YLt26sQ1wkVW/sYF/1i38XXBwMCeWmnuA4FNM\nd8qPChUqcNNNNxVomyISYCXoTlzTn0REpFhwu91s27aN8a++yq8//0yNmjV5dcIEGjRo8I9zrbVM\nmTKFBXPnUqFyZTasXcvCxYsxxjBixAhGjR6NMYYGNWtyyZ49VAQ+IKsAvDywiqzRmEpRUWQEB5+y\nbuFEa9as4eIuXejochEGLImI4P1p07jyyiuBrFWvNm3ahMPhoHHjxrkmKCKSf8Vm+lO8H/qpppoK\nERGRk1xx+eVsnz+fdunp7AkKYmVUFO3btsUAd9x3H4MGDQLgyREjmPLGG5zvcnEgNJQ/q1Xjl5Ur\nKVOmzEkF003q1qXTzp0cALYB15I1RWoX8DHwf2++yU033URkZORpY1u5ciWvvfIKGenp3HzHHfTr\n1w+Aw4cP07NrV/bu2IHXWpq2bMmtd95JaGgoffv2pWzZslhr+e6779i8eTPnnXceffr0KeBPLn+S\nk5N58N57WbZkCbXr1uX1d9455YpWIkVFsUkqDvihn0pKKkRERI5zuVyUKVXq+L4Ou4BPgD5ACBDj\ndPL2hx9y1VVX4QwP5x63m2PrO30eFcXT77/Ptddee7w9t9vNlClTePy++6jgclEmuy2AFOB14LmX\nX2b48OFAVnF6XFwcERERVK5cOc9x3zZkCBs+/ZS+mZn4gM+AoyEhVAwLI8npZPmqVbz43HPMnDaN\n2m43O0JC+PfQobzy6qv5+rwKirWWHl27cnTFClpnZLArKIgN5crxx9atlClTJtDhiZySkooT+vFT\nUqHxVxERKfJ8Ph/x8fFYa3FnP7cGuARoA7QAerpcvPHKK3i9Xnw+HyduiRdmLRkZWTtCLFiwgKoV\nKhAeFsbYF17gqRdeoFrXrqwmK1FJAeYC4Q7H8alVBw8epF3LlrRp1oz6tWpxy3/+g8/ny1Ps69eu\npXH2JnYOoCVQ3u3m6pQUGiYmcu+wYXw8ZQo3pqbSOzOTG1NTefftt9mzZ09+P7YCkZSUxPJff6Vf\nRgY1gM4+H2UyMliyZEmgQxMp9qyj8B/+oqRCRESKtMTERDq2bUu7Fi0IAt51OFgN7DvFyk/GGEJC\nQhh4+eV8Gx7OHmCFMcQ5HPTq1Yt9+/Zx1YAB9EpM5ClraRAby7gXX2TuggWMfuklPjGG8UBsUBCX\nXXnl8elUw267DeeWLdyXlsZ9mZn89OWXTJ48OU/xn9eyJZtDQ7GAl6wN6ypmv1bV62XPrl2UDQ0l\nPPs5J1A6JITExMR8fGoFJzQ0FN8JydyxTfpCQ0MDGJWIFDVKKkREpEi76/bbCf79d+5PT+chn49o\nh4N9rVvTY/Bgfo6IYBXwG/CD08n9jz0GwJRPP6XbkCH8Ur8+GV26ELN0KdWqVWPNmjVUCw6mPllf\ngO2sJeXIEfbu3cujjz5K/KFDzF2wgKWrV/Px9OnHl6xds2oVLd1uDBAGNHK5WPHLL3mKf+xrr5HR\noAHvRUUxISSEvUFBtCPrxny100nf/v1JDQriNyATWG0M3rAwGjVqVMCf5NmJjo7mpv/8h8+dTlYC\ns8LCKFOrFt27dw90aCLFnje48B/+opoKEREp0hrUrEmvPXs4th/0MqDWLbfw7qRJLF68mHEvvIDH\n7WbovfcyYMCAXNtatWoVl3btym3ZqzT9CbwbGsqBxMRcd+bu3b07ZvFiOvl8eIEvIyK4+JZbaNq0\nKQ0bNqRXr1657pnhdrv5/fffsdYy4bXXmPrxxwD854YbeGfiRDZs2MB1V13F9l27aFSvHtO//prz\nzjvvjD6nwuTz+Xjv3Xf5edEi6jVqxCPDh592J3ORQCouNRXuI4XfT0hpFWqLiMg5zOVyMXrkSD56\n/30ijhzhWrIKsr8MD2fIs8/yyCOP5Lktay2TJk1i+pQpxO7YQfKhQ9QNCmI78PTzz3P/Aw+cdH5m\nZiZPPPoos2fNoly5cjw4YgQP3H03EenpuHw+nOXK8efBgzSwljiHg0E33MCb77yT53jc7qzJRCEh\nIXm+RkTyrrgkFemphd9PeKSSChEROUf5fD56dO3K4VWraJyezu/ArqAgSkdEUK9FC+YtXEh4ePhp\n2znm/8aNY+x//0sXl4tkYHF4OA8/9hj9+vWjffv2/zj/jltuYdFnn3FRWhqJwILISH786SeOHj1K\nRkYGVw4cyF2ZmUSTNY3pPaeTxStWFNrmfyJyZpRU/MVfSYVqKkREpNB4vV7S09PP+Lpt27axfs0a\nBqSn0wy4CnCGhvLM+PEsWLz4jBIKgAn/939c5nLRDOgAtM7IIDMj45QJBcBn06fTLy2N6mSt1tQk\nM5OYmBguvvhi6tSpQ+nQ0OPL1YYDFUJCOHDAD2tDikiJ4nEEFfrDX5RUiIhIoXhu9Gic4eGUioqi\nV/fuHDmS98nD1loMWRvRkf3fkOBgWrVqRXBwzpWHP/74I/379OHyXr2YM2fOXy8Yw4lj5RZy3dU6\nLDSUtBOOM4KDjycydevWJSgigtVkrea0CUi0lpYtW+b5/ZUUXq+XWbNmMWnSJDZt2hTocEQkgDT9\nSURECtzXX3/NXTfcwPUuF5HAnNBQGg0YwMdffJGn630+H13atydzwwaaZGSwNTSUzAYN+HXt2hzr\nEObPn8/V/fvTLS2NILI2w5v2xRf069eP18eP58UnnqCzy0WyMSx3Olm2ahWNGzc+ZVtvvP46zz3+\nOG1dLg6HhLCnXDl+++MPypUrB8Dvv//OVQMGsCU2loplyzLh3Xe55pprzuaj+oekpCR27txJnTp1\njvdXFHm9Xi7r1YvNK1ZQwVq2WctHn3562mL5oiQpKYlly5bhdDrp0qVLrgmrFC/FZfrTEU/hL81c\nOjhTNRUiIlI8PXT//ax//XW6ZB8fAmZWqsTuhIQ8t5GcnMwTjz7K2lWrOK9FC14YO5ayZcvmeP6g\nfv2wc+bQJvt4HZDavTvfL1yItZaPPvqIz6dOJbp0aZ4cNeq0IwszZ87kfzNnUrFyZR58+GEqVap0\n0uvvvPUWIx55hOqhoezNzOSlceO4Y9iwPL+/U5nxxRfcOmQIZYKDOex2M3HyZP41eHC+2iwsM2bM\n4NEhQ7ghNRUHEAf8r2xZEpKSAh1anmzcuJHuXbpQ3uMhxeejTvPm/BATQ1hY2OkvliJPScVflFSI\niEixNXbsWKY8/TRXpqdjyNpHYs/55/Pr2rWF1mduSUVB279/P43q1uXm9HTKAUnA5PBwtuzYQZUq\nVU53+SklJiZSr1YtrnO5qArsBz6JiGDbrl1UrFjxdJf73YQJE/h4+HD6ZtfMeIAXgoJwezy5Lq9b\nVHTr2JGoX3+lvbX4gBkREQx94QXuv//+QIcmBaC4JBVJNqLQ+yln0lSoLSIixdOwYcMIadCAj6Oi\n+CYqipioKN6aOLFQ+7z34YdZFBHBGrKSmIVOJ/cNH14ofW3dupUywcEcm5xUDigfGsru3bvPus0d\nO3ZQNjiYqtnHVYByISHExsae9lq3201cXBxpaWmnPbegdO7cmU3GkAD4gMUOBx3atCkWCQXAzp07\nqZv9Y2cQUD0tjditWwMblEgxpqRCREQKXGRkJD+vXMkrU6fy0Ntvs27jRtq1a1eoffbo0YMvZs3C\n27s3mT178vGMGfTr16/A+1m0aBEDLruM/SkpxGU/Fwf86fXSoEGDs263du3aJLndHJsgdgBIcrup\nW7durtetWLGCmlWq0LppUyqWK8fH06aRmJiIz+c761jyonXr1rzx7rtMczp5PiiItBYt+OKbbwq1\nz4LUrn17VoeE4APSgM2RkbS/8MJAhyXnGC+OQn/4i6Y/iYiI5FFGRgbVKlWi39GjWOBLsn6dC3Y6\nmf7ll/Tt2zdf7X/88cfcdfvtVAgN5VBmJhPefZcbb7wxx/M9Hg81KlemW1ISzYAEYBLgCAkhKiqK\nr2bNokuXLjleXxCstbjdbkJDC39ueEE6dOgQ/Xr1YvOmTWR6vQwdOpTX3nij2Iy0SO6Ky/SnfbZ0\nofdT1RxRTYWIiJwbEhMTuX3IEJYvW0bNGjV4Z/JkWrVqFeiw/mHHjh20b9GCe1KzdqxyA9Ojo3ll\nyhQGDRpUIH0kJCQQGxtL3bp1T1ufsXfvXpo3bMgDJ0x7mgpcADiA70uVYseePURHR+fUxDnNWktC\nQgIRERGULl34N3fiP0oq/uKvpEJrp4mISIFyuVw8/+yzrF+9mhatW/Pkf/+L0+nM9ZoBl16Kb+1a\nrnK7iTt0iJ7duvH7li1Urlz5tP0dOHCAF559lr27d9Pj0ksZOnRoof3aXLlyZTJ8PuKBamRNmznk\n8dC0adMC7SMv7xugQoUKeIB9QFUglaxpU2XIqslYTNZGgq1bty6w+EoSY8xZF9aLFARvCboVLznv\nREREAs7n89GvVy/+XL2ahunpzF60iKWLFrFgyZIcN5v7888/WbN2LcPdboKA8kAssHTpUq688spc\n+0tKSqJpw4YEJydT2lp+mTePbVu28Mr/s3fnYVGV7QPHv2cYhmEAcUFEFEVx33cSN1xRc6NSU9M0\nzbVcU9O0tEzT6k1NrSzT3Eotl1zS0FwSzN3c/bmisihuKAwDs5zfH5BpLoACw3J/rovr5cyc8zz3\nmfcy5j7Pcn/+eYbfG4DBYGDhkiW80asXRR0diU5KYtzEiU+sd5EWqqqyfNky1v38M4U8PRk3YQIl\nSpRI07VOTk58v2gRb/bpg7eDAxfv3aMGyQlFLHArMZGiRYum0ooQQjw/mf4khBAiw5w4cYJm/v4M\njI9HQ3LF6W9cXPhj714qV6782GtMJhPubm4MtVhwJXknocWurnzzyy+0atXqqf01adCAC2Fh1APC\nSVkw7eCAKSnpqRWzn1dERASnTp3C19f3uRZnA3w6YwZfTJ5MPaOR2w4OnM6Xj79PnkzXE/Tw8HCO\nHz/O77/9xrKFC/FxcOCy1cr4SZMYlUk7YAmRneWU6U/hqmfqJz6nksp1WVMhhBAiZzl69ChBDRow\nIC4OBVCB+a6ubA4NfWqxuQnjxrFw9mwqGo1EOTuTv0oVdoSGPrF6NkBcXBwF3d15x2bDKaWv74EI\nRWHeV1+h0Who3749Xl5e3L17l9DQUJycnGjYsGG2WlTskS8fXe/d45+vFut1Ol6bPp3hw4c/U3tH\njhzhzJkzVKxYMdUCf7nJ1atXGTtyJOEXL9KoaVMmffSRFLLLwySp+FdWJRUy/UkIIUSGqVSpEt6+\nvmz+v/+jfFISZ3Q6vHx9qVSp0lOv+2jqVGrWqUNYaCgdfH3p378/jo6OrFy5kikTJ2IymejVty/j\nJ0y4PwJhs9nQaDQ4pGydqpBcgM3JwYFvRo5EAd4bM4ZVa9fSo0sXXE0mTKqKR6lS7AgNxdXVNVM/\ni4MHDzJn5kysFgv9Bg2icePGj5wTERHB3Xv3eDB1UsxmzGbzM/dbo0aNbLnIPTPFxsZSv04dyty4\nQZaL3rIAACAASURBVCmrlV9PnOD82bOsXLPG3qEJ8VRZueVrZpORCiGEEBnq9u3bjBk5kmNHjlCl\nenU+/eILChQokO52QkJCeLVjR15MSEAP/G4wMOi99xg7fvz9czq0acPF7duplZjIJWC/gwP1VJWm\nKYnGbo2GMx4elL95k4ZWKyqwzsmJDqNHM/mjjzLkfh9n//79tAwMxN9oxAHY4+zMynXraNmy5UPn\nLVu2jHf69MHRbKYZcBPYDBw5fvyJ08XEo9asWcOE11+ny717QPKuXJ9qtdyOjU11kwCRO+WUkYoL\nauaveSqtRElFbSGEEDlPgQIF+HbhQv46fJjvFi16poQC4KelS6mXkIAfUAxoZjSyfPHih85ZsXo1\nLfv350z16ngFB+Nfrx6eDxR987TZiIuNpaTVCiSPZvgkJvLJlClUKVeOkydPpikWVVW5cOEC58+f\nJy0PyGbOmEF9o5EAwB9olpDAjMckMS4uLrjodJQFtgOnABwcqFChQpriEskURcH6wLGN5P/PpOaE\nyO5yU/E7SSqEEEJkS65ubhgfWGwdD7j856mzs7Mz/5s9m7+OHGHF6tV0fOUVDhgM3APigL0GA2Ur\nVuSIkxNWIBE4DDQF/M6do2VgICaT6alxGI1GmjduTN2qValXtSrNGjYkPqVOxcmTJxk1ciTDhw7l\n8OHD969JSkriwVUbupTX/qtNmza4lypFjF5POcBoMPD+xIk4OOSeKRFZoUWLFlgKFGCLoyPHgV8M\nBnq8+irOzs72Dk2IPEOmPwkhhMiWzp8/j3+tWlSIi8PJZuOQwcBPq1cTFBT0xGtsNhtjRo5k3ldf\nAfDGG2/w0dSpBL/4IvsPHCDJbKYa0I7kp2rz3dz4fc+ep041Gj1qFCHz5tEhJflYr9fTYuBAevbp\nQ5OAAKqn7HR1yGBgU0gIAQEBbN68mR4vv0wLoxEtEOLsTIWaNbGYTNSqW5dpn356vyCd0Whk3rx5\nXL18mSZNmxIcHPxMn9eZM2eIiYmhSpUq5M+f/5naeFb//H2358hATEwMkyZMIPzCBRo1a8ao0aPR\namXpaF6VU6Y/nVJLZno/FZVw2f1JCCFE3rVy5Uq+mjmTa9euUbVWLUaMGsULL7yQpmv/+yVXVVXC\nwsJ4sUULBplM6Eke+fjKyYn/u3jxqbUcWjZqhMfu3fwzIekMcC0ggKLFixOzciUBKa8fAszNm7Np\n61YA1q1bx2dTpmA2m7kSFUXJ27cpYzZzwskJlxo12LlnT4Z8CVdVlaGDB7Pshx8oqNMRC2wKCaFu\n3brP3XZqzGYzQwYM4IclS3DQaBg6dCjTZszI9tOOzp8/z/vjxnE9Koo2HTsyfOTITN2CWGQ9SSr+\nlVVJhaTwQgghsp0lixczYuBA3BISuA1cunSJV7t3T/P1//1SqygKDRo0oHvPnixZvpwSFgsXtVre\nHjIk1eJwFapUYe/+/ZRPTATgvE5HnSpViLhyhQcnYxmACzEx9487duxIx44dCQsLo1vr1rQym1GA\nUomJzDl2jIsXL1K6dOkn9nvr1i2+nD2b69HRtGnXjnbt2j32vJCQEFYvWcKAhAT0CQmcAF596SXO\nX7ny1PtKj+PHjxMZGUnVqlUf+rymTJ7MzhUrGG6xYAV+mjePkqVKMWjw4AzrO6NFR0cTULcuVWNj\n8bDZmHPoEFEREXz6xRf2Dk3kQfaqqK0oygKSB22vqar6yN7TiqJ0B8amHN4DBqmqeuxpbUpaLoQQ\nItuZOX06uoQECgKvAg1tNnp168adO3eeq92533zD/JUr6fLJJyxZu5ap06enes2UTz7BUqYMC9zc\nWODqSlKZMnw8fTqvvfEGu/V6LpJcdG8LcOz0afbu3fvQ9Q4ODthUlX/G6m2A1WZ76rqJ2NhY6tao\nwYapUzn3zTf07dqVL2fPfuy5Z86coaTVij7luDwQHhmZpgXlafHO8OE08fdnWJcuVCpbli1bttx/\nb8vGjfgbjRgAN6C20cjvGzdmSL+ZZc2aNfiYTDSy2agIBBuNfPX11/YOS4isthB48lxSuAA0VlW1\nOjAF+Da1BiWpEEIIke1YrFZukfwYrSjQAPCw2QgNDX2udhVFoW3btgwfPpwWLVqk6Rp3d3f2Hj7M\nL1u38vPWrew7coT8+fPzyiuvUKVePdYBG4H6QMukJN77TwXrWrVq4VW6NBudnDgOrHV2JqBhQ0qU\nKPHEPleuXInrzZu0M5sJAF4xGpk8ceJjz61atSrnHRyISzk+BpTx9c2QKUhhYWEs+e473jQaeTU2\nluD4eLp17nw/YfEqWpRrD/RzXavFq1ix5+5XiLzCXrs/qaq6G7j9pLhUVf1LVdXYlMO/SN6E76kk\nqRBCCJHtDBw6FAvwz35JNsCi1dptNx9HR0fq1auHv7//Q1W+vTw8aAwMAuoBBYDY27cfufaP3btp\nOngwCS1a8NKoUazZsOGpX/qNRiMG67+bpLoCCSnTryB5dGLFihXs2bOHwMBABg4fztdOTsx3c2Of\nhwc/r1uXIfd94cIFiisK/3zqJQFjQgL3UupBTP/iCw7ly8evBgNrXFy4WLAgEydNypC+M0twcDBX\n9Hp2aTScAtYYDAwaONDeYQmRnfUDfkvtJFmoLYQQIlsKat6cozt2UNNm44pOh2uVKuz666+HvtSn\nVXh4OCdOnKBUqVJUrFjxmWM6deoUp06dokyZMlSrVo1Vq1bxdu/edDAa0QEbDQYGvPce7z5QoO9Z\nnD17lro1a9IiPp7CwJ96PbWCg1m8fDnLli5lSP/+lNJqibTZ6NqrF7PnzSM6OpqbN2/i5+eHXq9P\ntY+0OHr0KIH169PTaKQgyaMg+7y8CI+MvJ8URUVFsWHDBhwcHOjUqRMFCxbMkL4z0/nz5/lg/Hiu\nRUXRpkMHWaidC+WUhdqH1Gf/79GTHNgRz4EdxvvH8yffeOxnoShKSWD949ZUPHBOU2AO0FBV1SeO\nbIAkFUIIkaccOXKE17t149Lly1SpVImlK1dSqlQpe4f1WDabje+//559YWGUKlOGYcOHP1N15BU/\n/cSAvn0p5uhIVFISw0eP5v3Jk9Pdzldz5zJm5Ei8bDaigSEjRvDJjBnMmzuX6VOmYLFY6N23Lx9N\nnZohX1DDwsIYMWQIN27coPWLL/L5zJloNBoKurvTy2SiCGACFhgMbNyxI027PSUlJfHdd98RfukS\n9QMC6NSpU5ru+51Ro3DRanFwdmbT779Ts2bN574/ITJTXk4q/quWcuqZkgpFUaoBvwCtVVU9n1o/\nklQIIUQecfv2bcqXLk2DO3coCxzRaLhQvDinz59Hq9VisVj4/vvvOXf2LLVq16Zr167ZfmvQ1CQk\nJOBZsCCvmUx4kVwQb4GzM3/u3//U2hT/dfPmTYp7edHfYqEgyVuhfAns3rfvmbZuPXz4MB9NnMi9\n2Fi69OxJvzffTNNnHR0dTflSpRj5QMG+X/LlY/KiRanWt7BYLLRo3JhrR45QNCGB0y4u9Bs2jA8/\n/jjVfu/evUtMTAw+Pj7odLpUzxfC3nJKUrFPrZLp/dRTjj8pqfAlOamo+pj3SgDbgJ6qqv6Vln5k\nrE8IIfKIw4cPk99mowbgAjSw2bh78yaXLl3CZrPR6cUX+WzECA5+9hlj+vVj6HNsCxoZGcm+ffue\ne7em53Xt2jWcNBq8Uo5dAW+djkuXLqWrncjISJxSEgpI3umoAPBq587MnjULm82W5rZOnz5Ns0aN\nMG3cSKHdu5k0YgT/++yzNF3r6elJPnd3jvwTF3DZYqF69eqpXrt9+3YuHTtGl4QEmgA94uOZPmNG\nqhXFAfLly4efn58kFELkEoqiLAfCgHKKolxWFKWPoigDFEXpn3LKRKAgME9RlMOKouxLrU1JKoQQ\nIo8oUKAAd6xWzCnHRiDebMbd3Z2PP/6YP0NCeNVopDHQPT6ehQsXEvNA3YW0+mzGDCr4+dG1ZUtK\n+/iwffv2DIn/1q1bvPryy5Tx8aFlkyacPXs21Wu8vb3R6HScSTm+BlxNSqJIkSLcvHkzzX2XLl0a\nI/BPj+Ekb5uiCw9n1vjxvD1oUJrbWrpkCVWMRvyBisCLRiNzZ85M07UajYZNISEcKlqUGTody52d\nWbB48VPrXfzj3r175NNo7v/hNwAOGg0JCQlpjl0IkbGsaDP953FUVe2uqqq3qqpOqqqWUFV1oaqq\n36iqOj/l/TdVVS2kqmotVVVrqqpaL7V7kaRCCCHyiBo1atAsKIjlLi5s02hY6uLCkLfe4uDBg3z2\n8cfkU9X7mw/qAb2DA3FxcU9r8hHHjh1j2uTJ9DOZ6H33Lu3j4nilUyesD+xk9CxUVeXFli0J37CB\nllev4rB7N00CAoiNjX3qdTqdjrUbNxKSPz9zXFxYrNfjU6IETRs2xMfbm26dO2OxWFLt38XFhY7B\nwawCpgPLAQVoBXQ2Gvl2wQLMZvNT2/iHoiiojynOl1ZVq1blUkQElyMjuXPvHi+//HKarmvQoAGR\nwBGSE6Ktjo54FynCkiVLOH8+1enSQgjxVJJUCCFEHqEoCstXrWLqd9/RavJkvv7xR2Z8/jk/LVmC\nf2Iid4H9JH/h3AYU8fZ+ai2Fxzlz5gw+Wi3uKcelAUtSEjdu3Hiu2KOiojh58iStkpLwAurbbLgn\nJbFnz55Urw0ICCDi2jX2HTtG9+7dcQwPZ0RiIiOSkji0aVOapx79uHIlY8ePp0jRojgrCq+TPDfg\nn+eAaZ0C1bNXL044O7NHUTgObDAYGPrOO2m69h+KolCoUKGnFtD7ryJFihCyYwdXqlRhef78HNdo\ncLpxg+Vjx1KnenX279+frhiEEM/PXnUqMoN9aoMLIYSwC41Gw6uvvvrQay5ubiQpCj1VlY3ADsDZ\nzY2/d+5M15dWgPLly3PZbCYWcAfOA1qdDg8Pj+eK29nZGbPVShLJoyg2IN5mS/NuUDqdjlKlSnFo\n3z6qm0w4AA5AZaORvbt3p6kNrVbLhx9/zLCRI6lSvjwXbt8m0WbjgLMznYKCcHJySlM75cqVY2dY\nGB9PmsS92Fim9uzJ66+/nqZrn1fNmjU5cOwY740bx9bPP6dtSu2LosCIIUPYvS/VadNCCPFYMlIh\nhBB53Ih33uG4mxtHNBpKAVqDgR9Xr8bb2zvdbVWtWpX3Jk/mO72ehfnyscHVlV/WrUt3cvJfBQoU\noFevXvxkMPAXsFqvx6diRQICAtLVjl/ZslxKiUUFLjs54VehQrraKFSoEKH79uHWti0nq1WjzcCB\nLPnpp3S1Ua1aNVasXs2mbdvo3bt3lu+ydS0qikIPTNfyBE4eP86k998n8YEie0KIzJWbRipkS1kh\nhBBcuHCBb+fPJ8lkonjJkqxasoQEk4nX+/Vj2IgR6f7SGxkZSUREBGXLliV//vwZEqPNZmPhwoXs\nCwvDr1w5hg4blu4ibxERETSoVw9dXBwWVSVf8eLs+usv8uXLlyEx5hSrV69mSM+evGI04kzyRvRa\nQOfsTPGAADaFhOT47YRF3pZTtpTdmfr65+fWRNmXJZ9FhiUViqJogAPAVVVVOzzmfUkqhBAim/vz\nzz/pEBREUEICemCbwcDIDz9kxKhR9g4tw8TFxREWFoZWq6VBgwZpnraU23z+6ad8OGkS8UYj1YAX\nU16f6+zM/mPH8PPzs2d4QjyXnJJU/KHWz/R+mil7suSzyMjpT8OAkxnYnhBCiCy2ZOFC6iUkUBEo\nBbQ0Glk0f769w8pQrq6utGrVimbNmj1zQqGqKot/+IFX2rdnQN++hIeHZ3CUmW/U6NGEbN9OUTc3\nOpA8UqEheZvZ592tSwiR92RIUqEoSnGgLfBdRrQnhBDCPvTOziQ+MO3FBOjy6JP8p/l0+nTGDR6M\ndcMGzixaRL2aNYmKirJ3WOlWo0YN3L28CHF05ALwm5MTfuXKUaZMmVSvvXjxIgF16uBmMFClXDkO\nHTqU+QELkctYcMj0n6ySUSMVXwCjSV73JoQQIocaMnQoR11c2KEo/AVsMRh478MP7R1WtvP5jBkE\nG43UAJrabJQwGlmxYoW9w3rEvXv36NKpE/ldXfH19ubXX3996H2dTseOsDDKdu7MqWrVqNG9O1u2\nb0ejefrXA4vFQqvAQFwPH2ZwQgLlz54lqFkzbt26lZm3I4TIxp57S1lFUV4ErqmqekRRlECS6wEJ\nIYTIgcqXL0/Y/v18OXMmpoQEVr3+Os2aNbN3WNmO1fpwnVoHmy1NRfSyWp/XXuPili30S0zkRnw8\nr3frxh+7d1OzZs3753h4eLBo2bJ0tRseHk7szZs0SKnNUQ04ARw6dIgWLVqkev358+fZs2cPHh4e\ntGrVKtUkRojc6kkVr3OijLiTBkAHRVHaAs6Am6Ioi1VV7fXfEydNmnT/98DAQAIDAzOgeyGEEBmp\nQoUKzP36a3uHka31eeMNVs+fTwOjkVvA/zk5ERwcbO+wHrH5998ZkpiIAXADKpnNbNu27aGk4lnk\nz5+feLOZeMAFMAO3LRYKFCiQ6rVbtmyh60sv4afREANUrV+fX3/77bm3HRZ5244dO9ixY4e9w8jT\nMnRLWUVRmgCjZPcnIYQQuZnVamX6tGn8+ssvFCxUiKmffUaNGjUyvB+TycShQ4dwdHSkVq1a6f7i\nXaxwYdreuEFxkucn/2wwMHzWLPr16/fcsY0bM4Yf5s3Dz2Tiql6Pf1AQP/78c6pb0Rbz9KRlTAyl\nACuw1MWF6QsX0rlz5+eOSYh/5JTdnzaozTO9n3bKtiz5LHLPmIsQQgiRQS5dusTt27epUKECzs7O\nj7zv4ODA+AkTGD9hQqbFEBUVRZP69Um6dQuzquJXuTJbtm9/bDxP8vmXXzK4b18qJyZyR6dD4+ND\n9+7dMyS+aTNm0CgwkCNHjuDn50fnzp1TTShUVeX6rVsUTzl2ALwsFiIjIzMkprRQVZUff/yRLVu2\n4ePjzahRI9M0wiKEeDopfieEEEKkUFWVtwcNYskPP+Cu02HT69m6cycV0ll1OyN0DQ4mesMGmlks\n2IC1ej0vjx3L+w9MJU6Lv/76i23btlGwYEF69eqFi4tLpsSbVg3q1kV3+DBNrFZuAssNBjb98Qf+\n/v5Z0v+kSR/y6affYDRWR6eLwds7lmPHDuHq6pol/YuskVNGKtaprTK9n47K7zmr+F2qHUlSIYQQ\nIptbt24db/XowWvx8eiB/YpCVOXKHDx2LMtjqV6hAnXOnKFEyvEhwDk4mJ9Wr87yWDJSREQE7Vu3\n5sTp0zhoNMz68kve7N8/S/pWVRW93oWkpIGAOwAuLiv55pvx9OjRI0tiEFlDkop/ZVVSIdOfhBBC\niBQnT57E12RCn3JcWVXZce6cXWKpUasWJy5epHhSElbg/5yd6ZNFT/MzU7FixTh07Bjx8fE4Oztn\n6c5PNpsNq9VC8r4yyVTVGZPJlGUxCPGgrKwjkdlkDzchhBAiRYUKFQjX60lMOT6lKJQtXTrN16uq\nyqyZM/Hz8cGveHG++PxznnWUfubcudgqVmSuwcAcvZ4KzZoxYuTIZ2orO3JxccnyrWQdHBxo374T\nev16IBI4iIPDRVq1yvynxULkdjL9SQghcpijR48yuG9frl69SkDDhsz79lvy589v77ByBVVVGdSv\nHyt+/BF3R0eSdDpCduygcuXKT70uLCyM17t143JkJFqrlY6qiiuw0WBg8syZ9HvzzWeKx2azceHC\nBRwdHSlRokSqC6FF6hISEhg2bBRbt26nSBFPvvpqVqbs3CXsK6dMf1qpts/0froo62VNhRBCiIdd\nu3aNKuXLUz82Fh9gv06HS926bN+9296h5Srnzp3j1q1bVK5cOdWFzVFRUVQuV45WcXH4AnuBU8AA\n4DRwq1EjQnbtyvSYhRD/kqTiX1mVVMiaCiGEyEF27dqFt81G7ZTj1klJzNi7l7t375IvXz67xvYk\nqqpy9OhRbt68SY0aNShYsKC9Q0pVmTJlnviezWZj6pQpLPr2W5ycnGjTqRPFNBoqprzfBNgHxAN3\ngXzu7pkfsBAiR7LmojUVklQIIUQOYjAYiFNVVEABEkguaubk5GTfwJ5AVVVe79GD39ato6CjI7eA\n37ZupU6dOvYO7Zl9+sknfDd9OkFGIyZg/pw5OCsKFpL/qN4DEoEw4JSLC9s/+sie4QohRJaQpEII\nIXKQli1bUsjPj9VnzlDUZOKkiwsjBw/OtknFmjVr2Pnrr/Q3GtEBx4DXunTh9IULjz3/7t27nDhx\ngsKFC1OmTBmsVit79uwhPj6eevXqZYsiZcsXL6aZ0Yh3ynGDxETOFCvGsjt38E5M5IyjI4H+/vjX\nr8/3vXrZpcaFECJnkJEKIYQQdqHT6dgRFsbcuXO5fPEifRo3pmvXrvYO64nOnz+PT1ISupTjssDG\niIjHnnvw4EHatGiBq83GLbOZnq+/zskTJzhz+DBuGg23tVq2795NxYoVH3v981JVlZCQEM6cOUOl\nSpVo3rz5Y89zcXEh7oFjo0bDix060KBxYy5fvkzt2rWfeK0QQuRWslBbCCFEpvn99995/aWX6Bkf\njwvwl6IQU6UKB44efeTcMiVLUvPyZaqQPK3rK52OIorCq4mJOJBciC62Th3+3LcvU2IdOXQoP33/\nPb5WKxcdHOg9eDDTZsx45LyQkBA6d+pELaORJI2G066u7D10CD8/v0yJSwiRfjllofYitUum99Nb\nWSm7PwkhhMj5Jo4fz/8+/xxXR0cM+fMTsmPHIwuhVVXFUatlnM12fwh9voMDlaxWGqYc3wRWFy7M\n1evXMzzG8+fPU7tKFQaaTDgDRuArvZ6TZ89SvHjxR87ft28fK5YvR6fX03/AAEqVKpXhMT2vQ4cO\n8ccff1CwYEG6deuGs7Nz6hcJkUtIUvGvrEoqZPqTEEKITPXR1KkMGzmS27dv4+vri6Oj4yPnKIpC\nGV9fjl+4QA2Sd06K02o55ehI7ZQK14e1WmrVqpUpMcbExFBQp8M5pbKyAciv03Hjxo3HJhX16tWj\nSpUqbNq0idDQUPR6PUWLFs2U2J7FL7/8Qr+ePalksXDb0ZE5//sfofv3P5RYmM1moqOjKVy4MHq9\n/imtCSEyizUXfRWXkQohhBDZwrFjx2jVtCnapCTuJCXx1tChxMfH892336LTaildujSb//gDT0/P\nDO/77t27lPH1pfHt21QEjgN7ChXiwuXLGAyGR86PjY0loE4drNHROANXNBp2hIZSpUqVDI/tWRT3\n9CQoJoYSJO8OtspgYOTs2fTt2xdILtbX6cUXsSQlYVFVfli2jODgYLvGLERGyikjFQvU7pneT19l\nuYxUCCGEyDuqVq3KhStXOHv2LB4eHnh7J++vNHnKFOLj4/H29kaj0WRK3/ny5WPz1q10fekl1l65\nQhlfX35fs+axCQXAF//7H/orV2ifmIgCHFAUhg4YwB+hoc8cQ1xcHKtXryY+Pp6goCBKly79zG3d\nuXcPj5TfFaBAUhK3bt0CwGQy0bFtW1rFxlIOiAR6v/Yadc+ceeyojBAi88juT0IIIUQmcHZ2plq1\nag+9VqBAgSzZSrZWrVqcvXQJVVVRlKc/1LsaHk6RlIQCwFtV2RkZ+cx9x8bG4l+rFg7XruFqszF+\n9Gg2hYRQv379Z2qvedOm/LFtG82SkrgJnHB0ZFazZgBcuXIFjcVCuX9iB7wdHTl16pQkFUKIZ5Y5\nj3yEEEKIHCq1hAIgsEULjqVsLWsB9un1NG7a9Jn7nDt3LoarV+kSH0/bhASax8czdODAZ25v8Y8/\n4t28OXOcnPitcGHm//ADtWsn12H38vIi3mIhJuXcOCA6KYkSJUo8c39CiGdjxSHTf7KKjFQIIYTI\n81RV5dKlS1gsFvz8/FKdZtWjRw9OHT/OZ59/jqqqtAkM5Isvv3zm/qMjIvBISrp/XAQ4GBPz5AtS\n4e7uzrpNmx77npubG3O/+YZhgwfjo9USYbEwaswYypcv/8z9CSGELNQWQgiRpyUmJvJS+/bs2b0b\nB0WhTIUKbP7jD9zd3VO91mq1YrFYnrui+YYNG+jXtStdjEZcgY16PXW6dGHBDz88V7tPc/78eU6c\nOEHp0qWzzQJzITJKTlmoPUftm+n9vKUsyJLPQqY/CSGEyNNmfPIJl3bvZkhCAoONRqwnTjB6xIg0\nXevg4PBQQhEfH8/y5ctZsGABV65cAWDTpk283K4dr778Mnv37n1sO+3atWPshx+yyNmZz7VayrZq\nxex5857/5p7Cz8+PDh06SEIhhB1ZcMj0n6wiIxVCCCHytOAXX0SzaRP/LA+/CJysVo19f/+drnZi\nY2N5oXZtlOhoDKrKBY2G8R98wLT336dRQgJJQJjBwNadO6lTp85j2/jn72Ra1nUIIZ4sp4xUzFT7\nZ3o/w5X5MlIhhBBCZLaKVatywckJG8k1Hc45OlKhUqV0tzN71iwMV67QJT6e9kYjjePimPbBB7RM\nSKAm4A/4G43MnTXriW0oiiIJhRB5iBVtpv9kFVmoLYQQIk97b+JEtm/dyndnzqBVFFw8PVkze3a6\n24m8epXCSUn3t5ktSnLV6gcnHzgAVoslA6IWQojsRZIKIYQQeZqLiwt//vUXhw8fxmq1UrNmzWda\neN28VSuGLltGRaMRAxCm11O3bl1CDh7EYjRiBvYYDPw6eHCG34MQImeS4ndCCCFELqLVaqlbt+5z\ntfHKK6/wf6dOMWXKFCxWK+1btmTxjz+ybt06Fsydi9bRkZ8nTqRRo0YZFLUQQmQfslBbCCGEyECq\nqmKz2XBwyD1PIIXIaXLKQu1p6vBM72ecMlMWagshhBBPoqoqH02ejLurKy56PQP79cNsNts7LBRF\nkYRCCJHnyPQnIYQQOdLiH37gmxkz6G00ogN+Xb6cDz09+WjqVHuHJoQQaZKVdSQym4xUCCGEyJE2\nrVtHHaORgoArEJCQwG/r19s7LCGEyPYURVmgKMo1RVGOPuWc2YqinFUU5YiiKDVSa1OSCiGEE81A\nXQAAIABJREFUEDmSZ9Gi3ND+O+AeoygU9vS0Y0RCCJE+dqxTsRAIetKbiqK0AfxUVS0LDAC+Tu1e\nJKkQQgiRI42fOJGLBQuy1tmZjXo9Ya6uTP/iC3uHJYQQ2Z6qqruB2085pSOwOOXcvYC7oihFntam\nrKkQQgiRIxUtWpSjJ0/y888/Y7FYaNeuHSVLlsyy/pOSkli0aBGXL1/mhRdeoF27dlnWtxAid8jG\ndSqKAVceOI5Iee3aky6QpEIIIUSOVahQIQYMGJDl/VqtVoKaNSPq8GG8jEYWGAwMHjOGiR98kOWx\nPK87d+6wZcsWVFUlKCiIAgUK2DskIUQOJEmFEEIIkU7bt2/nwt9/09toRAPUMRr5+OOPGT12LHq9\n3t7hpVlERAQv1K5N/vh4AN4xGPjr4EGKFy9u58iEyBsyY6QifMclwneEP28zEYDPA8fFU157Ikkq\nhBBCiHSKjY3FXVHuL0x0ARwUBaPRmKOSignvvkvpmzdpZrEAsD0hgffGjuWHZcvsHJkQ4lmVDPSl\nZKDv/ePdk3c96VQl5edxfgWGACsURXkBuKOq6hOnPoEkFUIIIUS6NWjQgAjgGFAC2K/VUqlixRw3\ndehqeDhFUxIKgKJWK1cvXbJfQELkMfZaU6EoynIgECikKMpl4ANAB6iqqs5XVXWToihtFUU5B8QD\nfVJrU5IKIYQQIp28vLzYvG0bb/bqxY7ISOrVrcsvy5ejKE966Jc9BbZsyeKDByllNKIAhwwGXmvV\nyt5hCSEymaqq3dNwzlvpaVNRVfXZI0pPR4qiZlVfQggh0mbVqlVMHDMGY0ICr3TtyvTPPsPR0dHe\nYYksYrFYGNivH4uXLgWgR7dufLtwIVqtPHMUOZuiKKiqmq2zfEVR1FHqR5nez+fKxCz5LCSpEEKI\nPGrXrl0Et2lDO6MRNyDEYKB9//58JrUe8hyz2QwgCaXINSSp+FdWJRVS/E4IIfKodatXU8NopDRQ\nGGhuNLJ65Up7hyXswNHRURIKIezAjhW1M5wkFUIIkUe5ubsT98A0l7uAi4uL/QISuU5oaCg+PqVx\ndHSievW6XLx40d4hCSEyiUx/EkKIPCo6Oppa1apR/M4dXCwWjuj1LFm5UipDiwwRHR1N2bKViIsL\nAkqj0RzAx+ciFy6cRqORZ5oic+WU6U9vqzMyvZ8vlTFZ8lnISiwhhMijvLy8OHT0KN999x1x9+4x\nLTiYF154wd5hiVziwIEDODh4AxUAsNkCuH59H1FRURQrVsy+wQkhMpwkFUIIkYd5eXkxYcIEe4ch\nciEPDw8slpuAGXAE7mK1mnB3d7dzZEJkH/aqU5EZZPxRCCGEEBnO39+foKAmuLgsRaf7HYNhCZMn\nf4irq6u9QxNCZAIZqRBCCJEjWSwW3n/vPdavXk2BggWZMWuWTN/KRhRFYdWq5axdu5ZLly5Ru3Zt\nmjRpYu+whMhWLLlopEKSCiGEEDnSiLffZsvixTQ2GrkJtGnRgr8OHqR8+fL2Dk2k0Gg0vPTSS/YO\nQwiRBWT6kxBCiBxp2bJlvGg04gPUAComJvLrr7/aOywhhEgzqVMhhBBC2JnO0ZHEB44TtVp0Op3d\n4hFCiLxMkgohhBA50nsffMBqg4H9QIhWS5SbG927d7d3WCIDLV26DH//xjRs2JzNmzfbOxwhMpwV\nh0z/ySqypkIIIUSO9PbQoRQrXpz1q1dTvnBhVo0ZQ+HChe0dlsggS5YsZeDAURiNzQALL73UjY0b\nV9O0aVN7hyaEeAypqC2EEEKIbKdu3YYcOFAC+Gfh/X5eeSUfq1Ytt2dYIofIKRW1e6rzM72fJUr/\nLPksZPqTEEIIIbIdBwctYHngFQtarUywECK7kn+dQgghhMh2Jkx4hy5depGQkABYMBj+YuTIEHuH\nJUSGkoraQgghhBCZqF27dqxbt4JOnQx07lyIHTtCqFu3rr3DEkI8gaypEEIIIYQQuUpOWVPRRV2U\n6f2sVHrLmgohRPpFRUXR/uX2+Jb3Jah9EJcuXbJ3SEIIIYTI5SSpECIXMZvNNGvdjNjyd2izphWW\n+mYCWwZiNBrtHZoQQggh/kMqagshsqWzZ89yO/42TT5uROFKhWkwvj64wdGjR+0dmhBCCCFyMUkq\nhMhFDAYDprsJWBKSt2G0Jlkx3jZiMBjsHJkQQmRPs2bNJl++gjg5GXj11Z6YTCZ7hyTykNxUUVsW\naguRi6iqSo/ePdh3YS+lg0sRvukyZd3KsX71ehQlW69XE0KILLd+/XpefbUfRmNnwAW9fiO9ejXm\nm2/m2Ts08ZxyykLtTuqPmd7PWqVblnwWUqdCiFxEURSWfL+EBQsWcOT4Edp36sjAAQMloRBCiMfY\nuHEzRmMNoDAAJlMjNm363b5BiTwlN9WpkKRCiFzGwcGB/v372zsMIUQ2dunSJdavX4+joyOvvPIK\nHh4e9g7JLry8PHF03IfZ/M8rMXh4FLJnSELkWDL9SYhsZs2aNUz+ZBJGYwI9uvZg4viJaDSy/EkI\nkTH+/vtvGjZsitlcFo0mCTe36xw+vB9vb297h5blbt26RY0adbl50xWr1Rmt9gy//76RgIAAe4cm\nnlNOmf7URv0l0/v5TXk5Z0x/UhSlOLAYKALYgG9VVZ39vO0KkRft3LmTvoP70nphKwweBha9tQhF\nUXj/vfftHZoQIpcYPnwscXEBQHJ1arM5hKlTpzNnziz7BmYHBQsW5NixQ6xatQqj0UibNm0oW7as\nvcMSIkfKiOlPFmCkqqpHFEVxBQ4qivK7qqqnM6BtIfKUlatXUmtkTcq09gOg+ZeB/PjmckkqhBAZ\nJiYmBqh2/9hiKURU1HX7BWRn7u7u9OvXz95hiDwqK+tIZLbnnlOhqmq0qqpHUn6PA04BxZ63XSHy\nIheDCwnXE+4fx12Lx9lZtoMVQmScDh3a4uwcBsQBtzAYDtCxY1t7hyWEyOEyND1SFMUXqAHszch2\nhcgrhgwcwsIXFqLaVJwL6zk08whLvlti77CEELnIhx9+QEzMDZYu/Qqt1pExY0bTs+dr9g5LiDwp\nN+3+lGELtVOmPu0APlJVdd1j3peF2kKkQXh4OF/P/xpjgpEuL3ehQYMG9g5JCCGEyFFyykLt5uqG\nTO9nm9IuZyzUBlAURQv8DCx5XELxj0mTJt3/PTAwkMDAwIzoXohcpWTJkkz7eFqW9xsREUGfAX04\n+vdRSvuVYsFX31OxYsUsj0MIIbIrm83GunXruHz5MnXr1pVdorKRHTt2sGPHDnuHkW4yUvHfRhRl\nMXBDVdWRTzlHRiqESIekpCSmTp9K2P4w/Er60bJpSxYsXYDVZmXwG4Pp0KFDhvVltVqpWrsqnh08\nqPZGVc7/doGDUw9z5vgZ3N3dM6wfIYTIqVRVJTi4C9u27cds9sbB4f+YOvUDhg17296hicfIKSMV\nDdXML7a4W2mVJZ/Fcy/UVhSlAdADaKYoymFFUQ4pitL6+UMTuUVcXBw3b95Eksr06dG7Byv2rCB/\nn3zsitxJ9z7d0XbQYOiqp8/gPqxZsybD+goPD+f6zes0mtyQ/L75qT2oFvl83Th06FCG9SGEyHn2\n7dtHnToB+PiUoW/fgRiNRnuHZDe7d+9m69ZQ4uJ6kpgYhNH4GqNHjyExMdHeoQmRLTz39CdVVUMh\nF43diAyjqirDRg1j/tfzcXB0oHbd2qz/Zb08+U6DO3fusHH9RoZdfwtHZ0dOrT5N8+lNqd47eRtI\njaOG2fNnExwcnCH9ubq6knA3gcTYRPT59ViTrNyNuoerq2uGtC+EyHkuXrxIs2ZBxMc3BaqzfHkY\nt2/3YfXqFfYOzS5iYmJwcPDg369O+dFotNy9e5fChQvbMzSRg8mWskKkwaIfFrFu1zrejhjMiFtD\nSfA18taIt+wdVo7wz6iOoij3//fBkR7VpqJRMm4k09PTkzfeeIOfmq7izym7WRX0C3Wr1aV27doZ\n1ocQImfZsmULNlsZoDrghcn0IuvXr82zo8716tXDar0CnAPMaDShFCtWHA8PD3uHJkS2kHvSI5Ht\nhO4NpVLvCjgXcAag5ts12N5jp52jyhkKFChAq9at+LXrBqr2r4Jqhj/Gbkej1eDgpGX3uFAWfrUw\nQ/uc/b/ZNFzZkENHDlG2R1l69+6NRpM7njtERETw559/4urqSqtWrdDpdPYOSYhsz2AwoNEkPPBK\nPI6OefffTvHixVm/fjXdur3OjRtRVK5cg3Xrfrv/8EeIZyELtZ+lI1moned8PO1jVhz6iY4r2qNo\nFPbNOoBli4Wtm7bZO7QcITExkUlTJrFn/x5KlShFhzYd+OGnH7BarQx6YxBt20qxqrQ4cOAArdq2\nokRjH+5evYenzpMdv+9Ar9fbOzQhsrW4uDiqVatNRIQbSUkeGAx/8/77Ixk7drS9Q7M7VVUlmcjm\ncspC7Xpq5j9s3ac0yZLPQpIKkWmMRiNNWjbhRlIMhkIGbhy/ya5tuyhfvry9QxN5SO2A2pQYUpyq\nPaqg2lRWd1rLgBYDGTp0qL1DEyLbu3PnDrNmzSYyMprWrVtm2DouITJbTkkqaqu7M72fg0rDnFOn\nQojHMRgMhG4PZefOnSQkJNCwYUMKFixo77DSTFVVDh8+TGxsLLVq1XqmBebXrl1jwfcLiIuPI7hj\nMHXr1s2ESMXTREZEElDfHwBFo+Dp78nVyKt2jkqInCF//vx88MH79g5DCJEDSFIhMpVOp6Nly5b2\nDiPdrFYrXV/rwp97/8S9mDuxF++ybfM2qlSpkuY2oqOjqeVfi2JB3jh7OfNVu69YtnCZTFvKYgEB\nAez79AAt5zQn/lo8pxefYcSnTyypI4QQQmSZ3LSmQpIKIR5j2bJlHL58mL6n+qB10nL4uyP07v86\nB8IOprmNeV/Pw6ddcYLmJidV3vWKMm7SOEkqsti3c78luGswn7r+D4CJ70/M0MKBQgghRE6TUlNu\nJsk7wS5QVXX6f97PBywFSpBcOuJzVVUXPa1NSSqEeIxz589RrHkxtE7J/0TKtPUj7L096Wrj7r27\nuPq43D92L+FOXFxchsYpUlewYEF2huwkPj4eJycntFr5z54QQojswWKHkQpFUTTAHKA5EAnsVxRl\nnaqqpx84bQhwQlXVDoqieABnFEVZqqqq5Unt5o79IoXIYDWq1+Di2osk3E5AVVWOLjxG1epV09VG\np/adOPLlUcJ3hnPjzE22j9hJcAdZ5GgvLi4uklCIPEtV1WxfXyIxMZF58+Yxbtx4Nm7caO9whMjN\n6gFnVVUNV1XVDPwEdPzPOSrglvK7G3DzaQkFyEiFeIqTJ08SHR1N1apV81y10ODgYP7c8ydflZqP\nIb+B/C752frb1nS1ERgYyLwv5jFhyASM8Ua6vNKFaR9Ny9A4jUYjv/32GyaTiebNm+Pl5ZWh7Qsh\ncjZVVZk8+SM++WQ6VquFzp27snDhtzg5Odk7tIeYzWYaNWrG8eO3SUgogsHwPePHD+O998Y9U3vx\n8fHMmTOH8PCrBAY2onPnzmneAtZqtaKqqjyEEFnCThW1iwFXHji+SnKi8aA5wK+KokQCrkDX1BqV\nLWXFfWazmcTERFxdXRn+znAWL19M4bKFiTl1nbU/r6Nx48b2DjHLXb9+nbt37+Lr64vZbGbr1q2Y\nzWaaNm1KgQIF7BpbbGws9Ru/gM3Dhr6AnojQCHZs3UnlypXtGpcQIvtYunQpAweOIz7+FUCPs/Ov\nvPlma2bN+tzeoT1k06ZNdO36FnFxPUmeRHEXrXYOCQnx6f5yn5iYSJ06AZw7Z8Fk8sJgOMGwYX2Y\nOvWjp15ns9l4++3hzJ//Daqq0rlzV374YYEUy8yhcsqWshXVQxnebvyOAxh3HLh/fGPy/Ic+C0VR\nXgaCVFXtn3L8GlBPVdWh/zknQFXVUYqi+AEhQDVVVZ84j1vScAHAtBnTmPTBJBRFoVylckTfiqbf\nqT7o3fWc23yerq91JepylL3DzHKenp54enpy+/ZtGgQGYHa3oHPVcXvEbUJ3hFKqVKknXnvq1CnW\nr1+PXq+nR48eFCpUKM39ms1mdu3ahdFopEGDBo/divez/32Gcy1n2n7fGkVRODDvIENHD2WbFBcU\nQqTYsGEL8fE1gPwAJCTUZ/Pm9I26ZoW7d+8C+fh3VrYroGAymXB1dU1XW1u2bOHSpVhMptcABaOx\nGp9+OoPJk9/H0dHxidd9+eUcFi3agMUyHHBg3bq1fPDBh0ybNuXZbkqINMiM3Z/0gf7oA/3vH9+Y\nPP+/p0SQvAD7H8VTXntQH2AagKqq5xVFuQhUAA7wBLKmQrBp0yZmfTuLQecGMDpuJM7+Ttgcbejd\nkysO+wWV5nrkdZKSkuwcqf1MmzENl3ouvLqzMy9v6kSlQRUZMXbEE8/fvXs39RvXZ23kahbtW0j1\nOtW5fv16mvpKSEigcYvGvDH6DcbOGUvFahU5ffr0I+ddjbpKkXqe94f0vet5ExUV+Ww3KITIlYoV\n88LR8cYDr1yjSBFPu8XzJI0aNQIuA8eAOzg4bMHDowjfffcdRqMxXW0ZjUYUJTkpSeYMkOrfsM2b\n/8BorAkYACcSEuqwZYs8pBG50n6gjKIoJRVF0QGvAr/+55xwoAWAoihFgHLAhac1KkmFYHfYbiq8\nVo58xdxQNAovjPXnXuQ97kbcA+DYkuP4lvXN00PAl65ewrtB0ftf4Is38Oby1ctPPH/0hNE0+zKQ\nFjOb025pW4q19Wbm7Jlp6mvO3DncK3CXXgd68MqWYGq/W5OBwwY+cl5gw0D+/uoY8dfjsSRa+POj\n3RT39nm2GxRC5ErvvjuGwoWjcHH5BWfnDbi5hfHll5/ZO6xHFCtWjK1bf6NixXM4O3+Pqh4nOroE\n48Z9T716DTGZTGluKzAwEEW5ChwCrqPT/UZAQGNcXFyeel2JEsXQaq/dP9Zooihe3PsZ70iItLHi\nkOk//6WqqhV4C/gdOAH8pKrqKUVRBiiK0j/ltClAgKIoR0me+jRGVdVbT7sXmf4k8Cnmw7Vfr6Pa\nVBSNwtU9EXgW8eTbSgtw83BDY9Gwef1me4dpV41eaMTMb7+gfHA5HJ0dOfzl3zR+ockTz799+xZV\nyla8f5y/nDu3zj713+J9F8IvUCzQG0WTnMCUCPTh97mPPi3r0b0Hb498m1k+cwAoGViCvQf3cuHC\nBUqXLp2e2xNC5FKFCxfm5Mm/WbNmDYmJibRt2xYfn+z58MHf35/jxw/h7OyKzdYfKIDJpBIe/iPr\n16+nc+fOaWrHy8uLXbu20a/fYCIijtKwYQDffjsv1esmT57I+vX+3Lv3M6rqgJNTNF98EfqcdyVE\n9qSq6mag/H9e++aB36OAoPS0KUmF4I033mDpyqUsfeFH3H3ycfnPy/y2fjNly5YlJiYGX1/fx+4U\ncvr0abZt20b+/Pl5+eWX0ev1dog+awwZNIQTp04ws8iXaDQaWrZuyfQp0594frs27Vk/bj1tvm+F\n8UYCh2ce4e0vh6Wpr/p167Np1kaqvV4Vp3xOHJ77N/Xq/ndTBrh27RoaBw3vxo/GZrWhddKypt06\njh07hru7O0uXLsVoNNK+fftUK4GbzWYcHBzQaGTwUojcxt3dnd69e9s7jDSxWq1YLGb+3clSQVXz\npbvGT/Xq1dm/P30JgZeXF6dOHWXTpk1YrVaCgoIeu/NhYmIiGo3mqeszhEgre9SpyCyy+5MAkr9U\nhoSEcPfuXWw2G+++/y4xUTHUb1Sf5YuWP7JVaUhICJ27d6Z8cDnuXIjF5Z6B3dtDMRgMdrqDrJGQ\nkIDVak114aDZbGboyKGsWLECvbMTE8e/z6ABg9LUh6qqDH9nOPO//gYHnZZq1auxYfWGRxZrJyYm\n4lHEg247u+JVvQgJtxJYWH0xKxatoPebvSncwANnTz0nFp9i7aq1BAYGPtLXvXv36P56NzZv2ILW\nUcuEiRN479330vx5ZAeRkZFM+WQK0THRBDULon+//mneOlIIkf00b96G3btvkJQUAETi4rKV48cP\n4+vra9e4TCYTXbr0YNOm9SiKwsCBg5g9+wv57002lVN2fyqpnsr0fsKVilnyWUhSIR5y7tw56tSv\nQ7sf21KsnjehU/Zg3Wtjz86Hq0mXq1KOOp/WokwbP1RVZXXHdQxpPYTBgwfbKfLcJy4uDpPJRKFC\nhZ74R+unlT8xcMhAfPyLE/V3NP1e74ejgyNbrm+m9VetADj58ynCZ15h/+79j1zf+83X+Tvhb9p8\nF0R8jJGVLX9m3rR5BAfnjCJ9N2/epFrtapTq4otH1UIc+t8RenXoxZTJsluLEDlVbGwsffr0Z9eu\nXXh6FmHBgq+oX7/+Y881Go3s3bsXrVaLv79/pq79e+ut4SxYsA2TqSNgxmBYyeefj2XgwEfXvAn7\nyylJRXH1bKb3c1UpmyWfhUx/Eg8JDQ3FL6g0pVskb5Xa9JMmTHf+DJPJ9ND0phvXY7DZVK4du45n\n5cIUqlaA6zFp291IpI2rq2uqIyKvdnmVenXqcezYMUqUKEHNmjUZMmwI7mXc759TsExB/r5z7LHX\n79i1kzZrWqHVa3H3yUeVfpX4Y+cfOSapWLt2LYXredBsRiAAvk1L8kWlL/ho0kfy9FCIHMrd3Z3V\nq1ekel5kZCQvvNCI2FgFm81MqVKFCQ3djpubW6rXPos//tiJyVQXcAQcMRqrERKyU5IKIVJIUiEe\nUrBgQW6euYXNakPjoOHWuVs46hwfWlMRERGBDZWQESFYk6wU8CvA3TP3+GjZx3aMPO8qXbr0Qwuz\n27dpT88BKynZpAQuRVz4893dtG/b/rHXenl5EXUwmsKVCqOqKjEHb9C8RrGsCv25WSwWHPT/zkfV\n6rXYrDY7RiSEyCpvvz2SqKjiWCzNAJX/+7/1fPjhx3z66SeZ0l/x4sU4cyYSm60kADpdNKVKPXnD\nDiHSIjPqVNiLTH8SD7FYLAS1DyI8PpwitQtzetX/MW3SNPr363//nE5dOnG73C2aTGmE1WxlWcsf\nqeflz8qfVtoxcvuxWCxM/ngy6zauo0D+Anwy+ZMnDtVnlW8XfMukKZMwJZjo0rkLsz6f9dhpAQcO\nHKBV21aUaulLXFQcujtOhO0My7QnfRktIiKC6rWrU+fdWhSuVpi9H++naYWmfDP3m9QvFkLkaFWr\n1uH48aqAb8orf/Pii7Bhw+pM6e/s2bP4+zfEbPYCkvDwsHLw4F+PLU4q7C+nTH8qqj619EOGiFJK\ny5oKYR8Wi4UVK1YQFRVFQEAAAQEBD71fvlp5Gi9qSNFayYu3D8w7iNff3nz/zff2CNfuRowewfp9\n62k0NYBb5++wc9Qu/vrzLypUqGDv0NLkypUrbNu2DYPBQPv27XF2drZ3SOly6tQpxk4cw7WY6wQ1\nD+L98e+j1cogrBC5Xb9+g1i6dB+JiS8CNgyGn3nvvd6MH/9upvUZExPD1q1b0el0tG7dOtXaF8J+\nckpS4amGZ3o/15WSklSI7Onlbi9z3SeawOlNsCZa+aXdGgZ3GMKwoWnbMjW38SjqQbewrhQolR+A\nrSO20d6zI+PGjbNzZEIIkXvdu3ePoKD2HD58BFW10Lp1G1atWi5bvQpAkooHZVVSIY/zRLrNmzmP\nZq2b8d2a7zHFJVKtcjVQYcuWLbRq1SrPLZDVOelIjE28f5wUa8bJ59G6HkIIITKOm5sboaHbiYyM\nRPv/7J13eExZG8B/d2bSJk2IkEqUqNF7jd47qxNWjc5iWeyydtVd3a7OKqv3Fr2tFqIGIVgkEmlI\nmWTq/f4Yq3wimWQjwd7f88zzmJPznvPekdy573mbQkGePHkytE5CQgJRUVG4ublJBolElqM3fDk5\nFVKnK4l0kydPHq5evMrhHUfo2aUnt+/f4s87G+g9ojeDhg/KbvWynPFjxrOr3W4u/x7I0W+OEXY4\njK5du2a3Wl88ycnJDBk5hBLlS1CvaT2uX7+e3Sp9NAwGAytWrGDYyGEsWbIEnU6X3SpJSHwSCIKA\nq6trhg2K5ctX4OiYh5IlK+Ls7EFgYGAmaygh8d9BCn+SyDBRUVHkL5Sf/nf7YJPHBnWcmuXFVnH6\n8GmKFy+e3eplKdu2b2PX/l3kypGLUcNH4ebm9s7Pjx49ysp1KzE3M2eY3zDKlCmTTZp+OXTq3pGb\n8TepPL4SEYERnP/+ItcuX3vvs//cEUWR7r27c+7uWTxbe/Jo/2NK5i7J9k3b/3NeQYlPB1EU2bt3\nL3fu3KF48eI0bdo01d/HxMREhg4dyYkTZ3B3d+W33+ZRrFixLNT4fW7fvk358tVISuoGOAI3yZ37\nLM+ehUp/W18An0v4k706/KPv89LCWQp/kvi0iY6Oxs7JDps8xl4KFnYW5PTMSVRUVDZrlvW0a9uO\ndm3bpfizvXv30qNvD6pMqoQ2QYtPAx9OHD4hGRb/Ar1ez/bNOxgZMwxzG3NcK7kQfjqCQ4cO0bt3\n7+xWL1N59OgRe/ftYeDf/TFTmlFpaAWWea0kKCiIkiVLZrd6Ev9RBg4cwtq1O1Crc6BQRNCjR0eW\nLl38wflt23bk5Mkw1OrqPHwYSrVqtbl7N4jcuXNnodbvcv36dRSK/BgNCoCSvHx5gJiYGBwdHVOR\nTB8ajYY7d+6gVCopWLCgZLBIfLFI4U8SGaZAgQLItDKurriGXqvnzo5gnofE4u3tnd2qfVJMnzud\neovqUGFgeaqOrkKFb8qx4PcF2a3WZ41MJkOukJP8Vi6L+rn6nX4qXwqJiYlY5VCisDKeASksFFjn\nsiYxMTGbNZP4r3L//n3WrPkDlUqHXh+HWm3DsmUrCAgISHG+SqXi6NFDqNXNAVdEsTJ6vTPHjx/P\nWsX/D09PT/T6UED1aiQUhUKOg4NDpu3x9OlTihb1pnr1JpQqVYm2bTui1+szbf2s5OTJk8yfP599\n+/YhRZ5kHnqd4qO/sgrJUyGRYSwsLDi07xAdunZgX78DeBTyYO/OfVLN7v9Dq9VipnxRww+WAAAg\nAElEQVST/GdmbYZWp81GjT5/BEFg9JjRrGy8gtKDShEZGIX6oYaWLVtmt2qZjpeXF3bmdpyZ/BfF\nOhfj3s57EI9kvEtkG7Gxsej1csADaAYIwCEmTJiMv//e9+YrFIpXp/MajI8dIpD0ziHAlStXuHz5\nMh4eHjRo0CBLTvMrVarEgAG9+P335ZiZ5UWrDWPTpvXI5ZmXOOvr24/Hj13Q62sDOg4d2syyZcs+\nuy7cU6b8xIwZ89DrC6FQPKF9+0asXr08u9WS+MSQciokMgWDwYBM9uU7vkJCQggLC6N48eImu+2X\nr1zOhOkTqDvPB02ChqNDjrP9z+3UqVPnI2v7ZSOKIuvWr+PoySM453Fh9MjRX6xBGxoaSr/Bfblx\n4yZFixZl6cKleHp6ZrdaEv9REhIScHBwRqdrDPwTghdC2bIhBAaeS1Fm+PBvWLZsCyqVNxYW4Xh4\nqLl2LQArKyuWLl3GiBFjgUIIwlNatqzL+vVr3jEstFotjx8/JleuXOTIkSNV/cLDwzl8+DAWFhY0\na9YMGxubVOffuHGD0NBQvL29Mz0ny9W1AE+fNgGcXo2co29fT5Yu/S1T9/mYxMbG4uzsjkYzELAF\nNCiVSzl79gilS5fObvU+yOeSU2H1Mvaj75Nkn1PKqZD4fPgvGBSTpkxi/sL55C6cm+i70WzduJV6\n9eq9MycsLIyp06fyLPoZTeo3oU/vPvTp3QdBEFg2Yxnm5uZsWLXhP2tQqFQqvhn3DSfPnMTF2YV5\nM+dlOKlfEAS6d+tO927dM1nLTw83Nzf27zyQ3WpISABgY2ND//69WLx4N6LoBciwsLhK7dqNPigz\nZ84sSpcuwZEjJ/H0LMeYMd9gZWWFWq1m6NBhqNV9gFyAht27V3L27FmqV68OGBOq69ZtRHx8Mlpt\nIj/8MIlx48amuE9QUBDVq/ug17sBahwdJxIYeCHVkCZvb++P5vkrWrQIz57dQa93AnQolQ8pVar5\nR9nrYxEbG4uZmTUaje2rEXPMzBz/k/mTEqkjeSokJEwgICCAJu2a0PNyN6xzW/P38b/Z1+kgUeFR\nrw2q6OhoSpUvRcHOnuQqkYvLv1yhd9veTJ40OZu1/3Ro81Ub7oshVBxdgacXn3Lpp0BuXLlB3rx5\ns1s1CYlPlvDwcC5cuECuXLmoXr36J3GIo9Vq6dy5O7t370YQBHx86rBz5xasrKzStU5kZCQeHoVQ\nq0e9HrOz28HKlRNp185Y/KJw4eLcv18QUawAxKFU/sHhw7uoVq3ae+vVrt2A06fNEcVKAJib72PY\nsLrMnDk94xebAUJCQhgwYCghIQ+IiopEJlNiMKipXbsau3dvQ6H4fM50tVotHh4FefasFKJYFgjB\n1vYQDx4EZ2pCe2bzuXgqzGNefvR9NLnss+SzyP47k4TEZ8C9e/fwqOqOdW5rAPLXyU+SKomXL9/c\nDLZv306eak7Ume5Dqe7etNnVijlz5mSTxp8earWafbv20XxtU1wruVBxcAVcq7tw9OjRVOX0ev1n\nm9goIfFvOXv2LF5eJejZcxJNmnSiRYu2n8Tfg5mZGVu3buTZszCePn2Mv//edBsUALlz5yZPHicE\n4QJgAB6h0/1NhQoVAGNo7f37wa8eZgHsEMWCXL16NcX1nj6NQBRdXr/XaPLw+HFYuvX6N8TGxlK1\nak2OH9fz6FFN9HpPvLzcCQg4yb59Oz8rgwKM/9cnThzGy+sxMtk0XF0v4O+/95M2KCSyB8mokJAw\ngRIlSvD36Ue8fGw0Iu7sDMbewf6d2F6dTofc8k2Cn8JSLjUpewu5XI4ggDrOWLFJFEWSXyR/sGKT\nVqulZ5+eWCmtUNooGf7NcAwGQ1aqLCGR7XTp4ktCQkPi4tqRmNibkydvsGXLluxW6zV2dnYkJSVl\nuBqZIAgcOXKAggX/RhCmYm+/m61b/yRfvnyAMbTWyckFuP9KQo1MFkrBggVTXK9+fR8sLS9gTApP\nQKm8RsOGdd+Zo1KpWLVqFXPmzOHGjRsZ0js1Tp06hUaTE4OhGuCGWt2MGzeu4urq+tmWky1SpAh3\n7lxHp9MSGvqAqlWrZrdKXww6rfyjv7KKz8tclpDIJkqXLs3347/nu1LfYZ/XHm2chj079r7zBdGi\nRQsmTp7IxfmXyF0iF+enBuDbyzf7lP7EUCgUDBs5nI2NNuLdvwTPAiIRIgWaNGmS4vwfpv7AhSfn\nGRE9FL1az7bmOyn4W0GGDBqStYpLSGQjERFhQNtX7xSo1c48fvz4o+75119/0bFjdyIiQilatCTV\nqlVmz579WFpaMW3aD3Tq1AkwenDr1m1ETMwL9Ppkpk37iZEjR6R7v8KFC3Pv3i00Gg1mZmbvPXhv\n3fonTZq0RC4PRKuN5quv2tCwYcP31tHpdEyaNJ6wsKfs3z8LQRAYNGgkvd66D6tUKipUqMbjxxq0\n2hwoFJPZsmUDTZs2TbfeH8LCwgJRTMZY5cpY9UoUDZiZmaUh+enzuRpFElmDlFMhIZEOoqOjefbs\nGZ6eniiVyvd+HhQUxLjvv+VZVCRNGzTlu2+/++xc3R8TURRZtWYVJ86cwM3ZjTGjxnywkkvVOlUp\n+J0nBeobqxzd2BCEuAt2btqZlSpLZCNJSUn4+Q1l374D5MiRg0WL5tCgQYPsVitLqVSpBoGBFuj1\nNYF4lMp17NnzJ3Xr1k1TNiM8e/aMQoWKkZDQCCgAbEYQEhHF1oAKpXIPe/ZsoW7duhQp4s29e+6I\nYmXgBUrlWo4e3UuVKlUyXa+oqCiuXr2Kk5NTihWHli9fwaBBQxBFyJfPk/37d1KgQIH3ysP+9ttv\njBq1iKSk9hgf+B/g6nqa0NAHJulhMBhYvnw5AQFXKFmyKH5+fu8ZC2q1mrJlK/PggRy12gWlMoiu\nXRun2hxQIvP5XHIqCEv++Bu5WkrVnyQkPjUcHR1TjSMtUaIEu7fuydDaoiiSmJiItbX1F3saJAgC\nvX1709s37a7Xznmcibj87LVREXk5ktJ5pC7k/yV69+7Pzp1XSU5uQ1RUDK1bd+D8+dP/qR4d27b9\nSb16jXn8+FcMBi0TJkw2yaBQqVTMmDGLmzfvUKVKeUaMGG7SAcelS5eQyZyBoq9G4hHFlkCeV+uW\nZ9Omrfj4+HDv3i1Esc2reTkQxUIEBgZ+FKMid+7cHzQoL126xODBw9FoygP5efDgGW3adOTmzcB3\n5oWHh3Pr1i3U6pwYDQqA3Lx8+dxkPbp06cGePedRqQphZXWCXbsOcOTI/neS5y0sLLhw4TQzZswi\nJOQhPj5j6devL2Bshjdw4FBu3w6mfPmyLFo094sthS3x30MyKiT+Uxw/fpwzZ86QN29eevTokeUd\nmOPj4zl69CiiKFKvXj3s7OwA45di6w6tiYqIwt7Bni1/bqF27drpXl8URTZt2sTpc6fJ55aPwYMG\np+hR+RyYOXUm1WtXI/pSNLpkHXG34tn21/bsVksiC9m9exfJyf0AG8ARrfYRBw8e/E8ZFe7u7gQH\n3yQyMhJbW1uT/p51Oh0+Pg24cSOB5OT8HDy4nDNnzrNr19Y0ZR0dHdHrYwAtYAbIgfjXP5fLE7G3\nt0Mmk+HomJeoqIdAIUCDTBZG/vz5Abh48SK//bYMmUyGn18/ypcvn4GrN41vvhmLWq3AmEdxAIOh\nCLduXUOv17/2VEyY8D2zZ/+KXG6JwZAAFAMcsLA4Qd269U3aJzQ0lF279pCcPBgwJympEhcvLuXq\n1auUK1funbm2trZMnTrlnbGkpCQqVKjGs2ceGAyVefQoiFu3GhIYeCHDDffCwsLo2LE7V68G4ubm\nwfr1qz7qZy3xEdBlXc7Dx0YyKiT+MyxcvJDJMyZTtGsRordGs3rDak4cOmFynGtCQgKRkZG4ublh\nbm6e7v2fPXtG1VpV0Sq1aJM0iHFw5dIVcuTIQdNWTak1rwbF2xfj/qEHtOnQhnu375ErV6507TFu\n4jjW7V5Hcd+inPrrJFt2buGv439lSN/splChQty4cpODBw8il8tp3rw59vb22a2WRBZiZWWNShWH\n0agAhSIhzUZmXyKCIJAnTx6T51++fJnbtx+RnPw1IEOl8ubQofmEhYXh6uqaqmylSpVo0qQuBw6s\nRat1QxASMRj2oNVGoFAkYWv7kKFDNwGwadM6WrRoi0Lhik4XRatWjWnSpAmnT5+mUaMWJCVVAkQ2\nbqzHsWP+VK5c+Z0H/czgwYMHnDt3ERgEWAFJwDxsbR1e73Py5EnmzPkdtXoAxt+lPchka1AoZNSr\n14i1a1eYtJdKpUIut8BobAHIkcutSUpKMkl+8eLFhIcnAMb+RhqNKyEhi3j48CGFChUy+Zr/wWAw\nUKdOIx48yI1e35fg4AfUrduIkJDbJjdnlZDITCSjQuKzQBRFRFHMcH12g8HAmDFj6H3Nl5wFHRAN\nIhtqbGLfvn20bt06TfmVq1cydNhQLO0t0SXqGDlsJD179nxdocQUJk6ZiC6XFlWMigL183Nv330a\nt2zMhtUbMLMzo3j7YgAUbFiAnIVycuvWLWrWrGny+mq1mjm/zGHw44FY57ZGHCGyvupGjhw5kqlJ\niFmJk5MTPXr0yG41JLKJWbN+ZtCgUSQllcbc/CW5cyfSpUuX7Fbrk0ej0SCTWfCmwKMcQTBDo9Gk\nKSsIAps3r2fnzp08fPiQcuV+QqlUsmXLNqytlfTt2+e1YVKnTh3u3g0iMDAQJycnKlasiCAI/Pjj\nDJKSagPG03uVypzhw7/h7t27PH8eTdGi3uzdu50CBQr862uNjo7G0tIRjeafcrZWgCU//jjp9Zyb\nN29iMBTgH+MUmiKKV0hK0qbrO6VAgQK4uubhwYNj6HQlkcvvYWOjp0wZ08Iyf/xxGsbkbQPG/xs9\nWm1yhg99wsPDefIkFL3+n/yQUsAdLl68SLNmzTK0pkQ2IHkqJCRM59GjR/j7+6NUKmndunW6ThpF\nUeSn6T8x7eef0Wp0tOnQhtXLVqe7HrpWq0Wr0ZIjn/GkW5AJ5Chgz4sXL9KUDQ4OZtTYUXQ905nD\nI4+QFJPEuotr+XXBr+zZvsfkB//gu3eIuhPN4PsDsXKwwufHJBbkX4xGo+Fl+EviQuOwc7NDFa0i\nOiQaZ2fndF2jWq1GkAlYORg/G0EQsMljjUqlStc6EhKfCr16+ZIvnwcHDhzE0TEX/fv3l7xVJlC+\nfHly5BBQqY6j0xXC3PwmRYsWSvUQRBRF5syZx5o1G7CxsWHatB9o06bN659XqlQpRTkXFxdcXFze\nGUtKUgNvd7DWc/HiJQyGjoAHwcEXqVevCQ8e3ElX/lhiYiJPnz7F1dX1dRhY8eLFUShUwDWgOHAT\nBwdzvv7669dyXl5eyOWPMHoxrIBgnJ090n1IpVAoOHXqCF9/PYCrVw/i5eXFypUnsLa2TlNWFEXi\n4p4DHsAWjCFj1ylSxAt3d/d06fEPdnZ26PVqIBGjwaRDr3/+weIXEhIfG6lPhcRH5dKlS5StWIal\nfy3h5w0/U75KeZMe5P9h8+bNLF67mD5BvRkZM4xbqiBGfTsqbcH/w8LCgmq1q3F05HESniVwb18I\n9/0fUKtWrTRlb9y4gUc1d8IDwkGErwN60WnvVzRa0YC+g/qarENxrxIoHZWvH/qtclph72J8QPp+\n0vesrbKBfV0P8EeFdfgN8Eu3O9zOzo6qNariP/AwkUFRXFl2lfCL4enydkhIfGrUrVuXWbNmMnbs\nWOlhCZg9+1dy5MiNjY09AwYMRqvVvjdHqVRy7twpmjZ1xMsrgPbti3L06MFUH6J//nkGEyf+yvXr\nRTl7NgdNmrQkMDDwg/NTw8+vN0rlSSAEuIe5+VksLAoAnoAcg6EK4eFPiYmJMXnNPXv24OTkQrly\nNXFycmb//v0A2NjYcOzYIQoUuI1cPoOCBe9y8uSRdx70GzRoQK9eHbGyWoK9/Vrs7Y+xY8emDF1b\nnjx52LNnO0+e3OfYsYOvc0g0Gg1jxoyjdOlKNG3amrt3774jJwgCZctWQibzAPICISgUUSxduijD\nhTlsbW0ZPXo01tbrEYSjWFtvpEaN8h+1h4RGo+HBgwckJCR8tD3+c+iEj//KIqSSshIflWp1qpHb\nNxele5YCYF+vA7TwbMkPk34wSb7PwD6ElXhCxcHG7qrhl8M53fssd67dSbcu0dHR9Ozbk79O/4VT\nXieWLlyKj48Per2emb/MZP/h/Tg5OvHT9z9RtGjR13KXL1+mUetGFO3uhShCvWl1AEh4lsDKEmt4\nEW2akfTixQvcPN1osLAexTsUI2jjLc5/d5H7d+5jbW3NpUuXCAoKwsvLK8NfCi9evGDQcD/Onj+H\nm5sbi+cs/k8ltUpIfMls2rSJ3r2Ho1K1BSxRKvcwZEgHpk//6V+v7e5eiNDQuoAr8Bw4TMeOpfnz\nz/UZeuhdvXoNv/yyAEEQaNWqMXPmrCAxsTfGfIQYzM2XEx//wqTQn5iYGDw8CqJSdQDcgMdYW2/j\nyZOHODg4pCX+mnv37hEZGUmJEiXeM1B1Oh3Dh4/ijz/WYWZmxoQJ3zJixHDA2CE7ICAApVLJ6tXr\nWLduLXK5nJEjR/Djj5MRBIEuXXqwc2cASUmVkcnCsbO7wp07N97JhQkNDaVJk5bcuROEXK5g4cJ5\n9OnTx2T9P8S+ffsIDAwkX758dO3aNVNzVt7mwoULNGnSEo1GRK9X8fvvi+jZs+dH2Ssz+GxKygZn\nwbNxkaz5LCSjQuKjUqhEIepu8CFvaeON9cK8i3jeK8jvC383SX7i9xM5ELqfpisaA3B1xTVebIzj\n1OFTmabjsFHD2HthD5W/q0R0UDSBs69y7fK1dxIax08az4JFCxDNRHqf74m9hz3HvjmO3f0cHNh1\nwOS9rl69SoeuHXgQ/IBCxQqxae0mk+NxJSQk/tt06tSdTZteABVejTymSJHL3Llz9V+vXaBAMR4+\nrIKxgtJOwAUzs1jatGnMxo3r/lWZa1EU6dChC/7+Z9HrnRGEewwd2h+l0gp7e3t69uyZaljbX3/9\nRd26LdFo7AFroA52drs5enQrFSpU+KBcehg/fiLz5m1EpWoOqFEqt7N69QKKFClC7dr1EcVcqFRP\n0esdMBi+ArQolVuZP/8HfH19sbCwQq//BjBWFLS23snChcPw9fV9b6/ExESsrKwynCOYHeh0OvLk\ncSM21gdj5awolMp1XLt2KUNJ5lnBZ2NUBGXBs3GJrPkspJwKiUwlMTGRufPn8vDxQ2pUqUE9n3qc\n+/EsTVc3RhWt4vriG/T7eYDJ640cPpJNNTaxrdkOLHNZ8fDgQ476HzVJ9tmzZ/Qd1JcrV65QoIAn\nSxcuo0iRIu/NW7liJX1u98bW2YZCTQoSe/M5u3btws/P7/Wcn6f8TNeOXVmwaAFLS6zAoDdQoUoF\n1mxeY/K1AJQpU4Z7QfcQRfGL7UUhISHxcXByckQuf4Be/89INI6OmdPjYNKkb/HzG0VSUiLQBfBA\nq9Wyf/8a/P39ady4cYbXFgSBLVs2sH//fp48eUJiYiITJ05FrfbG3DyeX36Zz/Xrlz9oWCxY8Bsa\njRKoDkQAK1GrSTUXITY2ltWrVxMXF0ezZs2oWLFiqjpu374blaoWYPRgqFQV2bZtN0FBt3nxoirG\npPMVgA9GwwZUqgrs3n2QXr16vbqf6/jHqADdB/uCmJKD8akRGRn5Klem2KuR3CgUHty8efOTNSok\nsp7Px0yWyHKCgoKoUrsKed3z0qRVE8LDw1Odr1arqV2/FpuvbiK0+GO+nz8JhUJBUYti/JprHitK\nrWZ4nxG0a9fOZB0cHBy4fP4y33Yax4CaA7h66Sply5ZNU85gMNCweUOeF4ih5YFmKFtY4dPAh5cv\nX743VyYTMGj1b2R1hhRPkEqUKMHvi38nMS6RF7EvOHviLE5OTiZfy9tIBoWRc+fO0bxdc+o1q8cf\n6/7IbnUkJD5pvv12NDlzPsTSchdmZgextj7FnDkzMmVtX9+erF27BFBjDDECMMNgcCY0NPS9+TEx\nMbRq1Z68efNRuXJNbt26ler6giDQrFkzBgwYwLx5v5OU1BKDoR7Jya159syWlStXpihnMBjYtm0L\n0BVjcnMNwJWOHdt/sMxuTEwM3t7lGD9+PVOmHKN27Ybs2ZN6U9JcuXICb3I8FIrnODk58vjx30DB\nV6PWwLO35kTj4pIHmUzGoEFDUCo3A9dQKA5jZxdHixYtUt3zc8LY9FUPPH01kohOF4anp2c2avWF\noMuCVxYhGRUSKfL8+XPqNKyDY9ecfHW6HYnF42nUohEGg+GDMseOHSPWEEvLjc2pNKQiXx1uz/Kl\ny1m9bDXJSckkvExg7Oix6dIjJiaGNWvWEBERQc2aNfHw8MBgMKRZF/zJkyc8CXuCz4za5PLKRcWh\nFbDNb0tAQMB7cwcPHsLONrsJ2nSLk5NOE3biKW3btv3g2nK5PF0N5R48eMCxY8cICwsDYMmyJRQr\nU4yipYsaQ6r+o2GBgYGBNGnZBBobyPl1DsZMHsPS5UuzWy0JiU8WFxcXgoKuMWtWb6ZNa8/VqwFp\nnsCnh3bt2uHlVRxBuPhqJBoIed1MTa1WM3ToSAoWLEG+fF4cOBDKs2ctCAjIQY0aPiYnXsfHv+Tt\n6lAajd0HC3gIgvDqEObNwY9SaUHdunU+uP6yZcuIjs6FWt0SUaxHUlJzhg0b/frnKpWKPn0Gkj9/\nEapUqcWVK1eYM2cG1tYnUSj8sbDYQ44c9xk79hvKlCmLXH4FYynYasBRzMx2oVTuIGfOB0ycOB6A\nOXNmMXPmGJo1gz59ynDlysUvqlKZubk569evQanchL39JqysljN8+CBKly6d3apJfEJI4U8SKXLx\n4kVyFslJuX5Gr0Dtn2uxaPVvhIWFfdDlnJSUhNJR+foU3sLOArlCjkajyVBX58jISMpXKY9j1VxY\n5rLgp5o/MWTgEObMm4MmWUOJMiXYvXU37u7uBAUFcf/+fYoVK0bhwoVRKpWoE9Wo49RY2lti0BlI\niExI0e08dfJUXF1cObDlAAVzFWLt2XUZ9kD8P7/O+5XJUyeTt3heIoIi8O3uy8Y9G2myuhEyucC0\n3tNQKpV83evrtBf7wlj5x0rKjShDub7G3zGrnFYsHLOQfn36ZbNmEhKfLrlz52bw4MHvjImiyOrV\nq5kz5zcUChk//DCeli1bZmj9fft2Ur9+U8LDTwMG5s6d/9o73Lt3P3bsuERSUllgK9AIkCGKudHr\nH3D27FmTTuebN2/G1q3HSE6uD7zAyuoGjRtPT3GuIAj4+Q1m2bKtqFTlUSgisbGJTXWfFy9eotXa\nvTXiQHz8m67gXbr0xN//LsnJdXj0KJxatepx69Y1AgMvsGvXLszNzencuTNOTk5s2LCaunUb8+TJ\nfPT6ZHr06EXZsqUxMzOjbdu2rxuUCoLAoEF+DBrkx+eAwWBg//79xqasVatSvHjxNGXatGlDcHBF\ngoKCcHd3N0lGwgSy0JPwsZGMCokUsbW1JT48Dr1Wj9xMTvLzZJIT1Kn2mKhVqxaRQ6IIWHAZ95pu\nBM6/QpXqVTJcBnLu/Lm4NHGm0aIGAFg5WzF75mx6nu1O7uKOnPnxLO06t6NNqzbM+nUWLuVcCA0I\nZfb02fTp3YeePXuyuf42Cn1VkNAjoZQoWILKlSu/t48gCPgN8MNvQOZ+GYSEhDDlpyn4BvbA3t2O\niKvP+L367zRa2ACPGkbDrMa0amxYtuE/aVTIBBmi/o2XRtQbpLAwCYkMMHfufL755gcMhvpAPK1a\ntad9+9YcPHgYjUZNu3btWblyKZaWlmmuVahQIR4+DCYmJgZ7e3vMzIzdo0VRZMuWTWi1wzEGORiA\nZEAJGDAYUj60SYmlSxdjMAxk794/sLa2Yd68JalWvPv115kUKJCPffsO4+5enClTNpIz54dzSZo3\nb8b8+UtISsoP2GNldZTWrVsBoNfr2bt3J3r9GMAccMZgCOPQoUN8/fXXjB49+p21XF1duX37GqGh\nodja2qar2tSnil6vp2nTVpw9exNRdMJgGMXatStMCk12c3PDzc0tzXkS6eD9qtCfLZJRIZEiVapU\noVThUmxpvB3Xui6EbL5P/wH9U72hOjo6curoKfxG+HFi6SmqVq7C/E0LMqxDzPMYcni9cR+r4zR4\ntSiEU4ncAFQbV4Vpk2dy9+5del3ria2zDTH3YhlecTjt2rRj0bxFrFu3jktXLtG6RRv69++fpdU2\nHjx4gLN3XuzdjSdmecvkwdLekth7z1/PSYxIxFr5+SXtZQZ9evWhVr1aWNhbYpXLkr8mnGPm5JnZ\nrZaExGfHTz/NxGBoz5tciAS2bt0BDACU7Nixlxw5xrB48XyT1hME4VUM/btjCoU5Wm0SkBOoCKwE\nymJl9ZRixdxN6vsDYGVlxfr1q02aCyCTyRg6dAhDhw4xaX6NGjVYvfp3Ro78FpUqkdatW7Fw4ZzX\na8nlCvT6JIxGBQhCUqoNVWUyGR4eHmnuK4oiISEhqFQqihUrluFO2R+bvXv3cvZsEAkJPQA5UJre\nvfulK99RQiIlJKNCIkVkMhm7t+1h1apVhDwIYeB3fnTo0CFNuaJFi3LswLFM0aF54+Z8Pexr8tfJ\nj9LRikcHH2HQG157T8IvhWOXww6nIk7YOhs9KLkK58TOyZaIiAgcHBzo3r073bt3zxR9UmP79u1M\nmzMNrVZLP99+DOw/kKJFi/L0WjiRQVE4lcjNw2N/gwZuLg1CJhMQ5ALXFt/g0L5DH12/T5FSpUpx\n9OBRZsyZQVJyEotmLaJD+7R/xyQkJN5Fp/v/+AkBoyfBaBgkJ9dk/37/f73P+PHjmDZtASpVORQK\nHTY20L59AYoXb8LAgQM/WO3o/wkICMDXtz/h4U+pVq0af/yxPFXPQ0o8fvyYiIgIihQpkmLuwldf\nfcVXX3313rggCIwbN45Zs5agUpXG3DwSJyddhsPF/kGv19O+fWf8/Y+gUFiRM2roHYQAACAASURB\nVKc1Z84c+yRO9e/evUvHjt25dy+YQoWK0KZNUwwGJ4wGBYAz8fEv0Ok+XLFK4iOiT3vK54LUp0Li\nk2bx74uZ8tMUkpOS6fBVB8LDw7nx93UcS+Tmvv995v8yn6Ejh9BuXxtcK7sScvA+/j0P8+ThE5Pz\nOERRZOq0qSxcvBCDwcDA/gOZPGmyyaE4/v7+dOndhQZL6mFubcYRv+NMGjGJAf0GsG7DOgb6DcQm\ntw3ql2q2btyKs7MzK9esxGAw4NvdV2pOJyEhkS5EUWT+/AXMnj0PUQRPTzfOnLkKNAbigWMYS5uO\nfCVxjfLlI7h06ey/3nvjxo3s3euPs7MTY8eOfs+jkRqxsbGcP3+eDh26oFLVA9wxM7tA+fJmnDtn\neu+hyZOnMn36LMzNcyKKcezfv4saNWqYLC+KIps3b8bf/yhubs6MHDniX3drX7JkCSNHzkal6ggo\nkMtPUaeOFYcP7/tX6/5bkpKS8PT0IjLSG1EsgSDcwsHhMipVMsnJnQEn5PLTeHsncuXKhWzVNbP5\nbPpU/JUFz8bVpeZ3EhLvYTAY8Pf3JzIykqpVq+Ll5cWevXvo1rMbcnMZMlHOji07qFmzpslrLlm2\nhKkLp9JiczMEmcDezvsZ0XMEw4cMN0m+i28XXlZ5TvkB5QAIOXifhzMece74OQDi4uJ4+vQpHh4e\nGUpYTwmNRoO/vz8JCQnUqlXrnUZ9EhISXzZr1vyBn9+3qFTNABlK5V68vfNx8eJVRFFPoUIFSUiI\nJy4uJwaDFXJ5MEePHkwxpyyr2Lt3L506dcNgsCYpKRpoApQFDMjl0xkyZAiPHoXi41ODwYP9Phiq\nGhAQgI9PE1SqXoANcA+lcg8eHp7o9QaGDOnP4MF+WZqfpdFo6NatB1u2hAH1MHqKInF23s/Tpw+z\nTI+UCAwMxMenNfHxb/L27OxWMmZMP37+eSbJyYmULFmWfft2fBJelczkszEqTmbBs3FtqfmdhMR7\nyGQymjRp8s5Yi+YtiAqPIjIykjx58rxOLDSVnft3UnlCRRyLGKt4VJlUid2/7zbZqLC0sOTZC/Xr\n98kvkrEwt3j93s7ODjs7u5REM0RycjK1G9QmWheFnZsdg4YNwn+fP8nJyezYvQMbaxsG9h+Is7Nz\npu0pISHx6bB27SZUqur8k0OhUtVEoYhCr08kMTGRhQsXc/jwCQwGLY0a1aNDhw4ULFgw9UU/IomJ\niXTs2BWVqgPgjrEfxAogPyCi18PixSfQaFzx95/D1avXWbky5fLSwcHByGT5MBoUAHpUKh137ngD\nCr799ifMzc3o3z/tKnIajQZRFLGwsEhz7oe4desWtWrV5+XLZCAJiANaI5ffoVixohleN7PIkSMH\nOl0cxv4jFoAarTaOjh07Mn78eDQazb+6fgmJt5GMCokvAnNz8wyfsuTKkZPwkDeN/Z6HvCBnDtPj\ne0cMHkGturUwaPUolGZcmnmZTWs3ZUgXU1i6dCkJDvF02dkJQSZwY/1NuvTqQkxMDGWGlCLxqYpl\nlZcReCFQMiwkJL5A7OxsEISXvHH+x2Fvb4cgCPTr58euXRdQqbwxNw/l8ePVDB06NDvVJTQ0FJlM\nidGgAMiFsXP1cSwsniCKedBomgMCKlVx1q6dw4IFc1KsJlWsWDEMhkcYw7xsgQtAfYyN8UClqsPy\n5X+kalTo9Xr69h3IH3+sBqBduw6sXbsq3YnV0dHRlC1bFY2mDFAHYxmflVhYLMDJKSerVx9P13of\ngwIFCtCxYwe2bFmPSpUfpfJv2rdv97oLtmRQfAJ8QSVlpeZ3Ep81oigSGhpKREREhteYNO57rs27\nzsEBh/D3O8zlGYFMmTDFZHlvb29OHz9NsagS5L/vyd7te2nYsKFJsomJiRw+fJhjx46hVqvTFgBC\nn4biVNkJQWb0ZLpWcSU0NJSmaxtTY3x1Gi1sgHszN5YtX2byNWSEiIgIpk+fzvc/fM/Vq1c/6l4S\nEhJvmDx5AkrlBWSywwjCUaytz/HjjxOJj49ny5bNqFTtAG80msZERRk4ceJEturr5uaGwaAC/unM\nHQPEIpc/wsenEhYWthhDhgDMEAQZWm3KdTbLly/PuHGjsLRcgp3dSszMIjF6CP5Bxe3bwUyd+jN6\nfcoZsL/88iubNh1Hrx+FXj+aPXuu8MMPP6b7uqZPn4lGowdKvdLfHPCmVavG3L1784M9nbKalSuX\nsmrVbCZNqsPKlbNYterjfjdI/HeRPBUSny1xcXE0b9uc69evodcZaNy4MX/+8efr6hUvX77Eysoq\n1dMng8HArj27KFK8CElXk6hfqz6bLmwmf/786dKlZMmSLJ6/OF0yERERVPepjpBLQK/RY2Ow4fTR\n02kmDNaoVoO1o/+gtG8pbPJac2HmRcwtzLFxftNDROmsJCExIV36pIewsDDKVymPexM3LB0tmN9w\nHts2bqdu3bofbU8JCQkj3t7eBAZeYM2aPzAYDPTosYRixYrx8uXLV7kE/1T1Mf77Qw/X/09YWBjR\n0dEsXbqSS5euULJkcWbN+jndlZn+H2tra/78cy2tW7dHFHMBL4CG6PVq8uZ1xdLyOomJZzAYPLC0\nDKR69dqp3gcnTBhH7949iYiIQK1W06BBUxITta+u+y8SE2sxbdoKnj9/zi+/zHpP/vDhk6hUZQBj\n346kpHIcPnyCn39O33WFhoZj9JbcAWoAOgThNnXrTjCpJ0hWIQgCHTp0MKmCo0Q2kE2eCkEQGgNz\nMToYVoiiOCOFOT7AHMAMiBJF8cOt7JEStSVM5MWLF0ycPJF7D+5SsWwlJoybkO1u0/6D+3MpIYAm\nKxqh1+jZ0WoXvRt+jW8PX1q0a8H1K9cx6A18/8P3jB87PsU1Ro4Zyc4zO6g0riJRN6O5Pv8G1wOv\nZ0nYULde3Xjk9JA6M3wQRZGD/Q5RI0dN5syak6qcVqulSAkvHv39GEEQMFOaUad6He4l3KXu/DrE\nP43ngK8/+3fsT7Wh1L9h7PixnFKdpMHcegDc2nqbJ/PDuHDqy6oeIvHfJDk5GZVKhYODQ6Yk/Iqi\niF6vT1e5Tn9/f65fv46XlxctW7Y0WY8mTVpy8uTfJCWVQS5/Qu7c9wkOvplqXpfBYKBbN1+2bduB\nTqdHFAsgimUwN7+Pp2ci169fypSeC7VrN+DMmecYDD6AJUrlZmbPHkHjxo3x8xvO338/okaNasyd\nO8vkRnoAQUFB9Os3kHPnQhDFZhhzTZ5jZ7eOly+j35vfp88A1qy5iU5nbKwql5+kTZu8bNmyIV3X\ns3btWvr1G01y8j/5Cgnkz+9KSMgt5HJ5WuISH5nPJlHbPwuejRu9+1kIgiAD7mKsLPAUCAA6iaJ4\n56059sBZoKEoimGCIDiKovj+H9RbSOFPEmmiVqupWa8mF1Tnse1pw46rO2jXqR3ZbSReunKJkr1L\nIJPLMLMyo0i3IlwIvIBvP18UleR8EzeCgSH9mbdsHgcPHkxxjaVLltJqawu8WhSm+riqeDRwZ+fO\nnVmi//2/75OvQT7AePNzr+dGyMOQNOW2bNmC3FnBtwmj+SZ2BJ33f0XgtUDaVGvL4Y5HuTEhiDVL\n15hkUBgMBkaOGYltDlvsHOwY+91Yk/5fX8a9xDaf7ev3OfLZEx8fl6achMSnzuTJU7Gzy4Gzszul\nS1fg2bNn/2q9X3+di5WVDZaWVtSr14SXL1+mKTN69Le0a9eL777bRdeuQ/D17WPyftu3b6JfvwaU\nLXuP1q3zEhBwNs1CEcuXL2fXrrNoNN0xGBSIYjugMBpNI54+fc6VK1dM3j811q9fhbt7HLa2G7Gy\n+o369UvRr18/PD09OXBgF7dvX2XZssXpMigASpQoQfv2bTAzc+VNA0DdBytI/fTTZJycQrGx2YyN\nzVZy5rzD7NnTUpyrVqtZuHAhI0aMYuvWre/cH7t168bo0QMwN1cjl8fQqFFtbt++9tkYFE+fPqV/\nfz+aN2/L0qVLs/07/T+LLgte71MJuCeK4iNRFLXARqDV/83pAmwTRTEMIC2DAqTwJwkTuHDhAnFi\nHK1/b4EgCHg1L8wCl8WEh4fj4uKSbXoVKlCIv/3/Jl8tD0SDyMMDD4k5H8uLuBfUbV4bQSZg52pL\nkc6FOXf+HI0bN35vDeNJxpv3oiHrbqqVy1fm+LJj5KvtgUFn4PbqO3St3S1NuaioKHKVzIncXI7c\nXI5TKSeeRz1n5s8zmflz+jpSz54zm51ndtDnVi8MepFNbTfi5uLGkEGpd65t06INXft2xbWyC0pH\nK06OPk2HFu83mvoSEUVRqpjyhbJ//35mzVqEVjsYsOH27WN07tyTY8dSPpRIi4MHDzJx4jTU6j6A\nHWfOHKRXr35s3/7hQg4REREsWLAItdoPUKLVqtm6dSljx46iePHiae5pZWXF3Lm/vDeuUqno29eP\nffv2YWtrz4IFs2ndujUAFy8GolIVxhjhIL56AYiIopimlyQ+Ph4AW1vbVOe5ublx9+5Nbt26hVKp\npHDhwplW+rVTp078+ON0dLrjGAwOWFtfZMyYUSnOzZMnD7dvX8ff3x+DwUDDhg1xcHB4b55Op8PH\npwHXrkWTlOTCsmWbuXDhErNmTQeM3x9TpvzA5MnfI4riB42YT5GYmBjKlq1IbGwBdLrcHD8+lYcP\nHzNt2tTsVk0ia3AFnrz1PhSjofE2XoCZIAjHMZZbmy+K4trUFv18/gIksg1RFJHJ3/pVEV67FbNP\nKWDOjDmEbnvK+qobWV5yFSH+96k+tyrNVzXl6LcnuLggAE2ihmfno3B3SzlhbqDfQHa22c3tbXc4\nPeUvwo6H0aZNmyzR/+cpP5M3MS/z8yxift5FlMzpzdhvxqYpV6tWLYK33eXppXB0yTpOTThDjTqm\nN356m/2H91NpXEVsXWyxd7ejwtjy7DOhWVOjRo2YPXU2p74+zY6Gu2lZuRVTJpme3P42Op2OJUuW\nMGr0KNauXZvtv1epsWTZEmzsbbCxtaFG3RpERkZmt0oSmcj58+dJTCyCMU5eQKeryKVLARle7/jx\nE6hUJYCcgAKNpjonT6be5O358+eYm9sC//S0scDMzIGYmJgM6wHQt+9Atm8P5OXLboSG1qBLl14E\nBBivrWTJolhZPQLsgLzAZuAWFhb78fTMS9myZQFjHtvmzZvZtGkTsbGxaLVavvqqCzlz5iZnzty0\nbNkuzYIT5ubmlClTBi8vrxQNilu3bjFo0FD69h3AuXPnTL4+Z2dnrly5iK9vEVq0ULBo0TS+/XbM\nB+fb2dnRoUMHOnbsmKJBAXDy5Elu3nxEUlIHoCaJiZ2ZO3cuKpXqnXmCIHxWBgXAzp07SUhwQqer\nD5RGpWrP3LlzP+n77xfLx/BMXDkBa39488oYCqAcxqYyjYGJgiAUSktAQiJVKleujKXGkiPDjpG/\ncT5urb5NpUqVstVLAeDi4sKNwBtcuHCBYaOHUXNFdYq08GKX7x4EmcCFXy9ycuJpSnuXpmfPnimu\nMX3qdFycXTj4xwHccrmz8swq8ubNmyX6K5VKDu4xNvKTy+Umd6YtW7Ysv8//nUHNB/Ei5gU169Zk\n47qNGdLB0cGRqJtReLUoDEBMUAwejvlNkvXt4YtvD98M7fsPGo2G1l+1JiTuHu4N3di2YBunzp1i\n2eJPrzrJX3/9xfjJ4/G91B2Hgg4cH3OSrr26cnjf4exWTSKTMDaoDEel0mNM+n2Ms3PGG0u6uDhj\naRlFcrKIMWk6nNy5nVKVKVCgANbWChISLiKKpYFgBOEl3t7eGdYDYO/efSQn9wDsgRyo1d4cOHCA\nihUr4ufnx86d+7l0aTkymSV6fTTe3hFUrFidn36agpmZGREREZQvX4W4OGtAjoXFcKpWrcjhw1fQ\n6YYDCo4c2cHEiT8wc2bKoURpcfPmTapUqUliYhnAjA0bmrJr1xbq169vkny+fPlYsWJJhvZOiYSE\nBGQyO96cv1ohkylQqVSZ1sg0u9DpdIji22FaCpMT+iU+A7x9jK9/2Dj5/2eEAR5vvXd7NfY2oUC0\nKIrJQLIgCKeA0sAH47SlRG0Jk3jy5Amjx40m7FkYlctXZsqkKZ/UTbV+s3rYdrVFr9ZxZfk1uh3p\njJmVGWenn0N9WMvOzTvJmTNnlnZZBWPOQmxsLA4ODh8lztaU0ISUuH//Pq06tOLOjTvIzGR4VHXH\n3sWO0GNhnD9zAU9PzzTXSExMZMSYEZz+6xTOzi7MnzWfkiVLmqz3uInj+HX2r+j1ego2LkDbP1sj\niiKL8y3hbtDdT67HxowZM9gdtYt6s43FL5KeJ7E43xIS4xJRq9WsXLmSJ2FPqFm95nsNGiU+D7Ra\nLfXqNeHKlXsYcxTDOHLkAJUq/X9UgGmoVCoqV67B338nYjDYotXexsEhJ3Z29vz44wQ6deqUolxw\ncDDt2nXm7t1buLt7snXrhtfegozi4pKf8PC6gDGPy9JyBzNm9H7dw8JgMBAYGEhSUhLlypV7L6/B\nmNwc9OpkG+AYcB1jgrIl0A14SOXKoZw/fzJDOvbs+TVr1z5CFGu+GrlBlSrRnDt3IkPr/VuioqIo\nXLg4L19WA/JjZhZAyZJ6Ll8+n+XfJZlNWFgYxYuXJj6+IqLohFJ5nk6dfDLVKMtuPptE7W1Z8Gzc\n7r1EbTkQjDFROxy4CHQWRfH2W3OKAgsweiksMDaF6SiK4q0PbZMp/jpBEBoLgnBHEIS7giCkHb8h\n8VmxacsminsX5/DxwwQHBdOuVbtPyqAA+HbEOE6MOMmN9Tcp3LwQZlZmiAaRyKBIzp05h0cBD+o3\nrf869jcrOH36NHlc85C/cH6cXJw4fjzzGyFl5ItNFEWatm6KWw8XxqnH0O1oZyICn9Haqy3XLl83\nyaAA6NyzMxdizlNjRTWsWlpQp4GPyf1CNmzYwPo96xnyxI9vVaOxzGHJ4VFHMLcxx8rOioSEjJfD\nffToEf38+tG2c1tW/7E609z5zs7ORF2Oep13E34pgtx5c6PVaqnTqA7z98znrNkZfIf4Mv1VzLXE\n54WZmRnHj/uzc+dKVq36nuDgmxk2KMDojQwIOMvKlVNp2DAfCoUjkZFNCQkpz9dfD+bw4ZS9XEWK\nFOHmzUA0mmTu37/9rw0KgHnzZmFltQNBOIal5U7y5El8x4Mrk8moUKECNWvWTDFR+tGjUHS6t724\n7hjDuvpjNCouoVCEUrBg/gzrqFIlIYpWb41YkZSUnOH1/i25c+fm1KmjlCnzDEfHLTRo4MShQ/s+\nqkGRmJjI3bt3SUxM/Gh7ALi6unL+/GkaNjSjdOk7jBjRiSVLFn3UPSU+HURR1AODgUNAELBRFMXb\ngiD0FwSh36s5dwB/jKcH54GlqRkUkAmeClPKUr2aJ3kqPkMeP35MqfKl+OpIe/KWzsPdPfc41v8E\noX+HZkqJwczkzJkzfPvdt/yd+JDup7pybc11rq26TrcjXTBTmrG/90HK21TIktCa+Ph48hfKT6M1\nDSjUuCAPjz5kX+cD3A9+8F78riiKLFy8kMXLFiEIMoYPGk6/Ph/uBvtviY2Nxd3TnVEvh78e291+\nH+M6jKNjx44mraFWq7G1s+WbuBEoLBSv1tjL6DZj6Nq1a5ryff368qTYIyoNqQhAxNVnbO+8kxLt\nixO5O4obl2+kq/zmP0RERFC6fGmK9PIiZxEHAmZcZlD3QR8sKZwetFot9ZvW50n8E3IWdiDk4H22\nbNiCWq1m6NShdD1r7HAeFxrHb4WXokpQfTZVYCQ+Pl5e3ty7V4k3EQfn8fV1y9JGZOfPn+fgwYPk\nyJGDXr16YW9vb7LszJmzmDx5KSpVe4znkZswGhY+wF+YmQXi5GRLQMDZDHsZDx48SLt23VCpGgHm\nKJWHmDnzOwYN8svQep8iGo2GCRO+x9//KC4uzsydO5MiRYoAsHfvXjp27IpMZoXBkMTGjeto0aJF\nNmv8+fLZeCo2ZsGzcaes+SwyI6fidVkqAEEQ/ilLdSdVKYnPgqCgIFzKupC3dB4AvFoU5uig44SF\nhZl8op1V1KhRg1PHT9G9d3eWFFyGHj21fqyJhZ2xSk8Zv9KcG2x64t+/ISQkBOs81hRqXBAAz3qe\n2LnbExwcTJUqVd6Zu3L1SqYtnEajFQ0Q9QYm9pqIjY0NXTp1eT3n+fPnBAcH4+LigoeHB/8GOzs7\nMIhE34nGsagj2iQtkTcjyTvE9FwSuVyOIID6pRqFkwJRFEmKTTK54ZO7izuXzgcgDjaGb4WeDSU5\nKhnldWuO7P8zQwYFwKZNm3Bv6IrP1FoAuFRy4VefXzPFqDAzM+PogaPs27eP2NhYan5fk0KFCrFh\nwwbsPexedzi3cbZBFEXUavUn59GTyBharZYtW7YQGRlJzZo1KV++fLrXMJ7+v/HAyWSJ2NrafFjg\nI1ClSpX37j+mMmrUSIKDQ1iz5hcMBj2QG1GsDiRiYXGTIUN6MWnSpDQrQKVG48aNWb36NyZPnoFO\np8XP71v8/AZmeL1PkV69+rJjx0WSkipx40YEVarU5Pbt65ibm9OpUzdUqg4YjbVQOnXqzuPH98mV\nK1d2qy0hYRKZYVSYUpbqP4dGo2Hz5s1ERUVRu3ZtypUrl90qpYuQkBBOnDhBfHw84TfCSYxMxNrJ\nmmc3IkmOS8bJKfVkw+xCJpOxbtU67t+/z8xZMwk4cZEyX5dGEASenHyCZ778WaKHs7MzMY9jePkk\nDnt3O+KfxhMe/BSd7v2C0eu3rKfGz9Vwr2asr15tSlUm/jgRB3sHmjRpwvHjx2nXsR058tkT8zCW\nsWPGMn5M2g/J58+f5/r16xQsWJC6deu+dtkrFAoWLFjIKJ9RFGpckIjLEdSpUodatWqZfH0KhYIR\n34xkfcP1lOxbnMiAKBSxZibnEowYNoKtPlvYWHsLSkcrnp57yvkT503OyfgQer0eueWb25rCUoFB\nb/hXa76NQqGgVat3S3nXqlWLwcMHEbT5Fm5VXLkwM4AqNapIBsUXglarpVatety4EYFO54hMNpll\nyxbRtWuXtIXfYsaMKbRu/RVJSVHI5WpsbO4yYsSaj6T1u8TGxnLt2jUcHR0znPAtl8tZsWIJv/++\nkJiYGFq2bMe1a79iMOgZPHgYM2fOyJSwoC+587Ner2fz5o3odCMBS0SxABpNFAcOHMDb2xu5PAdG\ngwLADYXCgfv3JaPii+cLyo/P0upPP/zww+t/+/j44OPjk5Xb/4+98wyL4vz68L2w9CKCdFBQVGyI\nimLHigUbNmxorBg1tmA3xha7sXdRlFijRrFiQ+yAEXtFBQsqVdouLLs774eN+ve1gSJY9r4uP7Dz\nzHnOjLDznHnOOb8CQyaT0bBZQxKIx6yiGVNnT2Xl4pX4dM5dasnn8uzZM+Li4nBycvqo6NG7CA0N\nxbuzN6W9nHhx/wVGBkasd92ITWVrHl94wqqVq/IsTlSQiEQinJycmD9vPvUb1+Mv9y3oFtEl9U4q\np0NPF4gPVlZW2NrZsrbaOorXs+fJ+SfY1bZj07ZN1K37ZvtXA30DMuNf589mPssgu0g2PQf2ZMak\nGYwdPxavLc1xbOxI+tMM5rvNp6VnS1xdXd87/9w/5zJn4Wwcmzry+M8neDf3ZtnC1/myfX7qQ7Uq\n1bhw4QJ2Xe3w9PTM84Jg5rSZlC9bnhOnT1DDsSYjF43M9ULayMiIiDORhISEIJVKabiiIZaWlnma\n/114e3sz3X06ZpVMMS1jyrnfz9O7d+/Ptvsh7OzsOLj3EAOG9OdU3Blq1a7Fum3rvuicagqO3bt3\nc+1aHJmZ3VGl/bgwcODgPAcVnp6enDhxmK1bt6Grq4uf32ZKlCjxRXz+XyIiImjatCUikRk5OYl0\n7tyedetWf3IAoKWlhZWVFeHhp0lJSUFXV7fQA+hnz57x669juXfvAR4edZg69fd36shkZ2czbtxE\nDh06io2NNYsXz8uV9kd+IRKJ/rvv8v/5TI5YLMbe3h6ZLBlIAsyAJGSypM/emf6ROHHiBCdOnChs\nN35o8qOmoiYwWRCE5v/9PBYQBEGY/f/G/TA1FVu2bOH3VZPwOd4JkYaIuAtP2dN6LwlPE7743AsW\nL2DS75MwLV6UjGcZ7Nr+Dx4eHnmy4ezijOsMF8q0Ko0gCOxs9Q8dq3WiRo0aVKhQ4atLe/oQ2dnZ\nhIWFIZPJqFu3LiYmJgU2t1tdN6x7W6JtpI1ZGTPiIuMwPmPC5sDNb4yLiIjA08uTyoMqochRErUm\niu5Hu6HIknO42zFSklIY+WLYq/Efq39ISUnBroQd/W/0wdjOmOy0bNaWX0/YobDP3gn4Frhy5Qrj\nJ48jMTmJ1s1bM3bUWHVtg5pPZsWKFfz66wak0pe7cHI0NGaSkyP7JrQJSpRw4uHDqkAFIBsDgyC2\nbl1Bq1atUCqVREREkJmZiZubW55qLL4WMjIyKFfOhWfP7JDL7dHTu0zjxmXYu3fXW2O7dOlBcHAU\nUqk7ItEzjI0juXHjcoG2Rx85chSrVv2NRFIVsTgec/NH3LhxGRMTE1avXsPw4aPQ1rZGJnvKggVz\n8PP7cvV13zvfTE3FhgJYG/cqmHuRH9+IkYCTSCQqIRKJtIEuQHA+2P1mSUxMxLSc6asca/MKxXiR\n9OKLi8pcu3aNaTOn0edyL3pd9qXFX83p4NMhz72nE57HY11VlV8vEokoVsUMDU0NWrVq9cUDCqVS\nyfnz5zl8+DCJiYlMnjaZ4k7FKVWuJKvXrs6zPR0dHTw9PWnVqlWBBhQAHdt25Oqq65hXMEeRLSdi\n5gU6tu341rjy5cuzbOEyMg9KiQ2NpWdYD6wqW6JXTB9Ztgx9fX2iD94DIO1xGg/PPqRcuXLvnTcx\nMRFDMwOM7VS7VDrGOpiXLpbrzkygKh5/+vQpycnJebzqwsfFxYV9u/Zz/sR5JoydoA4o1HwW9evX\nRyS6BTwEZIjFx3F3r/tNBBQAT57EohLGBdBBLrcnOjr6Vfvcpk070L79/Ii5GwAAIABJREFUIEqV\ncub27duF6eonERYWRmqqNnJ5Y6AMUmk7DhzYR7VqtenVqy+JiYmAKvVox47tSKVtAQMEAaRSA/bs\n2VOg/s6fP4c5c0bj5SWiXz9XLl4Mf/VsGjCgPzduXOLvvxdz/XqUOqBQ883x2elPgiAoRCLRy7ZU\nGkDA//a5/RHx8PDgt2m/Uc7XGYtK5pwcfwqPJh5fvK/1rVu3sK9pR5HiqrdNJZs6IpPLSExMzFNq\nST2P+pyZco6mSxrzIuYFNzbeYsqGaV/K7VcoFAradW7HhasXKGJXhLjLcRhaGdD6n1bkZOYwsdtE\nipkVo713+y/uS34w+tfRSCQS1rdZj5a2FsP6DyNgYwATp06gerXqLJ6/hNjYWDy9PNE11yX5UTJy\nuZz4awnkSOSEjTpF1y5d6diuI207tOW05VlSHqUw+ffJuLi4vHfeEiVKIBa0uLTuMpV/cuHe4fvE\nX49/5zlPnz5l+qzpPI1/SrNGzRjQbwBpaWl4eXtx5coV5DI5Pl18CFgZ8M0sotSoyU8qVKjAli0b\n6dPHj9TUZGrWrMuuXZ8mNlkYODmV486dSwhCdSADsfgeLi4urFmzhvDwWKTSvoAmIlE4vXoN+GSN\nicJC9Vz937op4T/NDXuuXbvFmTP1uHYtCh0dHTQ1NVEo7gH7gHLIZCKmTp2Jr68vhoYFUzQvEokY\nPHjQeztaOTg44ODgUCC+qPlKeLvU8ptFLX73hfjnn38YNGwQKYkp1G9Un82Bm3OtmPypXL16FY9m\nHvSM7IGxrRExoTHs8zlIwtOEPL2tTUlJoXOPzoQeDkVHT4c5s+cw+OfBX9BzFYGBgUxfNx2fox3R\n1Nbk0rrLnF8YwcAr/QGIWnsJo9NF3kof+hZITU2lgmsFyg0sS4nGJbi88go693VJSkqi7MjSuPSq\nRNaLLDa6b8JE2wSRJrRr7c2036chFotJT08nOjoaa2vr9yp+C4LA8+fP0dPT49GjR7Tv0p57N+9h\naWfJ1qCtbxViJycn41LNBYeOxSnmUoyLCy7R3as7T5/FcZ3rNFvZFLlUzo4WuxjRbWSB/A6oUaMm\nf7l16xYNG3qSkSFDJktn9OhRTJs2maFDh7NkyXXgZY1XEubmu4iPf5wru+Hh4UycOI2MjAx69eqK\nn9+AQhGEk0gklC/vSlxcMXJy7FHpcxkDHQABI6ON7N27Hg8PD8aMGc/cuYsQhDaAMyCgo7MLf/82\nTJ48+ZO7zqn5Ovlm0p8CCmBt3PfbaSmr5h14e3vj7e1doHNWqlSJcf7jmOYyjWIli/EiNoUdW3fm\nOf2jaNGiHNl/BLlc/l/r0IL5m7x3/x62Da3R1Fb5W6p5SY74H3t1PP1ROraG9u87/RUbgjawftN6\ndHV0Gf/r+Dx1NfpU7ty5w969e9HV1aVr166Ympq+cfzcuXMYOBhQa4yqnaPVKksWWywjKyOLth1b\nAaBrokvJ5o50LNGJkSNHEhUVxaTJk9DT1aP3T70/KICVnJxMy3YtuXH9BjnZOfTt15fbV28jl8vR\n0tJ65zl79uzBrJopjeaqFKIdGjmw2HkRJZxKUHt1TTQ0NdA21KZsjzKER4YzGHVQoUbNt4azszOx\nsdHExMRgamr66uVWjRpu6OvvRiJxA3QQiy/lWmTv6tWrNGrUDImkHmDN1atTkUikjBw5/IPnKZXK\n/ylW/jiCIHx0rEpg8Azjx0/i+vVbREQ8R6H43yJ65Ssbs2b9wbJlK8jMfNm9UER2thmzZy8gKGgb\nJ04c/qprBhUKBefOnSMjIwN3d/e3NI/UfKN8RzsV6nyG74xRI0dx/dJ1Ni/ZzL3b92nUqNEn2xKL\nxQX65qla1WpE77iHJFGCIAj8u/IiCALHxoYS8ssRrq26wagRoz5oY03AGsZMHYPFwGLoeGvRpkMb\nwsPDv6jf586do0adGvz9YDtrz6yhsltl4uPj3xijq6tL1gvpKzXmHEkOcpmcUmVLcWObKltQmiIl\nJiSG8uXLExoaSkPPhpzmJPue7aWae1ViY2Pf68PAoQPBRWBYwhB+eTyIvaf3EhQU9N6AAlAFjf/T\nflVLT4xCocTRoSQxR1VzCUqBx8eeUNqx9Cffn08hJiaGhQsXsmzZsrfupRo1avKGtrY2ZcqUeWO3\nvHv37nTv3hKxeCEwB6XyAg4O9rmqwduwIQiJxBVwA5zJzGzJokXL3zteIpHg7d0ZbW1d9PWNmDNn\n7gft7927l2LFrNHS0qFWLY+P1oOZm5uzZs0Kzpw5TuPGjdHT2wvcQFv7ILa2RXB3dwdUb669vLzQ\n0TkFZAPxwEXk8g48fuxI5849PnrthYVMJqNRo+a0aNEFH58RODk5c+PGB8WN1agpcNTpT2q+GgRB\nwH+MP4sWLULPTA8DC32azGvM0aHHqVehHvPmzftoC8aqtatSYZozjo1Vb5vOzjmH08MyrFy68rP9\ny8nJYdGSRVy5cYWKzhUZPnQ42tra1G1cl2K9zXDpoeqsdHjIERoUacTM6TORSqXo6+uTk5ND3UZ1\nybKRYtvAhtt/3aFBpYaMGDKCpi2bomWixYu4F/Tv2595s+ZRp1FtrAdaUcFH1e7w+OhQqivdWTBv\nwTt9c3R2pNnOplhUMAfg/IIInB6UZvni9z/o4+LiqFzNhaqjq2LhUoyImReoX8aDCaMnUK9RPfTt\n9ZCmZmFtZE1oSGiBtY28fPkyDZs2xMm7FHKJnKdhz4g8G4mdnV2BzK9GzY/C/v376dSpF1JpE6AY\n+vqHGDGiO9OnT/ngeaNGjWH+/HMIQuP/PonFweEsDx68W/O2d+/+bN0aQVaWF5CJvv52Nm1aQbt2\n7d4ae/PmTdzcaiOReAPWiMWncHVVEBl5JlfXlJ2dzZQp0zl3LpLy5cvwxx9T32jSkZGRQZcuPTl4\ncC9KpSbQFFVwJEFPbzkSSXqu5iloli9fjr//EqTSTqhqYCKpVu0FkZEF0yb9W+SbSX9aVgBr48Hf\nTvcnNWryBZFIxPw586lTvw6OdR1oG9SGtNg05Mk5LF68OFc93TU0NFDkvC7aU8qFfCkwFgSB9j7t\nCTi8lqTqCQSGrqdNh9YolUqSk5MoVvZ1ulNR56JcjLqIqXlRTIqaULZSWe7fv8/xQ8fp6NIJi4tW\n/Orrz5rla6hYsSL3bt1jz4Y9XLt4jfmz5yMSiUhLT8fY/rXGiFFxI9Iy0t7rn6ODA7HHVLsLSoWS\nuBNxlCxR8oPXZGNjw6nQ0+ie1ePutPt0rufD8kXLcXBw4Pql6yyZsJSgRUGcPn66QPvQj/19LDUn\n16D5Kk9aBbXEqVtJZs6dWWDzq1HzvZOenk5ISAiLFi1HKq0BlAPMkUgasG3bm61Yw8LCcHAog4FB\nERo1ak5CQgL9+vVBX/8qItFZ4Ar6+vsZO3bEe+c7cuQYWVl1AB3AFInEhUOHVCm2S5YsoVevvsyb\nNx+ZTMbp06eB0kAJQBu5vAEXL4bj69ubli3bsW7dug92UtTR0WHGjGmEhh5i2bLFb3X9MzQ0ZN++\nXfz110YMDGyAyv8dicbe3uHVuISEBI4dO8b169dze1u/KHfv3kMqtQVU6cGCUJKYmAeF65QaNf8P\ndU2Fmq+O4B3BDBkxmJCOR7C1teVYyHGsra3fGpednc2I0SPYf2AfRUxMmPfHPEYOHsnQAUPJnJZJ\nVko2FxdEseDows/26e7du5yNOMvA+/3R1NbEtU9l1pQO4ObNm7Rs5sW+iXtpEdgcabKUyLn/kp2e\nTacDHbB1t+Hiyihatm1J9M1ofpvw21u29fX138pl7tSuExv8A/Fc05SslCwi5/zLxpXD3jr3JSsW\nrcSjiQcxwbFkJmRS3KwEQwYP+eh1OTs707t7b9YGreX6zWtERkZSu3ZtjI2N8fT0zPuNygeSkpMo\n6/w63crU2ZT4o+oUKDVqQKXDEhERgY2NDS1atMhziurDhw9xd6+LRKKHRPIM0EPVGb4IUIrMzAza\ntetM1aou+Ph0wsurHZmZLQBbTp06R8uW7YiMPMO5cyeZOnUW6enp9Oq1iK5du7x3TgsLC548eQao\nuhBqaydibV2HTp26cfjwJSSS0ujpnePAgcMMHjwADY1EVB2dNIBElEoRmzY9QBDMCAubRFzccyZO\nHPcpt+8VPj4+/P33bg4fXoNYXBRIYsuWEEAVSLVq5Y2mpgUyWTx9+vRk6dLPf458DjVquGFg8DeZ\nmW6ALmJxFNWqVStUn9TkE99RTYU6/ekHRKFQMH3mdHbv301Rk6LMnDzzVc7pt0TfgX059/gsHnPr\nkxKdwqG+hwk7EkZMTAyBWwLR1dHFf6h/vnzxXr16Fc8OnvS73fvllirrK24kOCiYihUr8suIX9i6\nZQvaujq0btGaf5Mu0HZ361fnLzBdzP3b9zE3N8/VfAqFgomTJ7Jpyya0dbSZOGYiP/X86YPnpKSk\ncP78efT19alTp06uOpls276Nwf6DqTezDrIMGWcmniNkX0ih/j5MmT6Fv44G4bWpJTmSHHZ7B/PH\n6D8+ev1q1HzvbNwYxM8/DwVKo6HxjCZNarJr17Y8BRatW7fn4MFUFIp6QABgDtQE7gPH0dKyISen\nCnp6d3Fw0ODRIy0yMtr8d7YSTc2ZpKenoqenl+s5w8PDady4OUplaTQ0MrGwkLN799+4u9cnK2sI\noAUoMDBYzYkT+xg5ciwXL8Ygl1ugVF5FqTRHoej1n7UETEy2k5Ly+S8aBEHg4sWLpKSkULVqVUxN\nTREEgWLFrElObgo4AVkYGASyb98WGjRo8Nlzfo6vQ4eOYPXq1WhqalOypCPHj4dgYWHx8ZN/UL6Z\n9KdFBbA2HlYw90IdVPyA/DrmV3af3U3dP2qTci+Fk6NPE346nLJlyxa2a7kmOjqaym6V6X+tzyuR\nt2P+x2ll1oZx4z7vDda7yMnJoYp7FUwaGePsU5bbO++ScCCRy5GX0dHReWPs2bNnad/Tm58u90Tb\nQJvEW4lsqB7Ei+TUDxZOf0mUSuU708BqN6pN8RF2lGmt2hk4/2c4trfsWb96fUG7+Aq5XM7I0SPZ\nEBiIpljMryN/ZfyY8YXSrlKNmq8FpVKJgYExWVm9AAtAjqHhev75J5AmTZrk2k65cq7culUNMAWW\nAaN4nQm9BqiHqt2qAh2dBWhqmiGR9PpvTAra2quQSjPznFb64MEDDh8+jL6+Pt7e3jx+/Bg3Nw8y\nM38GVH/bxsbrOXRoC9WrV2fnzp08e/aMO3fusGpVBApFq/8spWBs/BepqYnvvU8BAQGcP3+B8uXL\nMGTIkLe+oz9EdnY2+voGKJUTX/llYLCfhQsH0K9fvzxd85fgxYsXZGZmYm1trdYO+gjfTFAxvwDW\nxr+qayrUfCE2Bm2k5YZmlKhfHNfelSnfw5ldu3Z9/MSvhOjoaNzruIMOpMdlvPpcEif5YgJGWlpa\nHD90HJtndpzzC8fyoRUnDp9AW1ubxMREZDLZq7G1atWiRaOWbHTbxAHfQ2xpsJ2lS5flOaBIT0+n\nQ6cOuNZwpW/fvoSGhhISEkJqamqubWzasglTC1O0tLWo36T+W52UBEF4+dwEQKQhypPye05ODr9P\n/Z2aDWrStlNbbt16d6FmXhCLxSz+czGpyWkkxyczYewEdUCh5rsnKiqK4ODg93Z5k0gkyOU5qHYW\nQJW9bPnRzkj/n1q1aqCjcwnV41+OqgsSqNKNpID2fz9rIBbrU7q0Bfr6W9HQOIa+/mZmz579SYtZ\nR0dH/Pz8XgnNOTk5YWdniVh8DHiKpmYYRYpo4urqilgsxsfHh8GDB3P6dDgKxRVU+hPRiMU76N+/\nz3vn6dWrL8OHz2Lduof89ts6mjRpkauOVi/R0dHBxqYEcOW/T1IRhPsfFBwtSExMTLC1tVUHFGq+\nStQ7FT8gNiWsaRXshVVlVX7rgb6H6Fq+G7/++mshe5Y7RviP4IJOJGbOphwfdwK3QVVJvJlE2vl0\noiKict27WxAEps+cTkDgWjTFYkaPGI1ff79c+3H//n1atmvJ44ePUcqV/PnnnwwcMPCV7dDQUB4+\nfEi1atWoVKlSnq5RJpNhV8oOU7eilPZy4t+VF0l7mIZteVvSH2Rw8thJnJycPmjj4sWLNG7ZmI4H\n22NRwZwT40+ifVWH0JDQV2M2b9nMsHHDqD+7LrIMGafGneHgnoPUqlUrV372H9SfsNth1BjnRsLV\nRC7Oucjlf69gY2OTp+tVo+ZHZujQkQQEBCEWWyGXP2LTpsB3dkYqW7YS0dHWKJW1gDj09Xdw6VIE\npUvnvuVzeno6LVq04cKFC+Tk5CASFUWhqIyu7mME4REKRUXk8rJoa9/EySmLyMgzbNu2jbi4OGrX\nrk3Dhg3z7brj4+Pp338Qly5dwdm5LGvXLsfe/rUW0YkTJ2jduicZGS2Bk4AEDY2nJCY+e+f3/PPn\nzylRwons7F9QFYUrMDQM4MiRndSsWTPXfl25coXGjZuTlaVEJktn+vSpjBr1bTwf1bzmm9mpmFUA\na+OxavE7NV+IsaPGMaPjDNxGV+VFdCqPQh7T/Y/uhe1WrpFmSdG11sXFtxJGtkZcWneZ56Hx3Lxy\nM09iQH8u+pO1O9fQ7G9P5FI5v3X7DTNTMzp26Jir8zt07YC9rx2d/NuTci+FCR4TqFalGtWrV0ck\nEr2lEZKYmMjVq1extLSkfPnyH7S9ceNGFHpyOu3sgEhDRIUu5Vlgs5jWO724uuEaA4f6cfTAsQ/a\nOH36NGU7lMG6ikqBu/7UuswvuvANQaluXbuhpaVFQNBatLS0Cd4RnOuAQhAEAgMCceldiaf/PqP6\n4Gok/JvIvn37GDBgQK5sqFHzIyIIAjk5OWhraxMeHk5AwF9IJH1RFU0/oXv3nqSlpbwlXHroUDBe\nXt7cujUdQ8MiBAUF5imgADAyMuLUqePEx8cjFovZv38/Z86cp3TpJvj4+ODvP46rV6NwdXVhyZI/\n0dfXp3fv3u+0tWvXLlavDkRfX4/x40fh5uaWJ18sLCzYs2fHe49LJBI0NAwBa8AHUKKlteCNneH/\nP15TU5vXuy2aaGjoI5VK8+SXi4sLjx8/IDY2FnNzc7XInBo1uUS9f/YDMnTIUBbPWEyRs0WpIqvK\nhXMXsLKyKmy3ck23zt24MPdfbgffQayjSeqNNPxH+GNmZvbW2MCNgdiXssfMygy/IX5kZ2e/Ovb3\n7r+pN7suVpUtsatpS82JNfh79/Zc+aBUKrly4QruI1QBhKmTKU5epbhw4cI7x588eZIy5cvg97sf\ndZvUZbj/28qzcrmcK1eucO3aNZKSktAx1kGkoVr8i/XEaGpropApcWjqwP0HH28laGFhQeKVJJQK\nVYvd55efU9S86FupRJ06duLQnhD27tj7TvVxQRBITEwkPf3N/u3TZ0xH30ofU6eiPIt6xsaGm8jJ\nlOVZwf3/z5WWlpanFCw1ar4lDh8+jKmpBbq6ejg5lePs2bNoatqiCigAbJHLlbx48eKtcx0dHblx\n4xJZWVJSU5No27btJ/kgEomwsLDg33//JTs7mwED+uLv74+9vT3btv3FjRtRbN684Z3fqS8JCvoL\nX18/QkLE/PNPOh4eTbh06dIH5w0PD8fLy5uGDZuzefOWj/pZq1YttLSSEYnCgQdoam7F3t4WU1PT\nd44vUaIEJUuWQEvrKPAcDY0z6Oll5TnYAVUaVJkyZdQBhZovj6IA/hUQ6qDiO2H//v2MHjuahQsX\nIpFIPjq+c6fObFq/iSULlryx3fwtUL9+fTau2cj9OQ+IHHaRId2GMOrXt5W2jxw5gv8Efzy3NKFH\nRFdO3gtj9PjRr44bGRqR/vj1Qjn9cTrGRkVy5YOGhgbmNuY8PPUQAHmWnKcRT98r0NbFtwvNN3jS\n5WQn+t3szbbgrYSGvk5DSk1NpZZHLZp18KRxm8bs3LuTpFtJnJx2mifhTwj+aS8WFc0xsNDnyuor\nuFX7+EOyQ4cO2OnZsaX+dkL6H2FX2z2sXrY6V9f3v355NPXAwckBcytzBg0dhCAIKBQK/vjjD3qf\n7UUt/5q039IODbEGcWee4u3tnac5XhIaGoq5tTkW1hbYOtgSGRn5SXbUqPlaefToEd7enXnxohWC\nMJH790sxe/Z85PIHQMJ/o65gYmLy3oUzqBSyP6fOSBAEevXqS/v2fRg+fC316zdl+fIVebIxa9YC\nJJLmqHQe3JFIqrFixfu/X6KiomjUqBkHDuRw4oQR/fsPJyBg3QfnKFq0KGfOhOHikoBItAWRSMHT\npxLq1m30xguil2hoaHD8eAgtWlhhaxtC/foizp4Nw8jIKE/X9rWSk5ODv/8YSpeuRO3aDd77EkuN\nmsJCnf70HTD3z7nMWz6P8r3LkRCWyMatGzkXdi5PHS++NVq3bk3r1q0/OGbfwX1UHuKCbQ1Vfn/9\nOfXY0nIzZyPOYmRohE87H8aMGkPy3RTkEjl3Nt9l9em1ufZhY8BGOnfuTIm6xUm4mUg9t3q0atWK\nFy9e0G9QP8JOhGFhZcGiOYt4/uQ5pZqrxOh0i+hiX9ee6OjoV/nJ4yaNQ3BW0u9UHwRBYH/Pg7S1\nb0foquNELIhELBaTI81hsdUyHEs4sOzgso/6p6WlxdEDR9m9ezeJiYnUHVaXihUr5vr6AIaMHILU\nQcLwkF+QZcj423MnAesC6OnbE4VcgYG5ShRPJBJhbGnEqC6jPrgYeh+JiYl08GmP15YWODZ25Oau\nW3i18yLmbkyBCu+pUfM5JCQkEB0dTfHixbG1tX3r+MWLFxGLiwMOAAhCdVJTTzNr1hTGjBmPhoYO\nhoZ6hITs/+zmBIIgkJycjLGx8VtNIiIiItixIxiptBFgA9RkxIhf6dOnN7q6urm2/+Z7SQ0UCuX7\nhrN6dQASSTWgOgASiT5z5y6mb9/3F10D/3UlFCEILZDLqyCXK7l6dQdr1qxhyJC3tXjMzc0/mFL1\nLePnN5itW08ildYlOjqRBg2acvnyBUqVKlXYrqn5HL4jnQr1TsU3jlKpZNJvk/A51ol6E+rgvasN\n6dpp7N27t7BdK3RMTUxJu/9ahTrlXgoSmZRyU8tg1NWQYaOG4ejgiOOTkjQzac6F8xfylJ/s6enJ\n5QuXmdjtN7as2sLWoK2IRCJ8fH2I1Y+h23kfKv5eno5dO2JXwparQdcASHuSzoOjD97oJnLt5jXK\ndCqNSEOEhqYGTu1LkSZNI+FxIpJkCc9jn+NW3Q1NTQ0ePX1Mh64dyMjIeJ9rrxCLxXTs2JGBAwfm\nKqBQKpXMXzgfzzae+HT3Yf/B/bgOroyGpga6RXRx7lmWc5Hn0NbWpkmLJhzsF0LCjQSubLjKs3PP\n6dChQ67v3/9y8+ZNTJ3McGzsCEC59s5oGWnxIBdpXmrUfA3s2bMHB4fStGjRAyencixb9vabfysr\nKxSKeOBlTUAySqUMPz8/UlISuXPnCnFxsbi6un6WL9HR0Tg6lsXGpgRGRiasWfPmy5L58xcilUqA\nKFRtZJ+goaFNSkpKrucYOXIQ+vohwA3gIvr6kfj59X3v+HcFSbmNmx4/foRKYRtAA6nUigcP3t0l\n61vm8ePH3Lp1i5ycnHce37p1C1JpK8AeqIJcXpZ9+/YVqI9q1HwIdVDxjSOXy5HnyDGyVrVSFYlE\nGNsb52rBmRcEQWDu/LkUdyqOfSl7Zs+dXeh57+sC11HS2RFbR1vGTBjzVtvAwYMG8/xoPPt8D3Bs\nVCh7fPfiMb0+Dg0dqNyzEm5DqpFpnUHw/mC8Wnrh6OiYZx9KlChBp06d8PDwQCQSIZfLOR5ynKbL\nGlOkeBHKti2Dk5cTP/XoTcRvF1jtFMCa8gGMHj7mDYG5iuUqcvfvuwhKAaVCSfTOaCqVU3WMOnjw\nIJWqVSLBOJ7Bj39m0EM/MqzSmTh54mfdv3fhP9afZduWUuQnI56WeoJEKiHmuOrhLSgFnoTF4Vhc\ndZ+2/7WdStqVOOR9mOfrEzh68Oh7078+hrW1NYn3EpEkqlL3Uh+lkfosFUtLy/y5MDVqviCZmZl0\n69YTiaQTqak9ycrqzahR47h///4b42rUqEH79i0xMAhEX38/+vp/sXDhn+jq6qKnp4ednV2uRCs/\nhpdXOx4+LIVMNors7D4MHz6aqKgoAK5du8bevYeAIUAPoBewFzMzkzz9vfXr14+VK+dRp04iTZsq\nCAnZR/Xq1d87fsCAvujr/4tKvfsa+vqHGDVqWK7mqlmzJlpakaja3mZgYHCLihXL07JlWywt7XF3\nr8+tW7cQBIHU1NRCfzbllZfpaKVLV6B69YaULl2BR48evTVOLNbmdQtg0NDIRltb+61xar4x5AXw\nr4BQpz9942hra9PQsyEhPx+h5nh3nl54yv0jD2g4I//a/gGsXbeWhesX4rWjBYhgSY/FmJiY5KkF\na36yf/9+xvw+htZbW6JbVJcd/f5G9w9dpkya8mpMsWLFiIqIIigoiIzMDGLNH2JZ6bX6aE6mDJvq\nNtjXtmN90PoPPhBzi6amJjp6OqQ+TMOstEqdNS02jfItyvPgzgNiYmIwNzd/K0Vo5tSZNGnZhDVl\n1iEoBUo7lGbymsmEhITQvU939IrrUadXLTTEqvcAZbuVIWpR1Gf7+78IgsDKFSsZeLc/hlaGlGvv\nTNzFZ5yddZZ7B++R9iiN4kVLMDJwJKDqIrNh7cZ8mdvJyYkhPw9hVbVV2Ne2I/bkQ6ZOmUqxYsXy\nxb4aNV+SuLg4NDT0gJdBtSna2tZER0dTsmTJV+NEIhEbNgTg63uU2NhYqlatStWqVfPVF5lMxt27\nNxGEl7uGxYDSXLhwgSpVqhAbG4uOji1ZWQb/HbdEJBKzceO6PGsf+Pr2wNe3R67Gurq6cvx4CNOm\nzUYiyaB//4V07dr1o+cJgsCaNctp3bo9V6/ORalUMGSIP/PnL+b2bQPk8nYkJNzH3b02mppiMjLS\nMTQ0Jjh4J5aWljx58oQKFSpgbm7+0bkKi02bNrFz53GysgYD2khPsuArAAAgAElEQVSlp/D17cuJ\nE4ffGDdx4jimTJmPRFINsTgZY+NEfHx8CsdpNWregVqn4jsgNTWVAUMGcPLkSSytLFmxcEWu24Lm\nluZtm2Hoa0D5juUAuPXPbVLWpXJk75F8nSe39B3YlycVHlHjF1Ug8PjcYyKHXuRq5NX3nrN67Wom\nzphIjXFupD5MI2rNJfqE/8SVDVdxSanM4gWL88W3pcuXMmXOFMr/VI6kqCR04nU5e+LsR2tcFAoF\nN27cQCQSUa5cOTQ1NWnn0w5lczkJ1xORJktpvdYLRBDy8xGqabmxYkneiis/hCAIGBgZMPBefwwt\nVTtf/3Tfg42bNcYljAnusY/Y+7FftFNYeHg4d+/epUKFClSpUuWLzaNGTX4ikUiwsLAhM7M9qjSd\nRPT0grhx4xIODg4F6osgCBQtak5qalugOJCDoeEG/v57Dc2bNycmJoYKFVyRSLoCVsAtihY9zvPn\nj/Mk0Hn8+HF8ffuQmBhPtWo12LlzC9bW1vl6LWvXruWXX4Yjk2VRubIbGzasoXTp0iQmJlKmTEWk\n0uGo1DuzgD+BjkAZ4C7a2rvR0BCjo2OJXB7PP/9sp2nTpvnqX37h7z+K+fMvAi+77yVjarqdpKSn\nb43dvn07e/YcwMrKnNGj/dW7uR/gm9GpGFcAa+OZap0KNbmkSJEibAva9mXnMDYh5WHyq59TY9Mw\nMTb5onN+CBNjE249vPnq5xexqRgbGX/wnAH9BlDMrBjzl8zn8uXL1Bzrzu1dt7m05DJLji/NN9+G\nDBqCcxlnwk6GYdnUkr59++aqaF5TU/MtkTyRSISgEKg/qS6bmm1ledmVoBRhb2rHjMMz8s3nl3P1\n9+vPng77cBtdleeXnhN98B6lmpXk5oZbtPBq8cVbD7u7u7+RFqZGzbeAvr4+O3ZspWPHLmhqFkEm\nS2bx4oUFHlCA6u948+aNdOrUDbHYAYUinpYtG9GsWTMAHBwcWLduNb1790Uk0kZHR8yBA3vyFFDE\nxMTQunV7JJLWgB0REedo1qw1V67kXzeis2fPMmzYGLKyfgJMiYo6ROXK1Vm6dAFdu3ZBLpehCib0\ngETAAFVAAaCPTCYAA/7bkYmhQwcfXrxI/CqVqJ2dy6KvvxuJRAZoo6Fxh9Kly7xzbOfOnencuXPB\nOqhGTS5R71SoyRXXrl2jfqP6OPcoAyIRt4JuEXbsZJ6VovOLR48e4VbLjRKt7NEx1eHqmuvs/ns3\nDRo0yNX5/+z+h41bN6Knq8eoYaO+2rfiJ06cwNvHmzrTayEoBU6OP80fv//Bzz//nKdFQG5RKBTM\nWzCPkOMhmBiZoKmpSdKLJGq61eT3Cb9/1x3F1Kj5XFJTU7l//z729vYfTd3LzMxkyZIlxMQ8okGD\nevj4+Hx2x6f/5cGDB1y4oNIgqlu37lu2pVIpCQkJWFtb5/m7ZPPmzQwcOI/09Jc6GQJi8SxSUhIx\nNDTMF//nzJnDhAnByOUvdxekwJ/o6xtx8uRh1q4NJCgomMzMMujqxpCd/RBB+AUwAiKAO6hqRlSI\nxbN4/vzJJ3Wn+9Lcv38fV1d30tOTAC2KFDEkMvJ8noUN1bzJN7NT4V8Aa+N56p0KNV8RFStWJPJc\nJJs2b0IQBDaeDcLJyanQ/LG3tycqIorADYFkZ2ez9OhyKleunOvzvdt5493u0/QUCopnz55x6vQp\nWjRpQdz2JxQ1M+Wfbf/QpEmTLzanpqYmY/zHMMZ/zBebQ42a75UiRYrk6gVFdnY27u71uHdPQVaW\nFUFBe7h06SqzZv2Rb744Ojp+sPmEnp4exYsX/yTbpqamCEISKlUtTSAFDQ0Renp67xwvCAKhoaE8\ne/aM6tWr52qxbGlpibZ2PHK5ElVPmThUAYMTFy9eZPnyxdStW5Pz5yMpW7Yt//57icDA5aja9cag\nKupOAYoCNxEEvlohOy8vbzIzKwO1gThksr8L2yU1aj4J9U6FGjUFSEhICAFBa9HW0mbYoOHvLQ5/\n/vw5VWpUwa6FLfo2+lxefoXAVYGfrKCr5k1CQ0MZPmY4KckpNPNsxuL5i9+7IFKjJr8JDg6me/df\nycjojqomIAOxeDESScYX2YHMbxQKBU2behEREY1MZoWW1i1mz57CkCGD3xorCAKdO3fn0KEwRCJL\nFIoH/PXXuo+KZMpkMjw8mnD+/B3AArgHtMHA4BQ7dwa8Sud6SY8evdm06TaqOpFiwGXgImAMZGNh\nYcLz54/z4/LzlYyMDIoWNUMuH4fqdwEMDfeyfPkwfH19C9e5b5xvZqdiRAGsjRcUzL34+pILf0C2\nbd9GtTrVcK3pyopVK765dnjfGjk5OQwcMhDjosYUszJj/sL5BTJvcHAwXXt3ReKRSYJrPE1bNn2v\nIuqq1auwa2lL85We1J9Ul5YbmjN+yvgC8fN758aNG3h39qbs+NK02teC049P07RlU5KSkgrbNTU/\nCBKJBJHIgJeLSFVdgGoh/SXJysriwYMHSKXSz7KjqanJ4cP7WLNmGjNmtCMkZPergEIQBNatW0/X\nrj0ZO3Y8u3bt4uDBk2Rk9CY9vS0SSSd8fXt/9Dmnra3NyZPHmDTJD23taAwM7DAwCMXbuymenp5v\njdfR0Qb0USl82wKOgBngiZ6eJb6+3T/rmr8U+vr6iMVavFZUlwPx6gJsNd8k6vSnQmb//v0M/nUw\nnqubINbVZOrPUxGLxfTv27+wXftumfD7BELvhNL3Rm+yXmQxt+1cStiVoGPHjl9kPqVSScC6AKbM\nnkLjpQ0p195Z9blcYOmqpQS6Bb51TmpaKga2r5WkjeyMyMxn7ZEflUOHDlGuizPO7coC0DKgGYtL\nLKNS1UqEnw7H3t6+kD1U873ToEEDRKIhwL+AHTo6EdSsWR8DA4OPnfrJHD16FG/vTgiCGJCxZctf\ntG7d+pPticXid7aEHTVqDCtXbiMz0wVt7ZsYG69DJdb2cgfGBqk0k6ysrI/uDmppaTFlyhT69evH\nxYsXsbKyokaNGu+sPRk2bDDbtnmQmSkCdNDWPoWJiSEi0Rm6du2cr6lln8OVK1fo1Kk7MTH3cHIq\ny86dW1i5chk//zwckagMGhrPaNDA7Yumuar5yviOFLXVQUUhs2FLILV+d8epRSkAGsyvz4YFG9RB\nxRfg2bNnHDx4kG07t9F4Q0OMrA0xsjak6nBX/Ib64TfEjwYNGxCwIgATk/zrbOU3xI9jUUeR6WQj\n1nn9JyfW1UShePe3yb0H9zh/PAJbd1uMbA3Z3+8ArZu3yTefAI4cOcKKdSvQEGnwi98veHh45Kv9\nrxUDAwMyn2S++jk9LgO9orqU6eXExCkT2bB2QyF6p+ZHwMrKilOnjtO//2CePLlG3bp1WL162Reb\nLy0tDW/vTmRktENVc/CILl18iY2NzlctGLlczqJFi5DLhwKGyGQCmZkbUShuAzUAc0Si85QqVSZP\n6Yb29vYfDfZdXFw4c+YE8+YtJCsrmwEDduS5heyZM2dYunQVIpGIoUN/pmbNmnk6/2Okp6fTsGFT\nkpNrA624efMaHh5NiI2NxsXFhYiICGxsbPDy8voqu1SpUfMx1EFFIaOnq0dKyutWrdKULHTVHXby\nnZs3b1K/UX3sPGxJlaaSdCsJu5q2AMRfTcCyjgWeC5pwZvI5uvbqysE9B/Nl3qSkJDb9tYlfHg/i\n9p47HBp6GKVciSwzh7NTzhP8d/Bb5yiVSg7uP0iLVc04Ovo4ORkytHS0qeqSfyJZhw4dolvvbqqu\nUgqBtp3aErwjmPr163/85G+crl27Mm/RPHZ12Y2FizkXV0XhMaU++ub6PLn4pLDdU/OD4OLiQnj4\nqQKZ6/79+2hoGKEKKADs0dIy486dO/kaVCiVyv/Sml4+w0RoahahZ89mbNiwAblcTvHijhw8uO+D\nduLj44mNjcXR0TFP/lWuXJmgoPWf5PuJEydo2bIdUqlK42n37uYcObKfOnXqfJK9d3Ht2jXkcgPA\nFQBBcEMqjeLOnTtUqVLlq+1CqOYLo96pUJNfjPzlVxo08UCeJUesJyZyzr/s2rqrsN367vAf70+1\nsVWpMcyNJxFxbGq6mSdnn5CdIuPe8fsMvKESfGu6tDFzjf9EqVS+9aZILpczaeokdvyzA0NDQ2b8\nPoPmzZt/cN6srCy0dbXQNtTGxbcSIg0Rh34JQVNbE3c39zd2B+Lj4+neuzunw04jl8txalkKl56q\nlr17OuzNlwLOa9eucffuXeYvno/H/PpU6lbh1bFFKxb+EEGFsbExkWcj6dKtCxGrI2i6oAkODUuw\nu10wfVv1K2z31KjJd+zs7JDJUoAkVHUGL8jOTvjk7k/vQ1tbmxYtWnH06F6ysmogEsWhqfmYKVMm\ns2zZUjIzMzE2/rCeUFBQEH5+g9HSMiMnJ5kNGwLo1OnLpKb+LzNmzEMqbQCoFvZSqSazZv3J3r2q\noEIQBFasWMnq1YHo6ekxdeqEPO+EmJqakpPzAshGFXhJyclJ+yrb3KpR8ymo99cKmcqVK3Mq9DTl\nEipQ8oETB/ccpFGjRoXt1nfH0+dPsapqAYBtDRtqj6uN4qKS6kY1sKlgg4GFKpf5RcwL9A3135mz\nO37SeLaf2IbHhnqUGe9E115diYiIACAlJYW4uLi3ig9tbGwoW9aZAwMP8ezyczKeZiDS0KD2mFro\nG+m/MbZD1w5InDP55fEgyrYrw19Nt3Bz1y1OTAjj3vF7HDi8nzt37nzyPZg9bzb1m9bn9/WT+Dfq\nX2LDYl8d0xBroPyBGgSYmJiwf+9+OrfqTHC3vSy2XkoTl6aMGjmqsF1T8wMTERFBo0bNcXOrw4IF\ni/KtaUexYsVYtOhP9PQ2UqTIdvT01jNz5jTs7Ozyxf7/sn37Jnr1qouT03nq15dz9mwYlpaWaGpq\nfjSgePr0KX5+Q5BKfUlL+wmptCu9evUhJSUl3/38/8hkObyu+wDQ/u8zFUuXLmP06OlcvlyG8+eL\n0a5dZ86cOZOnOcqWLUuXLp0wMPgLsfgIBgZBDBjQ/4v8P6j5hsgpgH8FhLqlrJofglHjRrH/yj5a\nb/UiJzOHHS3/4bfBv+Hb3ZfaDWqTbZFNMVdTrgfeZPrE6QwcMPAtGzaONrTZ64VFRVVwEjb5FDWz\nayHJkhCwNgAtXS1Kly7NoeBDb2zZJycn09SrKbeib2HhYk5Nf3fCfj3FjLEz+KnnT4Cq64uBoQFj\nJP6qBb5CycbafyEkCaRmpFF7Yi1kqTKuLLnKxYiLFC9eHKVSSVhYGCkpKdSqVQtra+v3Xn9MTAyV\nq1emz+VeGNkYkXI/hZUV1tBsiSdaemLC/E+xbeO2PL95+x5QKBSAqqONGjWFxfXr13F3r0NmZn3A\nGAODU4wZM4DffpuQb3Pcv3+f27dv4+Tk9FUKq505cwYvr16kpr5upWpsHEBYWDCurq5fdO4dO3bQ\nq9fPSCRNAAF9/aNs3br+VTG7s7Mrt29X4XUK2Rn69i3J2rUr8zSPIAgEBwdz+/ZtKlSoQMuWLfNV\n9FDNa76ZlrK9C2BtvF4tfqfmM8jIyODq1auYmJjg7Oz8w39pTZ88nTi/OBYUW4xIQ8SwEcPo16cf\nIpGIM6FnWLduHc/jnzN5w1QaNmz41vn+Y/1JSU1BkiB59VlWvJTo59FciL3AkEc/o2Osw7GRx/H7\nxY+/N/3N7t27efz4Me7u7kSeieT3qb+zeu1qTgw8ycihI+nl2+uVLS0tLXT0dEi6m4x5uWKIRCLE\nGlq8SHtB12M+WFZSBTKZcZls3rwZf39/WrdvzbUHVynqWJTHPz/hwJ4D7y0sfPToEealzTGyMQKg\naMmimNmbkhSUjHERYzav3/xDBhSgDibUfB1s2bIVicQFqAZAZqYRy5evydegomTJkpQsWTLf7OU3\nJUuWRCZLAOJRaVM8JSfnBSVKlPjic3fs2BGFQsHcuYsRiTQYO3bVG92xVOmnr1v+ikQ5aGvnPSVV\nJBKp9YbUfLeog4rvkBs3btC4eWN0LXRJe5qKV/NWbFi74YcOLHR0dNgUuImNARsRiURv1Evo6ekx\nePDbok0vOXfuHBu3baTJvEbs7hFMjeE1SI1N5WHwI8o3r0iZ2qXRMdbh6cVnmFezIPz3cLw7t+PK\nwytYVbdiyuwpzJg8g2mTpzFt8rR3ziESiVi4YCFjmozB2acMCVGJFDcqjkRXgqbWa181tDRQKBVs\n3ryZ6NS79IryRUOswY0dN+kzsA83Lt14p31nZ2eS7iby6Mwj7OvYcy/kPjmpco5GHf2ibSzVfD9E\nRkayYMFS5HIFgwf3/2G6hRUUmpqaaGgo+G/jDJD/cAGvtbU1q1YtfVVTIZcnExi4rsCUsH18fPDx\n8XnnsUmTRtOr10Ck0lREoiz09S8xZMiX69il5gfiOyrUVqc/fYe41a6GVS9LqvpVIUeSwxaP7cz2\nn/3eL8sflWvXrnHu3DmsrKw+2MJv8+bNzNszl1bbWhITGsPtPXeJWnWJqAtRHD5ymNWHV6PQlJN0\nKwktI21e3HmBmYMZP0X5oqmlSXJ0MutcN5Cemv7RRcK5c+c4ffo0VlZWdOnShekzpxO4Zz21p9bi\nxYMXnJ8SQeS5SLZu3UpI5kEazmwAQGZ8Jmud15GanPZe24cOHaJLjy6gCWKRmF3bd/0QhdlqPp+I\niAgaNvREInEHxOjpnWX37m3vFCFT82k8ePCAypXdyMhwRRCM0dc/x5w5kxg8eFBhu1agKJVKAgMD\nuXz5Mg0aNPio8nZBEhISQkDARvT0dBk1agQVK1YsbJfUfIBvJv3JtwDWxkEFcy/UQcV3SBGzIvS7\n2ftV8XHohDCa6ngyadKkQvas4ElLS+PPhX/yKO4RHnU88O3hi0gkYtv2bQz8ZSClvZx4fjkelxIu\n7Nmx552BxbVr16jXpB7dT3fB1MmUa1uuEznhXx7ee4hMJqNC5QrkWMjocawbmlqa/NNtD7JUGT77\nOwGqHNq5hn8S/zT+o4WK/x9BEFi0dBG79u6iaBETpk6cRuXKlTl8+DA9B/nSJcwHIxtDwiaeQvyv\nFscPHf+gvZycHBISErCwsEAsVm9UqskdnTp1Z8eOZOBlet0V6tVL4+TJI4Xp1nfH7du3mT59Fi9e\npNOjR6cf7kWQIAh06tSNQ4fOIZPZoaV1l27dvImJeUxGRga9e3enf/9+P/Suu5rc880EFV0LYG28\nRV1ToeYTKV+xHNc23cB9RHWyUrOI2RdLxd9/vDcqUqmU2h610K6kjaW7BRPmT+D6revMmj4Lv5/9\n6HS0A9ZVrFDkKNhUcwsHDhygVatWb9mpWLEiv435jfFVxyPWFaOh0ODIgSOIRCJ0dHRo1qwZd4rf\nRlNLtQvh0rsSO7x38eB4DPa17Tg/N5wy5crkKaCQyWRoaWkhEokY/stwhv8y/I3jnp6eDBswnCml\npyDWEeNU2okDuw+8155SqUQikWBoaIiNjU2u/VCjBlS/j292xtEiJ6cAW4r8IJQtW/aTdRa+By5c\nuMChQ6FkZvZD9TtWkrVr1wHNAGuuXJmMRCJh+PBhheypGjVq3oW6pex3SFDAX9xefocA5/WsLLmG\nNg3bfFVbyAXFoUOHyDHJwWtDC6oPdqPzkQ4snL+ArKwsMtIysHRRFT9ramli7mLOs2fP3mlHKpWy\net1qqvRypeXq5tjXtmPW/FmvjlerXI17O+4hy5AhCAIPjz2iapWqHO9zgjlG85EcyWL/P/tz5fOD\nBw9wreGKnr4eZpZm7Nmz571jx40ex4vkF8TcjSEqPOq9wULgxkCMTIwwMzfDxc2Fhw8fAnD06FFc\nqrtgX8oevyF+SKXSXPmo5sdj0KB+6OmdBm4At9HXP86QIf0L2y013xlJSUmIxaa8DmDvAVUBTUCO\nRNKURYtWFJp/atR8Eb6jlrLqnYrvECcnJ25fu83du3cxMTH5YXtgZ2VloVtU99VWuW4RXQRUW6Ku\n1V05M/0sdSbW5vml59zdH00t/1rvtHP69GnkRjk0WdwIkUiEU/NSLLJcSmJiIsWKFeOnn37i1PlT\nLCu+El0jXSzNLDl64ChWVlYIgpCnrfpW7Vth09WK8efHEBcZx0+texFeLoIyZcq8c7yuri66urrv\ntRcVFcXIMSPpGd6DYs5mnJ15Hm8fbwJXB9Kxa0eaBTTFrKwZJ8ecYuAvA9mwdkOufVXz49CsWTO2\nbg1k+vR5KBRyhg//k+7duxe2W2q+MypXrkx29kNgJ1ABeAAkA2WAdCADQVALxalRkx+IRKLmwEJU\nGwwBgiDMfs+46sBZwEcQhA+qM6uDiu8UHR2dH76IrFGjRgwd+QsXlv+LbU1bLsy7gGeLpsTExODt\n5c36zeuZNX0uRiZGrFmxhgoVKrzTjiAIIBK9Dg5EvBEoaGhosH71emZMmUFmZiaOjo6vCrLzElCk\np6dz7/Y92o9qi0gkwtbdFsfGjkREvD+o+Bjh4eGUbuWEeTmVbkat0e7MnDSHAwcOUL67M2XbqOx6\nrmxCQIVAWPtJ06j5AWjTpg1t2rQpbDfU/D9SUlL466+/yMzMxMvLi0qVKhW2S5+EIAj07z8IkagY\nYADsQ0NDgVLpBbgAArCVatXe/T2tRs03i+LjQ/IbkUikASwFGgNxQKRIJNojCMKtd4ybBYTkxq46\n/UnNd4ulpSUnjoaRtVfGqd6ncTOpQf+fBlCzXk2CY3ejaaVB5aouPIl9QqeOnd5rp27dumi80ODo\niOPc2XuXYJ99NGrc8A2BO1C1QwzeH4ylnSXGRY3pP6j/f7nouUNfXx9NsSYJNxIBkGfLib+agJWV\n1afdAFSK3s/+ffZ/7d13fFTF+sfxzyQhIQkdQq8RGyBFmhhAFFCqoFcRUFFQBNsVRaWJ4M+GSFER\nULyIgiBcwKsioUoXUAGlg1TpLaGlt/n9sSEEKQE22ZNkv+/Xa19yNrNznhx1Oc+ZeWZITnB9ax38\n7RBFQoqQP39+og+d33Pj7MGzBOfT0rIiOUlERATVqtXi9dcnMHDgT9xxRyMWLlzIsGEjCA29lZtu\nuo2vv57odJhXZeXKlSxZ8iuxsY8DLYAepKQkAEVTWxigHGXKlHMsRoBTp07Ro0dPWra8nzFjxpKS\nkuJoPOdYazNtB3bxCvWAHdbav621icBU4FIbqLwIzMC1eUyGlFRIrrBlyxbad2hPWNMw3h3ybtou\nyVWrVmXRnEVsW7+dL8Z8Qe9+vWk9uSX3jbuXDgsfIrZYLJMmTbpi30FBQfyy5BeqxFXl2NgTtL3t\nfqZPmXFRu5kzZzL006E8vOhfPL21K8t3LWPAoKvfuMrX15exY8Yyrel05nSdx6R6U7izxp00bdr0\n2i5GOm3atOH2yrWZWGcyP3UK53/tfmDCFxN49NFHidoQzewn57DivV/4X/sfeeetd677PCLieaNH\nj+H48RDi4tqRlNScmJgWPPpoVwYNGsGePWHs2HE7zz3X+4q1WZ6wcuVKHn+8K126dOP333+/ZJuT\nJ0/i61uE8xMo8uHrG4C//ypcC/mfIihoE02bnt+cdN++fXTq1IVGjZrz3nsfpH3vZ5WjR49SsmQF\nxo1bzNy5Kbz44ts88cRTWXrOjCQkJPDYY0/i75+XwMB8vPnmYCUXOU2SB14XKwPsT3d8IPW9NMaY\n0kB7a+1YXFl9hjT9SXK8/fv30+juRtTpV5uKVcrz5dtfcvzEcT4a9tFFbU8cO5FWoG2MoWj1Ihw/\nfjzDc4SEhPCfsVeeGzR7/mxq9aqRNtUo7O07Ce85mw/f//Cqf5cuj3WhZvWa/Pbbb5R+uDQtW7Z0\na/lEHx8fZk6dyc8//8zRo0ep/3/1ufHGGwFYs2oNn33+GSciTzDgq4FuJS8i4nknTkSQmFgo3TtF\niYw8TVLS/YDriX5MzJ189dUUx3ZxXrp0Ka1atSMm5g7AMnNmcxYunEODBhfWsNWtWxdrDwObgUr4\n+q6lfPlyVK5cgZ9/HoKfnx8DBgxO+z0iIiKoXbs+J0/eQnJySdat+4K///6bzz8fk2W/S5cuXYmP\n9wc6Aj6kpNzGlCkjGDVqJIUKFcro41miX783+O6730hKepmkpASGDx9PaGglnnzyCUfikWzixBKI\nWOJuLx8BfdIdZ3gzoqRCstzevXvp/GRnNv65kQqhFZj4n4ncfvvtmdb/999/T2ibStTvVReA4tVC\nGF/1y0smFXc3vZvlA3+h2Sf3cHLXSbZM2sZ73w65qN31KFakGFu2bU47PrEtgiJFil7hE5dWvXp1\nqlevnikxgSuxaN68+UXvFy5cmH59+2XaeUQkayUmJuLj45NWs9W2bWvGj59MTEwlID+BgUsoWLAo\nR45Ep33GmGjy5XOuuPmdd4YSE9MEqAVATIwfQ4aM4Icfpl/QrkSJEixYEE6nTk9w+HA4t91Wkxkz\n5lO+fHkSExNTdxw/P7li9uzZxMYWJzm5SWq/5fnyy48YO/bTy25k6q49e/4Ggjg/ycMfaw1xcXFZ\ncr6rER4+n9jYO4BAIJCYmFqEh89XUpGTZMWO2oWauF7n/PXWP1scBMqnOy6b+l56dYCpxvVksxjQ\n0hiTaK398XKn1fQnyVJJSUk0b9WM4JaB9Nj1NDf2voH7Wt9LZGRkpp3D19eXlITzw95J8ckYn0sn\n1BM+n0CxYyEMKziSaXfPYOjbQ2nUqFGmxNG7V28Ozj7ErE6zmffcApb1Xsawd4dlSt8i4r1iY2Np\n1+4hAgODyZs3iD59+mOtpXnz5owaNZSQkNnkyzeBDh0aMGnSFwQFLQaWYszPBAevo2/fVx2LPT4+\nAfBP904AcXHxl2xbv359du/eRmxsFL/9toLy5V33PHny5LkoUXBiik9Y2J3AcWAFrtrWHylZsiQl\nSpTweCznlChRAmPOT3fPk+cEpUtffx2eeI3fgcrGmArGmHPDbxckC9ba0NRXJVx1Fc9dKaEA7agt\nWWz37t3Ub1KPZ/f1SHtvWpMZjH5jNM2aNcuUcxw9epQatXFP7GsAABuPSURBVKtz85M3UaRKUdYM\nXUu3B7vx1psXZeZprnWp16sVGRnJtGnTiIuLo23btlSuXDnTzyEi3qVnz+f5+uvlxMXdD8QTHDyN\n0aPf5oknLv00eu3atXz11ST8/f145pnu3HzzzZ4NOJ1p06bRrduLxMQ0ByxBQfP59tsv3V5JLCIi\ngltuqZY2/SkoaA2PPtqcceOybvrT2bNnCQtrwubN27E2hWLFirJ+/W+UKlUqy86ZkY0bNxIW1oSk\npFB8fOIpUOA0f/75O8WLF3cspuwix+yo3cwD98YLL74WqUvKfsz5JWWHGGN6ANZaO+4fbb8Efspo\nSVklFZKlIiIiKF+pPD13dSc4JJikuCTGV5lA+PQ51K5d+7r63LNnDy+99hJ79+2lQb0GDB8ynMjI\nSN4e8jbHThyj9b2t6f5U9yxJGiTrTZ8xnf6D+xMTHcO/HvgXwz8YTp48eTL+oEguVblyNXbtaoBr\nhgLA73TuXIzJk79yLKZr8c03kxk+fBTGGPr2fZkOHTpkSr/79u2jT583OHDgMC1bNqNPn1fTpoZl\nlZSUFHbt2oWPjw+hoaEe+XvmzJkzxMTEpI5KXHy+AwcOMHv2bPz9/XnggQccq+/IbpRUpHOJpCIr\nKKkQt1lrGfLhED4d+ynWWp7v+Tz9+/RP+/Lr/2Z/vvrvBELbhXJwySHq3ViPqZOmXteX8alTp6hS\nowpVnr2V8neV5Y/R6ykWWYwF4QuJjo5mzpw5xMfH06xZM0eHpOX6LF++nHYd7qfNt63JXzofC59f\nRKuarRn54UinQxNxTOPGzVmxIgBrXXVj/v4/8cor9/L+++9e1efj4+MZOHAwixevIDS0AsOHD8kx\nm6Jaa/njjz84duwYtWrV8qrvdWstvXr1ZuzYsfj6+nPzzTexYEE4ISEhl/1MVFQUcXFxFC1a1Osf\nrOWYpOJuD9wbL1ZSITnE5198ztuj3qbNlJZgDLM7z2HA8wPo+UzPtDbh4eH88ccf3HDDDXTo0OG6\nC+lmzZrF65+8zsMLHgQgOTGZkUU/YdOfm2jVrhWUsAQUDODQqsMsX7ScW265JVN+R/GM3q/3Zl3B\ntTQaEAbA8S3HmdN+Hnv/+tvhyEScs2nTJsLCmpCcXB5jYgkJSWHt2tUULlz4qj7frt1DLFiwldjY\nWvj6HiAkZDfbtm2kYMGCWRy5e6y1dO3anRkzfsTPrxjJyUeYPft7Gjdu7HRoHvHtt9/SvXsfoqM7\nAn8CKwkI8OX//m8gr73W+4Kk4VwCMmbMGHx8/KhRowbz5v101f+N5EZKKtLxUFKhQm1x2/9++o4G\ng+pTvFpxilcNocHg+sycNfOCNq1atWLAgAF07NjRrZU5/P39STgbn1aklxSbREpSCqPHjiZf/WA6\nLHyIdjPbUqfv7fR6vZdbv5d4XsH8BYnaF5V2fHrfGYLz5XMwIhHnVatWjW3bNjJmTC/Gj3+LjRvX\nXfXNYlRUFOHhs4iNfQC4keTku4mOzsfixYszNcYVK1Zw0023UaRICdq1e5hTp0653efcuXOZMWMu\n0dHdOX36EaKiWtGhw6OZEG3OsGrVr0RH3wxsx5VUPEZ8fCfeemsk//nP+AvaTpkyhfHjZ5CU9BIJ\nCb1Zvz6Zp57qealuJbtxZp+KLKElZcVtBQsUInJPRNrxqT2nKVwwa56ONGnShPzJ+Zn9xBzKNC7N\nlglb6fJkF45FHqNk/fPD4qXqleL3SWsz9dybN28mPDyc4OBgOnfurHmrWaBnj56Mqz+O8KfmElwm\niA2fb2LS+CtvTijiDUqVKkWXLl2u+XPnn2an3/k5mdjY2ExbsGL37t20aNGW6Oh7gWbMnbuCBx98\nhEWL5rnV7549e0hJKcv51aNCOXbsW5KTk7O8diI7qFw5lMDA+cTGJgF3A66C8JiYhkyZMoPu3Z9O\na7t8+Uqio2/FteQtJCTUZvXqcM8HLV5NIxXitkH9BrF26Drm/3shC15ayJohaxnUb1CWnCsgIIDl\ni1bQsmIr8q8oyCuP9uazTz/jrrC72Pj5JmJOxJAUl8SaYWu5q+FdmXbeRYsWEdYkjP8dnMm4pZ9T\nq16tTF0WV1yKFy/Oul/X8dBND9PQNmberHm0adPG6bBEcqzg4GAefvgRgoJmApvx85tHdPQ+Hn/8\nSQoWLMqCBQvcPsfixYuxtjJQBShEQkILli5dRGJiolv91qxZE2N2AacBMGYdlSvf6hUJBUCPHj2o\nWbM4vr5HgfMjP8acpmDB/Be0rVy5EnnzHuJc8mjM32lL8ko2l4tGKlRTIZliz549TPl2CgCdOnYi\nNDTUo+e31vJav9cY9dEnWAtt2rdh8leTCQwMzJT+a9avyU39KnNLe9fSjLO7zeHByv9iQP8BmdK/\niEhWSUpKYsiQD1m0aBkrV/5CfPxduPa12ktw8Pfs3LmVkiWvf2+D6dOn063bAKKiOuPadDeSgID/\nEBsb5fZIyIcfDueNNwaSJ08QBQoEs2jRPK+qlUtKSmLSpEk899y/SUx0bYoaGLiVlSuXctttt6W1\ni42NpVGjpmzffggfn2B8fY+zYsUSqlSp4lTojssxNRUNPHBvvEqF2iLXLCkpieTkZAICAjK134o3\nVaDl9/cRUsW16sYvQ1ZS/URNRg7TqkQikjPs3LmTmjXDiI5+Lu29ggWnMn36JzRv3vy6+42Pj6du\n3TB27ownLq4YgYGbeeedAbz88kuZETZnzpwhMjKSsmXL4ufnnbO2d+zYwTffTMYYw2OPPXrJPZAS\nExNZunQpMTExhIWFUbRoUQcizT5yTFJRxwP3xmuUVIhkG8/++1mW7V3KfeOac/ZQFP9r/wPfjv/W\nrb+IRUQ86fTp05QoUZr4+O5AYSCWwMBxrFmzwu0n2rGxsYwfP55Dhw7TpMld3HvvvZkSs1PWrFnD\n9OkzCAwMpHv3pylTpozTIck1UlKRjpIKEUhISMDPz8+tFaMyQ1xcHM/++1m+m/kdQcFBvD34bZ7u\n9nTGHxQRyUZGjRpN375v4uNTkZSU/fTo8QQjRnzodFjZyoIFC2jf/mFiYmrh5xdH/vy7Wb9+DeXK\nlXM6NLkGOSapqOWBe+M/lFSIFzt79iyPPP4IC+csxMfXhwFvDGBg/4FOh5UjJCcn8+6Qd/lu1ncU\nLFCQ9wa9R1hYmNNhiUg2sX79ejZs2MANN9zAnXfe6XQ42U7NmvVZv74irsJz8PVdQK9eDRg2TMlX\nTqKkIh0PJRXeOTlRsr0XXn6eIwUO89rZV4g+HsPYZmOpektVHnzwQadDy/b6v9mfGUum02hYQ07t\nPU3r9q1ZsXgF1apVczo0EckGatSoQY0aNZwOI9s6ezYKKJB2nJycj1OnzjoXkORuHlydKatpSVnJ\nlpYuX0b9vnXx9felQJn8VH3qVhYvy9zNmnKrid9M5L4v76V8w3JUf6wa1bpVYeZ3MzP+oIiI0Lnz\nwwQFLQKOAnsICvqdRx75l9NhiWR7GqmQbKlkyZIcXnOEkCohWGs5tuY4zW4v63RYOYK/vz8JZ+LT\njhNOJxJQ2L3VsE6dOsWqVavImzcvDRs2JE+ePO6GKSKSZaKiojh48CBlypQhX7581/TZwYMHkpiY\nyNdfTyZv3gDefXeUFuWQrJOLRipUUyHZ0tq1a2neqjkV765A1JEoAqMC+WXJymv+y8Ebff7F5wx8\nfyB1X6/Nmb1n+GvSDtb99sd1r16ya9cuGt3TiAKVCxAbGUOp/KVZNHcRQUFBmRy5iIj7Zs2aRceO\nj+HjE0RKSgxTp35D27ZtnQ5LPCzH1FTc6oF7460q1BYvd+DAARYvXkxQUBCtWrW64kZ21lomfjOR\nn+b9REiREPq91s+rV+r4/vvv+e6n7yhUoBCv9nrVrZ1VW9x/HymNk7nj1frYFMsPHWbRsU4n+vft\nn4kRi4i4LzIyknLlQomJeRgoCxwgKGg6+/fvpkiRIk6HJx6UY5KKyh64N96pQm3xcmXLluXxxx+/\nqrbvD32f0RM/pc5rtdm4fQN176zLhrUbKF68eBZHmT21b9+e9u3bZ0pfe/bupfFbDQEwPoYyTUqz\ne/PuTOlbRCQz7dy5Ez+/wrgSCoCy+PkVZteuXUoqRLKYCrUlVxgxcjjt/3c/NZ6szt3v30Xpu0sx\nbdo0p8PKFerVqcf6zzaQkpxC3Ok4tk/+i/q16zsdlojIRSpUqEBCQgQQkfpOBAkJEW6N1srV2759\nO5999hn//e9/SUhIcDqcnCHZAy8P0UiF5ApJScnkCTpfPOwX5EdSUi6qfnLQqBGjaP1Aaz4pPprE\n+ES6PNGFp7o95XRYIiIXKVGiBB9/PJxevV7D378UCQmH+fjjEZQoUcLp0HK9efPm8eCDj2Dtzfj6\nnuSDD0aycuUSAgLcWyhEcg7VVEiu0OvVXvz02ywaDL6DyO2RrBr0K2t/XUulSpWcDi1XsNZy7Ngx\nAgICKFSokNPhiIgAEBsby+uv92fp0hVUrFieTz4ZTsWKFdm7dy87d+6kcuXKVKxY0ekwvULZspU4\neLARcANgCQqaxiefvMpTTznzECrH1FSU88C98X7VVIhcteEfDKfIkCL8NPgnihYpyuIFi5VQZCJj\njJ70iUi2067dQyxfvo+4uNps2XKA1avD+OuvzVSsWFHJRCaLjo5m7ty5JCQk0KxZM0JCQi74eWRk\nBFAy9cgQH1+Mo0ePejxOcY5bIxXGmKFAWyAe2AV0tdaeuUxbjVSIiIjINUtMTOTEiROEhITg5+ea\n3tqx42PMnDkd6M+5Z6T580/n66/f5oEHHnA03tzm5MmT1KnTgGPHAALIk+cIq1Yt4+abb05rc++9\nrVmyJJLExGZAJIGBU1mw4EfCwsIciTnHjFSU8sC98WHPXAt3C7XnA1WttTWBHUA/90MSERERcZk9\nezaFC4cQGnorISGlWblyJSNGfER4+FpctzHn6ucskIifnyZhZLb33/+AAwfyExXVkaioBzl1qhbP\nP//yBW2mTp3EHXcE4+PzPkFB3zBq1FDHEgpxhlv/51lrF6Y7XA1oH3u5ahEREWzZsoWSJUty4403\nOh2OiIhkM0eOHKFDh0eJiXkIKEdc3F+0anU/DRqEERt7G1AImALUBv6mWDFD06ZNHY05N9q7dz8J\nCaUA18Nua8uyf//vF7QpUqQIy5YtJDk5GR8fH4zJ1oME2Uei0wFknsxcUrYbMCcT+5NcbNmyZdx4\n64107dOVug3r0veNvk6HJCIi2czWrVvJk6cEcG4z05tITs5D8eJF8fffD7QEqgCrCQ2NYc2alQQF\nBTkWb27VrFkTgoM3ADFAInnz/s499zS+ZFtfX18lFF4qw5EKY8wCIH2FpsE1xjjAWjsrtc0AINFa\nO+VKfQ0ePDjtz02aNKFJkybXHrHkeNZaOnR+mJaT7uOG+0KJjYxlQp0vadOiDQ0bNnQ6PBERySbK\nlStHQsJR4CyQH4ggMfEsb731JqtWteHIkSmAH8HBfixZMl8b3GWR7t2fZvPmbYwZ8xHWWpo2bc2I\nEUOdDusCS5YsYcmSJU6Hce08uI9EVnN7SVljzJNAd+Aea238FdqpUFsAiImJoVDhQvSJezXtaUZ4\nl7k8f/cLdO3a1eHoREQkO3nrrXcYOnQkfn5lSEzcz8iRH9CjxzPExcWxdOlSkpKSaNy4Mfnz53c6\n1FwvMTGR5ORk8ubN63QoGcoxhdqFPXBvfNIz18Ld1Z9aAMOBxtbaiAzaKqmQNBUqV6DOe7dTtUMV\nzhw8yzd3TGHOd3OoW7eu06GJiEg2s2HDBnbu3EnVqlUvWHFI5HJyTFKR3wP3xmdzRlKxA/AHziUU\nq621z12mrZIKSbN27VpatWuFXz4/Th85zaA3B/HaK685HZaIiIjkAkoq0skJScU1nUhJhfxDbGws\nu3fvpnjx4hdtoiOecebMGfz8/FTYKCIiuUqOSSoCPXBvHJsz9qkQuW6BgYFUrVpVCYUDYmJiaPNA\na4qXKk7hooV55rlnSElJcTosERERyaGUVIh4oT5v9GF/nv30PtmLXkdf5OcNC/l0zKdOhyUiIuJd\nEj3w8hAlFSJe6JfVv1DrxRr4+vsSUCCAak9X5ZdfVzgdloiIiORQSipErsKPP/5InbDaVK1dlQ+G\nfUBOrw+qUK4C+5cfBFz7hhxacZgKZSs6G5SIiIi3SfbAy0NUqC2SgaVLl/JAxwe494tmBBYJ5OcX\nFvNC5xd4/dXXnQ7tuu3Zs4ewJmEUvrUQ8VEJBET588uSlRQqVMjp0ERERNyWYwq1jQfuja1WfxLJ\nFnq+0JPdoTu545X6AOz/ZT+/v7SOTWs2ORyZe06ePMnSpUvx8/OjadOmBAYGOh2SiIhIpsgxSQWe\nuDf2zLXwy+oTiOR0gXkDiY2ISzuOiYglMAfsJpqRwoUL0759e6fDEBERkVxASYVIBl549gXq3VkP\nrCVvkbysGbaOiV9MdDosERERkWxD059ErsLOnTsZ8/kYYuNi6fRwJxo3bux0SCIiInIZmv50wZlU\nUyEiIiIicq2UVFxwJu2oLSIiIiIi2Z+SChERERERcYuSChERERERRyR64HUxY0wLY8w2Y8xfxpg+\nl/h5Z2PM+tTXCmPMbRn9JkoqRERERES8hDHGB/gUuA+oCnQyxtzyj2a7gcbW2hrAO8AXGfWrJWVF\nRERERByR5MRJ6wE7rLV/AxhjpgLtgG3nGlhrV6drvxook1GnGqkQEREREfEeZYD96Y4PcOWk4Wlg\nTkadaqRCRERERMQRl655yC6MMXcDXYGGGbVVUiEiIiIikmssB1ZcqcFBoHy647Kp713AGFMdGAe0\nsNaezOis2vxORERERHKVnLP5XYQHzlT0gmthjPEFtgNNgcPAb0Ana+3WdG3KAz8Dj/+jvuKyNFIh\nIiIiIuIlrLXJxpgXgPm46qvHW2u3GmN6uH5sxwEDgSLAGGOMARKttfWu1K9GKkREREQkV8k5IxVH\nPHCmkh65Flr9SURERERE3KLpTyIiIiIijsjeqz9dC41UiIiIiIiIWzRSISIiIiLiCEd21M4SGqkQ\nERERERG3aKRCRERERMQRqqkQEREREREBNFIhIiIiIuIQ1VSIiIiIiIgAGqkQEREREXGIaipERERE\nREQAjVSIiIiIiDhENRUiIiIiIiKARipERERERByimgoRERERERFAIxUiIiIiIg5RTYWIiIiIiAig\nkQoREREREYeopkJERERERATQSIWIiIiIiENUUyEiIiIiIgJopEJERERExCGqqRAREREREQE0UiEi\nIiIi4hDVVIiIiIiIiAAaqRARERERcYhqKkRERERERACNVIiIiIiIOEQjFSIiIiIiIoBGKkRERERE\nHKLVn0RERERERACNVIiIiIiIOEQ1FSIiIiIiIoBGKkREREREHKKaChEREREREUAjFSIiIiIiDsk9\nNRVKKkREREREHKHpTyIiIiIiIoBGKkREREREHJJ7pj9ppEJERERERNyikQoREREREUeopuICxpje\nxpgUY0yRzOhPRERERESyhjGmhTFmmzHmL2NMn8u0+cQYs8MY86cxpmZGfbqdVBhjygLNgb/d7Uuy\nzpIlS5wOwWvp2jtL199Zuv7O0bV3lq6/XJ1ED7wuZIzxAT4F7gOqAp2MMbf8o01L4AZr7Y1AD+Cz\njH6TzBipGAm8lgn9SBbSl5tzdO2dpevvLF1/5+jaO0vXX7KxesAOa+3f1tpEYCrQ7h9t2gETAay1\nvwIFjTElrtSpWzUVxpj7gf3W2o3GGHe6EhERERHxMo7UVJQB9qc7PoAr0bhSm4Op7x29XKcZJhXG\nmAVA+szEABZ4A+iPa+pT+p+JiIiIiIgXMdba6/ugMdWAhUAMrmSiLK4spp619tgl2l/fiURERERE\nrpG1Nls/7DbG7AUqeOBUR621JdOd9w5gsLW2RepxX8Baaz9I1+YzYLG1dlrq8TbgLmvt9Y9UXI61\ndhOQPsA9wO3W2pOXaZ+t/8WKiIiIiHiKtbaiQ6f+HahsjKkAHAY6Ap3+0eZH4HlgWmoScupKCQVk\n7j4VFk1/EhERERHJtqy1ycaYF4D5uBZtGm+t3WqM6eH6sR1nrQ03xrQyxuwEooGuGfV73dOfRERE\nREREIJM2v7tW2izP84wxQ40xW1M3MJlpjCngdEze4Go2l5HMZ4wpa4xZZIzZbIzZaIz5t9MxeSNj\njI8xZp0x5kenY/E2xpiCxpjpqd/7m40x9Z2OyVsYY142xmwyxmwwxkw2xvg7HVNuZowZb4w5aozZ\nkO69wsaY+caY7caYecaYgk7G6C08nlRoszzHzAeqWmtrAjuAfg7Hk+tdzeYykmWSgFestVWBBsDz\nuvaOeAnY4nQQXupjINxaeytQA9jqcDxewRhTGngRV41pdVzTzDs6G1WuNwHX37Pp9QUWWmtvBhah\nex6PcGKkQpvlOcBau9Bam5J6uBrXal2Sta5mcxnJAtbaI9baP1P/HIXrhqqMs1F5l9QHSK2A/zgd\ni7dJHYluZK2dAGCtTbLWnnE4LG/iCwQbY/yAIOCQw/HkatbaFcA/FwlqB3yd+uevgfYeDcpLeTSp\nSL9ZnifPKxfpBsxxOggvcKnNZXRj62HGmIpATeBXZyPxOuceIKlwz/MqASeMMRNSp5+NM8YEOh2U\nN7DWHgKGA/twLbN/ylq70NmovFLxcysVWWuPAMUdjscrZHpSYYxZkDqP8NxrY+o/78e1Wd6g9M0z\n+/ze7ArXvm26NgOARGvtFAdDFfEIY0w+YAbwUuqIhXiAMaY1rnXR/8T1Pa/ves/yA24HRltrb8e1\nn1RfZ0PyDsaYQrieklcASgP5jDGdnY1K0MMNj8jMJWUBsNY2v9T7qZvlVQTWG2PObZa31hhzyc3y\n5Npd7tqfY4x5Etd0hHs8EpAcBMqnOz63QaR4QOrUgxnAJGvtD07H42XCgPuNMa2AQCC/MWaitbaL\nw3F5iwO4ZgWsST2eAWihCM9oBuy21kYCGGO+A+4E9CDPs44aY0pYa48aY0oCus/0AI9Nf7LWbrLW\nlrTWhlprK+H60qulhMIzjDEtcE1FuN9aG+90PF4ibXOZ1NU/OuLaTEY840tgi7X2Y6cD8TbW2v7W\n2vLW2lBc/90vUkLhOanTPvYbY25KfaspKpj3lH3AHcaYvKkPUJuiInlP+OeI6I/Ak6l/fgLQgyUP\nyPSRimugzfI8axTgDyxwfc+x2lr7nLMh5W6X21zG4bC8gjEmDHgU2GiM+QPX901/a+1cZyMT8Zh/\nA5ONMXmA3VzFxlXiPmvtb8aYGcAfQGLqP8c5G1XuZoyZAjQBihpj9uGaZj8EmG6M6YZrtdEOzkXo\nPbT5nYiIiIiIuMWRze9ERERERCT3UFIhIiIiIiJuUVIhIiIiIiJuUVIhIiIiIiJuUVIhIiIiIiJu\nUVIhIiIiIiJuUVIhIiIiIiJuUVIhIiIiIiJu+X8G0CcSiObB4QAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -289,13 +287,16 @@ "plt.figure(figsize=(15, 9))\n", "plt.scatter(X[:, 0], X[:, 1], c=y)\n", "plt.colorbar()\n", + "plt.savefig(\"k-means_data.pdf\")\n", "plt.show()\n" ] }, { "cell_type": "code", - "execution_count": 7, - "metadata": {}, + "execution_count": 3, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "# k-means\n", @@ -384,21 +385,26 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "最初的中心= [[ 4.55381657 3.11045927]\n", - " [ 2.5733598 0.05921843]\n", - " [-0.1580079 -0.42688107]]\n", - "the SSE of 1th iteration is 63997.694980\n", - "the SSE of 2th iteration is 20276.698293\n", - "the SSE of 3th iteration is 4446.593824\n", - "the SSE of 4th iteration is 3500.485900\n", - "the SSE of 5th iteration is 3502.239035\n" + "最初的中心= [[-0.66262376 0.57059867]\n", + " [ 4.95053629 5.67481949]\n", + " [-0.3357847 1.66902153]]\n", + "the SSE of 1th iteration is 263177.945774\n", + "the SSE of 2th iteration is 40707.497266\n", + "the SSE of 3th iteration is 40405.518386\n", + "the SSE of 4th iteration is 40348.918515\n", + "the SSE of 5th iteration is 40256.192636\n", + "the SSE of 6th iteration is 40226.957376\n", + "the SSE of 7th iteration is 40226.925909\n", + "the SSE of 8th iteration is 40224.485426\n", + "the SSE of 9th iteration is 40225.152890\n", + "the SSE of 10th iteration is 40226.135748\n" ] } ], @@ -410,36 +416,32 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABE0ElEQVR4nO29e5gcZZnw/bunM5PMZEIgPeAqYSacVEAEAVFE0TWuQhBR1s9XncQA7hdDXDcednnXjdeC6466eCK+bGDzCZjNjPp6wCMBRVxdxBMBFQRUcElCECOZQA4kYSYz9/dHdWVquuvch6ruvn9cfWW6uuqpp5qZ+36e+yiqimEYhtF+dGQ9AcMwDCMbTAEYhmG0KaYADMMw2hRTAIZhGG2KKQDDMIw2xRSAYRhGm2IKwKgKEdkkIq/Jeh6NRkSuFJHhrOeRJSKiInJc1vMw0mMKwDAyQkQWlITojKznUi0i8nkR+des52EkwxSAYTQpcRRHKygXo36YAjBqhoicICKPiMjbAj6/UkS+IiLDIrJbRO4TkeeKyAdF5M8i8qiIvNZz/lwRuV5EHheRx0TkX0WkUPrsWBH5gYiMish2ERkRkUM9124Skb8XkXtFZKeI/F8RmVX6rE9EviMiT4nIDhG5Q0R8/xZE5CQRua103jYR+Sefc14lIlvLjh00jYnImSKyUUR2lcb4dOm0/y79+5SI7BGRs0rnXyoiD4rIkyLyXREZ8IyrIvJuEXkIeMhnLu6u4p0isgX4QdiY4vCZ0ve/q/T/5AWlz34oIn/jGftiEfmxzz2XAYPA5aXn+Lbfd2nkD1MARk0QkdOA7wLvUdUvhpx6AbAeOAz4ZemaDuBI4F+A//Cc+3ngAHAc8CLgtYArkAT4GPAc4ATgKODKsnu9BTgXOBp4IXBx6fgHgK3A4cCzgH8CKmqiiMgc4PvAraX7HAfcHvJsQawGVqvqIcCxwJdLx88p/Xuoqvaq6k9F5MLSfC4qze8OoPz7fCPwEuDEkHu+Eud7eV3EmK8tzeO5wFyc72w0ycOp6lpgBLiq9BwXJLneyA5TAEYteAXwLeAdqvqdiHPvUNXvquoB4Cs4AunjqjoOfAlYICKHisizgEXAe1X1aVX9M/AZ4K0Aqvqwqt6mqs+o6hPAp3GEnpfPquofVXUH8G3g1NLxceDZwICqjqvqHepfFOv1wJ9U9VOqul9Vd6vqzxN9M1P3O05E+lR1j6r+LOTc5cDHVPXB0nf0UeBU7y6g9PkOVd0XMs6Vpe9tX8SY48Ac4PmAlM55PMUzGk2IKQCjFiwHfqKqP3QPiMhgyRywR0Ru8Zy7zfPzPmC7qk543gP0AgNAJ/B4yVTzFM7u4IjS+M8SkS+VTEO7gGGgr2xef/L8vLc0LsAngIeB74nI/4jIPwY811HAHyKePQ7vxFlh/1ZE7hKR14ecOwCs9jzzDpzdzpGecx6NcU/vOYFjquoPgGuAfwf+LCJrReSQmM9lNDmmAIxasBzoF5HPuAdUdaRkDuhV1fNSjPko8AzQp6qHll6HqOpJpc8/imO2OblkWlmMI9QiKa3kP6CqxwBvAN4vIgsD5nBMjCGfBnrcNyU/xeGe+z2kqm/DUV7/BnxVRGbjY3Yq3fNdnmc+VFW7VfUn3keIMSfvOaFjqupnVfV0HJPSc4F/8Hsu4C9i3s9oEkwBGLVgN46t/RwR+XgtBiyZIb4HfEpEDhGRjpLj1zXzzAH2ADtF5EimhFYkIvJ6ETlORATYCUwAkz6nfgd4toi8V0RmisgcEXmJz3m/B2aJyPki0gl8CJjpud9iETlcVSeBp0qHJ4EnSv96lcx1wAdF5KTStXNF5P+J+2wBBI4pIi8WkZeU5v00sJ+p7+JXwEUi0iNOvP87Q+6xjXjK0sgRpgCMmqCqTwF/BZwnIh+p0bDvALqAB4Anga/i2O4BPgychiPAbwZuSjDu8TjO3T3AT4E1qvpf5Sep6m6cZ7oAx5z0EPCXPuftBFYAnwMewxGk3qigc4H7RWQPjkP4raq6T1X3AkPAnSXzzEtV9es4u4QvlUxbvwHS7KC88wsb8xDg/8P5fjfjOIA/UfrsM8AYjnBfh+PoDeJ64MTSc3yjmvkajUOsIYxhGEZ7YjsAwzCMNsUUgGEYRptiCsAwDKNNMQVgGIbRpmRaKEpE3oeT2q/AfcAlqro/6Py+vj5dsGBBg2ZnGIbRGtx9993bVfXw8uOZKYBS7PbfASeq6j4R+TJOmv/ng65ZsGABGzdubNAMDcMwWgMR2ex3PGsT0AygW5yStT3AHzOej2EYRtuQmQJQ1ceATwJbgMeBnar6vfLzRGRZqZTuxieeeKLR0zQMw2hZMlMAInIYcCFOqd7nALNFZHH5eaq6VlXPUNUzDj+8woRlGIZhpCRLJ/BrgEdKpXwRkZuAl+FUdYzN+Pg4W7duZf/+QN9x5syaNYv58+fT2dmZ9VQMwzAOkqUC2AK8VER6cMoALwQSe3i3bt3KnDlzWLBgAU5trzAUp/TLL3Dql80BzgTOImYhycSoKqOjo2zdupWjjz66LvcwDMNIQ5Y+gJ/jFPe6BycEtANYm3Sc/fv3UywWI4T/OE5BxGNxGiD9b+CK0r+vLR2/rnRebRERisVirncoRk4YGYEFC6Cjw/l3JKz2mmFUT6Z5AKp6BY4kropw4b8Hp/DhPTg9QbyMlV6P4HQJ/AKwgam+IbUhemditD0jI7BsGewt/Y5u3uy8BxgczG5eRkuTdRhonRnHEf53USn8y9mLYxpaRD12AoYRyqpVU8LfZe9e57hh1IkWVwDX46z8n4l5/jPA3cANie9066238rznPY/jjjuOj3+8Jj1RjHZiy5Zkxw2jBrSwAlDgKqJX/uXsLV0Xv0/CxMQE7373u7nlllt44IEH+OIXv8gDDzyQ8L5GW9Pfn+x4PTAfRNvRwgrgp8CfU167rXR9PH7xi19w3HHHccwxx9DV1cVb3/pWvvnNb6a8t9GWDA1BT8/0Yz09zvFG4PogNm8G1SkfhCmBlqaFFcAvSG/LP4DjN4jHY489xlFHHXXw/fz583nsscdS3ttoSwYHYe1aGBgAEefftWsb5wA2H0RbkmkUUH3ZTXoFMFa63jAayOBgdhE/5oNoS1p4BzAHSJt521W6Ph5HHnkkjz766MH3W7du5cgjj0x5b8PIgDz4IIyG08IK4EzSK4AZwItjn/3iF7+Yhx56iEceeYSxsTG+9KUv8YY3vCHlvQ0jA7L2QRiZ0MIK4CzgiJTXPqt0fTxmzJjBNddcw+te9zpOOOEE3vKWt3DSSSelvLdhZEBcH4RFCrUULewDEOBynAzfJKGgPaXrkmXvLlq0iEWLFiW6xjByRZQPwrKVW44W3gEAvBM4DZgZ8/yZwOnApXWbkWE0LRYp1HK0uALoBG7B8Qf0RJzbUzpvA+l9B4bRwlikUMvR4goAnMJutwOfBo4BZuOs9KX07+zS8U+XzqttITjDaBnmzUt23Mg9baAAwFnRvwt4GPgejH8K7r3Z+ZfbSsffha38jabAHLFGjWhhJ7AfArwM/nQMPLkV/vQiOOovsp6UYcQnS0fsjh3Jjhu5p012AB5UYes25+fHtjnvDSPvjIxAXx8sXpzOEbtiBcyY4YR4zpjhvE9KPU1AtqvJhPZTADv3wIEJ5+fxCed9lVx66aUcccQRvOAFL6h6LKOFKRdyK1bEE3ojI3DppTA6Gjx2mCN2xQq49lqYKP3eT0w479MogXpghegyo/0UwNZtMDnp/Dw56ewCquTiiy/m1ltvrXocI0fUekXqJ+SuvTae0Fu1CsbGwscPK9mwNqDTatDxIOplArLw0sxobR/Abx6C0Z3Tj5W3ZxzdCT8q60VfnAsvOD72bc455xw2bdqUbo5G/qiHnd1PyJXjCr3ye0SFWUaVbHBX/nGPB9Hf73wXfserwcJLM6O1dwBHz4eZXdOFfrnN3/u+Q5zzj57fmPkZ+aQeK9K4wszvvDABWyhEl40uFKKPx9nx1KtekBWiy4zWVgCzu+HFJ0Hfoc4vdhgdHVA81Dl/dncjZmfklXqsSOMKM7/zhoagq6vyeGcnrFsXvStxdy9Bx+Pa4OvVs8AK0WVGaysAcFY5Jx4Lx86vNP+4iDifn3hs8GrJaB/qsSL1E3LlBAm9wUG44QYoFqeOFYtw443xhO+aNXDZZVO/24WC837NGud9kh3P4CBs2uT4zzZtqk3oadbNcNqY1lcALr09jonHjw6B3tmNnY+RX+qxIh0chKVLpwvhhQvjC73BQdi+3Vmhqzo/Dw7GM92MjMCGDY7QHhhwdg2u8Id82ODroViMSNpHAezeW2bv9zy6Kux5OvXQb3vb2zjrrLP43e9+x/z587n++uurmKiROfVYkY6MOILXG4r50586SiWN0PPmBYSZbuKYd8wG37aINlEi1BlnnKEbN06P2HnwwQc54YQToi9+4A/wxJPOar+zE447Ch5+FMbGnT+Mww9zTEB1IvY8jdZkwQL/CJqBAUf4J6E8SilszDj39Ruvp6dS6Y2MOGahLVsc5TA0ZCv1JkFE7lbVM8qPt9EOoLTCdx29fYdNOYi9nxtGPailmSUqpNQ7ZtD4mzdPmYzi7Hji7CQsm7fpaO08AC893dD/bHj24VPHXAfx40/A9qcym5rRBtQyhj5KaXjHDLovVOY3hK3mwxzFri/CmsU0He2zAzj5+OnC38uzD3c+N4x6UQvHsrvCDjPblo8ZFX0UN78hagcTpCAWL7bdQI5pHwXgZds2eOUr4bHHsp6J0S5U61j2mmCC6OiYEuiuwHWjj8LyYOKYoaIcxWFjWG2f3NKeCuCTn4Qf/xg++MGsZ2LUmzzZpasJdQyz+xeLTmCDW+PKK3Dd6CP3Mz+iqnmOjDhhp+V4dxtRpiyr7ZNPVLVpXqeffrqW88ADD1QcC2XnTtXZs51o6u5u1d/+Ntn1KUk8T6N6hodVe3rcyHnn1dPjHM8Lw8OqAwPO3AoF59+Bgco5ikx/jjivgYGpscNeXV3B38nwsGpnp/91l102/bzy77r8JZLsOxHx/y6MxAAb1UemZirQgUOBrwK/BR4Ezgo7vyYK4OMfn/pFLRRUzz8/2fU+bNmyRV/1qlfpCSecoCeeeKJeffXV1c/TqJ4g4TcwkPXMHMKEZrmiiiPI/QRuXMVRLPoL3bD7FouVzxN2fpzvvRmUdhOSVwWwDvib0s9dwKFh51etAPbvVz300Om/XN3dqnfdFX8MH/74xz/q3Xffraqqu3bt0uOPP17vv//+9PM0akOQ8Iu7Eq03UULdKzDjrLDT7gDCFFCUAvETzNUI8bwr7SYlSAFk5gMQkbnAOcD1AKo6pqpP1fWm69fDgQPTj+3fD+95T1XDPvvZz+a0004DYM6cOZxwwgk8Zg7m7Mlbhmu5PyLMoQvTHateJ3IcXPv80FBwDawwXJt91HcVVC8oicPb+70EfSdWGro++GmFRryAU4FfAJ8Hfgl8Dpjtc94yYCOwsb+/v0KzxV5ZHzigeuSR/quL2bNVb7st3jgRPPLII3rUUUfpzp07083TqB15Mif4zSVqdR206o2zc/A+42WXpfMhuCv8IB9ALXZTcXc2tgOoCvJmAgLOAA4ALym9Xw18JOyaqkxAX/uaam9v8C/Y856nOjERb6wAdu/eraeddpp+7WtfSz9Po7Y00qEYdq8goR0kmMMUVZBQjnLmunMrFp2XO8+gORQKU9d2dNRHMMcxUZkPoGryqAD+Atjkef8K4Oawa1IrgMlJ1RNOCP8lmz1b9ctfjvl1VjI2Nqavfe1r9VOf+pTv56YAWpyw3cZll4X/7sWJAvK7X7E4NUaxmF5Ihs0tzvNVQ9jOxKKAakbuFIAzJ+4Anlf6+UrgE2Hnp1YAP/jBVOhn2Os5z1EdG4v5lU4xOTmpS5Ys0ZUrVwaeYwqgxQlayUb93ok4CsK7cyh/XwsBeNllUwqmUJgK4Rwenjoetbqvx27KnL4NIa8K4NSSff9e4BvAYWHnp1YAL3tZtPB3/1ivvTbud3qQO+64QwE9+eST9ZRTTtFTTjlFb7755uTzNJqXtDb2OK/ylXZSQbxwof+4CxcG29/d56nXCtwbMlr+3VX7vEYFuVQASV+pFMA99yQLnzvsMNWnn475tcbHFECLkzbcMu7LXRH72f87O8Nt/7VWQNUS5hAvF/B5cuQ3Me2rAC64INiBFfTLPjQU82uNjymAFicqWqbalxtt47X7e1/lSVkutVJMtTTJJDH7mImoJgQpgNauBfSHP8Btt4XXQSln71746EfhySfrNy+j9RgchEMOqd/4br2e0VH/z4OO1yp+PmicFStgxgwn3n/GDOd9VP2lJL0R8tCusoVpCQXgKDgfhoYqE7/iMDEBH/lIdZPyEDg/o7XYsSP4M7cXcEcHzJ7tCEz3WBx2744uZOf3eVgiV1iF0HLmzZsS6n19zksErr12epvLa6+Fd7yjdi0o85bM12I0vQKYNWsWo6Oj/kL27rvTKYD9++GHP6x6buAI/9HRUWbNmlWT8YwcEySUBgac30NVR0ju2ePsSpctq8zSFQG/35WxMSfrtlgMvr9fVm5QP4CZM+PvjGfMgF27poT66GjwjgMqxy2vBJqkN0It+igYgTR9T+Dx8XG2bt3K/v37M5pVNLNmzWL+/Pl0dnZmPRWjnsTtrRt0rggsXw7XXecI2nJE4NWvhttv97+/iCN8y3v3LloEGzbAls3wukPgtAPQsRd24+Ti/zTiuUT855MEd24uSfoLWy/iqgnqCdz0CsAwckVcYRXWrB2CP9u6dcrk4vf50JCPEuqE5Z2wYi88C6cRbBcwhpOLvw24Crih9L4eeJvQGw3HmsIbRiOI2/QlzLkZZvYIEv7grPSXLp0u/GcDt4zDh/fCsUAvMAvnL39W6f2xwKeB20vnV0u5b8FMNrnFFIBhZEGYczOsmmaY49jrkAVnpb8BOBNH0Icxu3TehtJ1aVm4EP7zP9NVAs26Y1s74hcbmteXXx6AYTQlaROcouoKeV/LUN2d8M9sD6r/b8L8BL8Ernp+B0ZiaMs8AMPIK2mbxJ99dvx7XE70yr+c2cD/TnB+f78jupP2OAb/PsfWO7ihmBPYMJqFkRHHxh/mB3A5C/geyRUAwB7gtURHB0FldE8SOjqCo53Sjmn4Yk5gw2hm3LDROMIfHHt+Wlv+zA44O2bIcjUJWZbklTmmAAwjL4Q5RP3MJWHMwQn1TEPHJCy+MDzpDKqP7vGLdhJxQmDNIdwQTAEYRh5wV/hBJRSS1r7ZjRPnn4Zx4JSXw/btMDw85acoFqHXY1Pq7k55gxLlfY69CWd+JSRqgUUdTcfPM5zXl0UBGS1LVNXLoM8LBf8KoWeliAByX7tRvfWfK+cYFbVTTd3+RlT9bOOoI1q1HLRhtARBDWXcMtBhwivo2odT/qk9jOpAf+Ucw4R0UI1/t/NYtc9fC9q4tHSQAjATkGHkAbfcczn9/VPlJfbunUoE84aNBl37SXEiepLwNPBvwJZHKz8Ly17281GoOnWN4phZGuEQttLSFZgCMIysGRlxqm2W09XllHdwfQPgRAG5ztfBQaf+vl9lzq4ueMWN0PtyYGa8eezDadB6I5WCd2QkuHx0f3+wEFWNF9ffiKqfFnVUid+2IK8vMwEZLUmQaaJYDO/oFdQdzPs64SjVbc9T1R4N/fPag+oPUZ3tGdvbpL6ry3981wwVNs+4Zpxa9f4NGsd8ABX/4zMX6klepgCMliTM/l2LZvOdqA6fo6rHqOpsVZ2pqqJ6YIbj8H0Yp/zDjNL5M2bEG7ejY7pwDZprI23s9XRUNzFBCsAygQ0ja9KUhk6KCKz/Txg8BrgLfv1j+MbtcOuT8AuByZIc6OhIloXrlR8rVlT2Mgjqh1Avwr7LNi5HbZnAhpFXwuzfQR29kqIKqz4EvAxG+uBlG+DKJ+FnTAl/qK4Ew9lnT3dIF4vJhH8tYvTDHL2WA1CJ37Ygry8zARktS5hpYng4nr0/6uXa4sPs9Ulf7lzT2Ne9z1wsqnZ2JrvejzB/Spva/1XNBGQYzU1fX3Af3mLR+SyqdaNrBgkqwpaWnh4nK9hvfkGmF7+WmH4kNd0EteVMOr8Ww0xAhtEo6mFqCGvCvn27I9DXr5/yG5TjDamsddjj3r3B8wsyycStbZQ0Rj+ozPaOHbUZv8UwBWAYtcSvps+SJY4wqrfdeXAwuMDa0qVTtvhFi9KNH9aNLIh58/yVYVzBm0ZZ+bXltBwAX0wBGEYtCcqIBUcZXHqpvxKI2jWEVeb0nh90/w0bpt57fw5CpPLYxIT/8SA6O2H3bv8Cd3EEby0TwRqRaNaM+DkG8voyJ7CRe+LE7ReL06+J40AdHg5OxvKeH3Z/d7yoOXZ1OclfhUKwMzmOgzjIcV0oOOOXP3NX1/QEtFo7aNs0B0A12AmcuVBP8jIFYOSeuBE2ca4pT6CKyrgdGAj/PE7WrldBhQl6V5AGKQn386DrRVQXLmxbgdxoghSAmYAMo5akiduPW6TMtW0HmWG2bAm/v9tvd2go3JTjOkyDzDRu5MzkJKxbF2xaCTPzqMIPfuCc57XVGw0lcwUgIgUR+aWIfCfruRhG1ZQ3OQnCa+NP6qAMO+7eP4gtW5xzli8PPscdP47dPKy5fZQyVJ0qFGdJWtngty1o5At4P/AF4DtR55oJyGgqhofDTSje85IkKcU5P45ZaeFC/3O8NfzT2s3jmJpcU1AbF2lrFOTRBwDMB24HXm0KwGhJwgSfl6SCNur8WimJNPjdO43folxJmr8gNXlVAF8FTgdeZQrAaEmy7EIVJTTTduGKGjeuIzwqcilON7Rafh8tTO4UAPB6YE3p50AFACzDaVOxsb/fp02dYeSZPJk3ygVgUJhmmHKK8zxxooe8AjhtP+QkSjRP/x8yII8K4GPAVmAT8CdgLzAcdo3tAIymJA8rTz8B2NlZmVsQJRTjCOOkAjtKONeiX3Ab9wNWzaECmDYJMwEZzUQeBHpS4nQd6+iYftzvueII42org5Z/p7UQ3o1oOp9jTAEYRi1oVlNCmFkmyBTU2Rnfvh+UtFYLJVmL79x2APlVAHFfpgCMzKm3IKnX7iJo3lFlHfwEexYKsNrvpVkVd40wBWAYtaCepoQgIXXZZdMbp6Spl3PZZZVzj1PTx++5mtEEptq8864BiRUAUADeBXwEOLvssw8FXVfPlykAI3PquQNIs0qPs4r1UyxxC7qlea42FrR5JUgBhJWC+A/glcAo8FkR+bTns4uic4wNowWpZ1nhoJpAzqLLH7e+TxhBJaKj6vt3diZ/Lr9+CJde6nQ0szIPuSNMAZypqm9X1auBlwC9InKTiMwEEhQFN4wWIqz2TbWkbU4S1Vwl6POJieBrikW48cbpzxWnXo+fshkbczqGuQrB7QlgZE5gT2AR+a2qPr/s2D8DrwOOUNXjGzC/aVhPYKOl8etnG9XnF6L72i5Y4AjecgoFfyXgN15Qr91y5Re333Cb9OLNC2l6Am8UkXO9B1T1X4AbgQW1nZ5hGL67i+XLwytqxjE/LVpUWf65pyd4B+C3Y/Bb2fuZn+LuYtq8F29eCFQAqrpYVW/1Of45Ve2s77QMo00p72e7Zs10pVAsOq+45qeREadmv3dV7vYIDipZrerY7L12e78dBFQK8rj9ENq8F29eCDQB5REzARlGQoKE98CAI6zLzTpBBJmigsxFq1Y5ymHePNi1C8bHpz73Mx0ZdSWNCcgwjGYnrNtY3OY14Ah/PzOSn/nJu4vZvt1xJtfDaW5UjSkAw2hmoiJzorqKRbWZ9KKaTpCXm7VM+OeGSAUgDotLEUCISL+InFn/qRmGEYpfzH15iGXcvIU4NnlvL2AT5C1BnB3AGuAs4G2l97uBf6/bjAzDiEecyJy4eQtRzttaJbsZuWJGjHNeoqqnicgvAVT1SRHpqvO8DMOIIsy+72VwMHi1Xu6w7e6GHTucn8H5ub/fEf624m854uwAxkWkACiAiBwOTNZ1VoZhRBNl34+i3IQ0Ogr79sH69Y7zdvv22pp74mQSGw0ljgL4LPB14AgRGQJ+DHy0rrMyDCOaausSxU3uqgVx/BVGwwlVACLSATwCXI7TwvFx4I2q+pUGzM0wmpt6r3irrUsU14RUCxqpbIzYRCaCicgvVfVFDZpPKJYIZjQNcWvnZElYklit6/QE1QgSccxMRl2pJhHsdhH5a5E4gcKGYQDNseKtZ2nrclL4K8xlUH/iKIB3AV8BnhGRXSKyW0R21XlehtHcNNK8kpZ6lrYuJ6GyMZdBY7BaQIZRDxppXmkWvCGnEaGl9vXVltQmIBE5x+9Vn2kaRovQKPNKM9lJEpSEaIYNVCsQJxHsHzw/zwLOBO4GXl2XGRlGK+AKt5gr3lSUO5pdO4n3/k1Kf7//DsCqSNeWyB2Aql7gef0V8ALgyfpPzTCanHoXQWsGR3NK4mygmmnzk1fSVAPdCpxQ64kYhpGQFraTRPmnzUlcG+LkAfwfSmUgcBTGqcAmVV1c36lVYk5gw/DQxp7SNn70VAQ5geP4ALwS9wDwRVW9s2YzMwwjHX4dvdqkamcLb34aShwT0KGquq70GlHVO0VkZd1nZuSWkftGWHD1Ajo+3MGCqxcwcp/tuzOhkXH8OaPaOniGQxwFsNTn2MU1nofRJIzcN8Kyby9j887NKMrmnZtZ9u1lpgSyok27bTUyibmVCVQAIvI2Efk2cLSIfMvz+i9gR+OmaOSJVbevYu/49MiTveN7WXV780eeGM1DNZsfix6aIswH8BOc6p99wKc8x3cD99ZzUkZ+2bLT38gadNwwEiQAJyKsz03YXFo0dSIVgTsAVd2sqj9U1bNU9Uee1z2qeqCRkzQaR5R9v3+uv5E16LjR3uQtXLOFUydSEacUxEtF5C4R2SMiYyIyUYticCJylIj8l4g8ICL3m2M5e+LY94cWDtHTOd342tPZw9BCM74aleRN4Fr00HTiOIGvwWkI/xDQDfwNtWkKfwD4gKqeCLwUeLeInFiDcY2UxLHvD548yNoL1jIwdwBBGJg7wNoL1jJ4chvun41I8iZwLXpoOrEygVX1YaCgqhOqeiNwbrU3VtXHVfWe0s+7gQeBI6sd10hPXPv+4MmDbHrvJiavmGTTezdNE/4WImp4yZvADYseakfncBwFsFdEuoBfichVIvK+mNfFRkQWAC8Cfu7z2TIR2SgiG5944ola3tYoI8iOr2gsYW4hokY5eRO4QdFDkC9fRaOIUwpiANgGdAHvA+YCa0q7guonINIL/AgYUtWbws5t9lIQI/eNsOr2VWzZuYX+uf0MLRzKlelk5L4RLvnGJYxPjvt+3tPZE2ruWXD1AjbvrMzPH5g7wKb3bqrlVI0mwi8KCPLVMbPVS0sElYKI1RBGRLqBflX9XY0n1Ql8B/iuqn466vxmVgDu6thrY48SqFnQd1Ufo/tGAz8PE+YdH+5Aqfx9EoTJK+rX9zXvitWoJG8Ct9VbFlfTEOYC4FfAraX3p4rIt2owIQGuBx6MI/ybnWZJoNqxLzzHLyzeP4sQUTM7NSfmHM4HcWz5V+I0gXkKQFV/BRxdg3ufDSwBXi0ivyq9FtVg3FzSqASqOE7YsHOihHXY51mEiDaLYjWmkzeB266lJeIogHFV3Vl2rOpGwqr6Y1UVVX2hqp5aem2odty80ojVcZzVcNQ5fkLcJUqYZxEiapnJzUneBG671tWLowDuF5G3AwUROb7UH+AndZ5Xy9GI1XGc1XDUOV4hDlCQAkBsYR4WIloPLDM5v4RF+eSxlk871tWLowDeA5wEPAN8AdgJvLeOc2oavKaUvqv66LuqL9D00ojVcdCqd/POzQfnE2fF7ApxvUI58M8H0CuUoYVDrLp9Ve7i+y0zOZ/EKQGRRuAmKS0RpijaMebfj8AoIBFZr6pLRGSlqq5u8Lx8yVMUkF9Uj5csInyCwjC981l5y0rfKB83uscvogbg0m9eytjE2MHzuwpd3HDhDbmItrEooPxRryifoHGLRdi+fep9edE3mAozhXyFoDaCxGGgIvIA8BrgFuBVgHg/V9WGl4TOkwIIE7YujY5/j1JKxe4iu8d2TxPkAJ0dndz4xhsBfENVO6SDPWN7fMfbfvn2iuOGUa+wyqBxAYaHpwR4mAKCfIWgNoI0YaDXAbcDzwfuLnvlQwpnSBwn4+admxtqMnHNTEGM7hutEP4Ah8w8hMGTBwP9A37C3x3P+2yNKANhpSaag3pF+YRd7y0wFxZmGvTZ5s3tZxIKKwf9WVU9AbhBVY9R1aM9r2MaOMdcEtfJ2OjY9MGTBw86cOPixv6niZxxn23FzSvqHo9vMf/NQ72ifMKu37JlyrYftEvo7w9XIu1UBgJiZgLnhTyZgKLMLX40yiTkN7euQhcHJg8wqZX7b3deQWYtQXwzfL0UpMCETgSOXQus1ERzUa9GMH19MOqTrF4swr59leWnXcJ8AH60kkkodSaw4U+UucWPKJ9BrSiPOCp2F1FVX+HvjZgJiqhZfsZyOjs6Q+/pJ/yhtvH4FvPfXNQrrHL1av/dBQQLdW+YaXkIahDt0CPAFEAVJDW3dEjjvm5vPH5vV69vgbeCFKZFKgWFqq45fw03vvHG0Gd18wXKqWU8vsX8GxCcQ7AjICxFpFIBeZXTQMCvdauXgQBTAFUTljlbzqROZmKvDlohT+gES25aMs2ZGpTI5R4fvmjYd5ew7PRldY/HX3T8ImR6MFpDY/7NAV0/guLyg4777S7iOJ79xstbVnIjMQVQJX6r5mJ3MfD8LGrUhK2QkzpTw3YJ9Ux0G7lvhHW/XjfNFyEIS09Z2pCYf3NA14+REbjkkunJXZdcAitWJKvRHyXIg5LIIDwruZWTxswJXAdG7hth8U2LfT+rd2nkoPnEcVjn2ZmatQM46/u3MkFOXRH/aJ5CwVn5+zmWwxzPaZLTwhLK6pE0Vi/HuTmBG8jgyYOBu4BG2au95opVt69i6SlLQ3cmkJ0zNY5pJWsHcNb3b2X8hD8Eh3JOTEzfKfT1Ta3OwRHm69c7Py9ZMrVqT1OCupFN7ZOUuagVpgDqxOrzVmdWo8bPXPG5ez7H7rHdoddl4UyNa1rJ2gGc9f3zRl7MIuPjjgLxCswg09G8ef5jhDl7/XYMUJ8IoUYqGxdTAHUii9LILn4ZveOT475ZwC5ZFVALq07q3RnsGdtDV6Fr2nmNnLMVnZui2pWqqzxEYMaM4PNmzaq06Uexd69jnvETpPv3V4Z9hjl7R0aCw0TrESGURZMcUwB1pNGlkV2SmiUaqZzKCatg6t0ZjO4bRVUpdhcbrlAhW4XukpdVd9RKNaoKp6s8wDHnBDExAUuXTjlnC/6Rxr7X+fH009PNSiLO+EHO3pUrg81Qe/bU/vvPokmOOYGblLAKmHEK1bkUpMCkTjKv29kf79i3I7SiZq0rbwbNtRGZxc1Eo52RYYQVelu/PnyeQY7YMAYGghvJV4vrAPb7fqPo6oIbbvD//tM4c+v5/7iqpvB5oR0UQBwBG9VgfuS+ES75xiUVyV9BQtUPv3LW9WhsHzRmUMRSFlFUeSBPTdSrqbQZVs0zimIR3vIW2LDBEazz5sHu3TAWbNmMxK1OmkYxuXPaXlYQtxpBblFALUxUtEtch2iczl9+ZR9E5KAJpTyhqhy/vrr16L8bZFoJyjpuV6drnpqo+8Xbg2MWiXKaBjli4zA6CuvWOfefnHQE7w03OEI4La55Je336BfBlIUzNy0hLhijlpSvdF3hDhxcPYcJWO8KO8xuvuDqBewZ2+O70j8weYDerl62X74d+XC4AvC7T71CIQdPHvTdQfjtDNrR6QqOoPITrlmUK3BXpCtXTheAo6PBsfv9/c7qdteu6u69d69jt3fnceedwSUgohBxvtO+vvS7Ej/SKuvynYM3Ua1eZj7bAdSIsNX9yH0jLP360sjVcxwBO3LfSGhNoc07N/t2/Iq6hx/lq+16h0L65S5k6XTNE3krVzA4CL29lcdVgyNtVq1ywjb96O2F2bPj3XtiYirc87rr0gtv97qgPIQ4+O0+0jpzs9g52A6gBoSt7sFZycapltk/t9/XIdohHQcVSthYceif239QifiZiVz8VttDC4fqtir3+w7X/XpdWwt9L+4KsB724bQErWhVHZt/+TyXLAkea49/z6FA3HDPLF2YnZ1OZdJyhob8fQBRytrCQJuUMNON32devKvnRccv8j1nQidYfNNi3vH1dyTqP1BOV6GLRccvYtm3l4UK/2J30Vfw1jMUsh7+hVajXuWV0xKVQFUunJOaq8JKNUN4CGk9KBan1wu68Ub//wdB1UqjagtZGGgEeY0C6vhwh2/DFNfRGtRMpTyCJkn4ZhRu2QfXHNTb1cvMwsxQ85BLFqGWYd9hO0b9NANxQye9jViWLIm/anfDSpcu9Rf2hULjlEBYyGdcRkYq/SbQmGb1FgVUR8Js40Gfldfih9rVlens6GT1eavZfvl29Apl+KJhJnUylvD3m0cjyiBbqYXmw13pRkXhuHbswUFYvjx6Ze/irny7u/0/7+x0Xo2g2nWyqyz9/A3e7yds51APTAHUgLAyAUGfrXvTugrTSRph11XoqmjGImV/YVFmqHK88/ALTV1802L6ruqrqSKwUgvNy7590ee4duw1a5xVfVATFpeeHli0yBGaQf4Bt7RDXIUSRLEY7YAeH6/OGevn4PXifj+NNvOZAqgBYbbxJHbzuM1lClI4ONacrjkVTuGxibFY0UV+CDLNFxGkPEb3jSaqhx+1i8hDqQUjOVGCzSXIju0nvItFZ+W7YUP02GNj8VbnQQL+ssucfII9e5xxLrsseIxqnLFR12bVfcwUQI1w6/6sv8ipQ+vttBW3JpBXCIYxoRMHs4SDzDpeX0LYzmJ25/S/DEVZ9+t1BwV0mPIod9IGCfm4CW5Z1U5qF+LWEoqq5eP9LE72rIgTATMy4sTcL148dZ03bHRgAIaHHYE8OBgtNOcdcoBb/u33zDvkQOQcZs3yP75hw/T3ri3ej2qEdNi1WYbzmgKoIbXoGuUKQb1CQxWBO3ZQToDXLFS+szhiD/z35zv42tmfpa+nr+Jar2B3awQF4SqIsGe3CJ/siVvBM+w8v8/imF9UHefnJZf428DdsNFyk0eUwF167nZed+YuLnvT9siqoUGx/lu2TFdqYU7laoR0UPY0BPs4GoEpgBpSa0EXZbrZO743MJzTaxYqN698+O45vHyzctF/3lV1dq+7uwh79iT3qJfDud37+cZNMgo7z+8zv8QvP0ZHg5PAwFEmhcKUTb+vz/EBBI+tvP/N2xCBD/yvbaxdq6lKQsybN12pBdHRUZ093uvghenPNTpa/8YvQZgCqCFBIZxpo3uqiYAp3z0cNK+87yne+bMxRJW9X1zP80f9/8Lce+/YF5xn7zppR+4bCX32uBE+K25ewZKblsTaQSUR6H67k0u+cQl9V/W1jUKIm2QUdN7mzcHmHncFD9U5ZCc9a5nRUfjc5+DVr/Yf8xUv3MPcXmeR0ykTHN61h+3bgyOSikX/TGqI58N417tiPEAEroN3YKBS2WRVKyhTBSAi54rI70TkYRH5xyznUi0j940EFlhLK8jjRsAkaZRyzz8vY+zAM851E3DVrT5F4zyO4KgwVmBa1nM5/XP7AxPcvMdH7hvhuo3XVeQC+O2gkpraghrkjO4bbZsG73GTjMLMLkHC3TXfqMaL8InL+Dg8/PDUmN6eAO998zZ6Zjm/u90zJ5ncsg1wMnP9BP3q1f4hllF1hAoFxzG8Zk2l/2PFinT9GfJU2C+zRDARKQC/B/4K2ArcBbxNVR8IuiZNIlit69cH3WPp15f6lmgQhPUXrU99z76r+iLj94vdRXq7eqOf8Zln2HlYN3P3Tf0/3zsDzrkE7j6y8vTerl72jO1BkGmCuavQxZyuOezYt4MO6QgsTeEmuq26fVVkQ/WwJLjyZLCkDdqDksziXt8KBCVtFYuOcPRmqYYld5UXewtKVApq9J4UEZi89yEY3Tnt+DPjwsxODXwP8M0757Jy7fGhJTPiltmOk/QWN2kri9LeeUwEOxN4WFX/R1XHgC8BF9byBrVwysYt4RwkBBWtSuGsPm91ZOnmHft2xIueWb+ejgPT/0hmHYD/c4v/6XvGnABsRQ/OodhdRFUPrp7D6hK5YZxxfABhZrLyXUhSv0XcHVgrN3gPStoqtz+75wXhmnvCEpVGRpw6/WEUi/HKOPf3A0fPh5ld07Yg5cLe+37fmLDpT11cc/P8g8I/KLIpbpG9OOGucc04eSrsl6UCOBJ41PN+a+nYNERkmYhsFJGNTzzxRKIbVOuUjaNAopKsokI63fssuHoB8mFhxr/MQD4s00JIl5+xPFQJxBJwExNw5ZXMKXPEdQAnb4OFfwi/XHGiknq7eisazfghyMFQ2KBIIu+8g55BkApzVtKs4bj5Fa2edRxUwbNccA0OBptx3FVqWKLSqlXRTVr27XOau4RF73R2loTi7G548UnQdygHJsNF1tP7OvjGHYdy0sUn8f2fdLN4sfPMS5dOj1665BJHCcTNvo1rnolzXhYZv0Hk3gmsqmtV9QxVPePwww9PdG21ES5xFEjYWHEyWb1KBqaid7zKZs35awKVQOxs2W9+E3bu9P2odxyu2QASUXJn887NsWsVaem/zTs3s+uZXZF+Cj8hLQjLz1hesaNJmjVcHgVV7C5m2mA+S+Lan6tZpcYRgnv3OjH43sgYL7NnlxVbKxTgxGOZ8bz5TKj/YuiZceH9a+bz9o8cy979U2HQTz9dGd45Pu7UJXKVQJRSi5sDEPe8vBT2y1IBPAYc5Xk/v3SsZlRbXyaOAklS68ePsB2Eq2xG7hth3a/XVdixg6p2VqDKzr9/T2jN3SN3wV8/GD5MlCkqiPHJceZ0zQnN8vUT0vO653HdxusqTG9psoa9SWbbL9/ODRfe0JZZx3GdwdWsUuMKwS1bnPH8lI3rZyg33dz64x4KM/x/D/c/I9zz+5hNBUr3iBt+GRbH79LZ6fyJJXUKZ0mWTuAZOE7ghTiC/y7g7ap6f9A1SZ3A1fawjeNsrPYeUQ5KQQL7BIQ5Lb3O7zf8cQ7Dn99Fb8S2/LE5sOC9cKAQfl4aklT1rEfvYcOhEc3l41YJ7e11/ABB4aXFomMq8o6z4o1/5qrljzJ7ljI5CfvGOujumqSjA57eL/z9mqO47ltHJJ6z23g+7Dso79e7aFF4f+Jaf6/VkDsnsKoeAP4W+C7wIPDlMOGfhmrrywSZGhYdv6hmnauidiPzuuclzi8o9138wy276InROPuQ/XDpPdHnleOWng4jiX3dMofrRy3tz0GO1fKkpyDCegiD46AuVyIvP3k3s2cpe/cLW/7cxeC/Hs2WP3ex7xlh9izl5S+M8D4HEJQZ7aXcbLNmzdT73t5Kv0de+wB7sX4AEZSHkS46fhHrfr2uZqvTkftGWHLTklhhiuUE7QC8O5dTH4cf3wCzo/22AOyYBfPfD/u6os91KXYXeWr/U5HhoECskFzrDZA//Fa/69ZF7yTi1guKyx++cC/9zxrjKz88jL/5xAL27i/QM2uCGy7fxF+/8kk2b+viuYtfOC2pLAlpQzE7OvwziUVIPZdaErQDMAWQkKQx6HFYcfMK3ySoMMKEqlehfPMLcP5DUIg59NOdMPQK+Ng5iR/Dl4IUWPemddy55c6KZwxSnPX4jo30+Jl0gpq/lwvQIMEYRWcnHHJIZS7Bdz72EF/90aF8/tbKgJCLz32CN7/yKV7/wePp6pq+Ii8UnJo7Ua0n0wrsLGL7k2AKoEbUa3VavtPYM7YnVgLYrmd2TQvL7OnsoXtGN6P7RjlmB/xmDXRHF0ucxp5OOOr98JRPkaqCFKrqSVyOn1D3U4jmA2g87qo/yQq+XICm3QF0dcE731m5y6gG184f9kxpBfbICFx66XSlU4suYrUidz6AZsAvCaxenavKSyGH1eBxGd03WhGT75qmejp7WPXfUEihkwqT8KEf+X82qZOpo4H88Os+Vh7xJAhLT1lqwr+O+JU5cIukJaG/f/pYabOBx8YcB+vSpdU3fHFxo442bXLKTtc6Gat8Ld0Ma2tTAAEEJYEtOn5RaAx6rapOVqNQduzbwdoL1nLWtk66UiiA7gn4y03+n83rnheatJWU8rH8HMCKsuGhssLtRs3wK/N83XXRK+9ywezt4uWOFcfkEsSWLY4S8BOkbuXQJHjDU6t1hpcrzJUrK6udVttFrBHMyHoCeSUoEmXDQxsO1rcpd2aWhy+6SgNIvHpddPwirt14baq598/td+73x8GaNpp3GVo45BumufSUpXz5/i/H7j3sl+VbbfKekZygMs9h9PQ4q3M3DLK/f8q8EtdkE2WS6e8PTiqbnEy2whZxlJOXwcH00U9en0jYLimLAm9JsB1AAGGCKKhzVS3DF9OueMuFatwyCHHZsW9HYHjtmvPX0NvlU2sgYJ5+Wb7WHL7xJBVS7mrZGwbpZrMmGcu9plwwuyxaFJxUNm9esh2AKlx/fW2Ss5IouaxaPcbFFEAAaQRRLVevaVe85cXn4raZBOiI8evgPn+QEowz74G5A6y/aD1rzl9T8Vk1zeHbvelLWpIIqa6u8ISpuGN5C8GVt2X0HvdrCuPa7pPa2MfGHFNNtcT1i2TZ6jEubasAooRFGkFUy9Vr0DXF7mJo4pWfoHeF9fBFw6G7gRmFGRU9gr34mWzKCXvWYncRvUJj90VOkljn57NZctMSVty8IvQ6I7juj18j9bGxcLt2nJIJXV1OCWqXsCY01103XdCLOKanqDr+QVRTotq1+wfR0ZGPAm9JaEsFEKfKZxpBVM3qNe5Yq89bzerzVjOzMNP3uu17tweufKN2A2MTY+w/sD9wTn4mGxdXoQb5Gzo7Oll93mrfz/zmmbQ5fJDz+LqN19lOIIIgh2iQmSPMzBNUdtqlWKwMjQzbNfhF1mzYUL1pJazxfdD5UVFRriks6wJvSWjLPIB6JhrVsgGN31hAhQO2HNchu+GhDb7zWHHzilQOZr2i8ndl5L4RVt6yMtTxW+wusvq81XUN4wyrqWQJZOmoJrkpybVxawe5iMDy5XBtihgJtwFO+f26umDOHGdn4Tq0k2Y05yXpyw9LBPPQzKUG4kb1lHfxct8PzB1gy84tiUtPdEgHE/88PQHMr2ibl0YK3iQdxYx4hGUARxVPS1oaIUnSmV+ROJfOTmf88vLP7mc33hjvPuVlLaIymvNU+M0PSwTzkNRWnyfnYlzncLmAd9+7Zq+kTOrktEY1EN0Mp5Ghm0MLh2rek7keJDU9ZEl5UTdv+Yeo4mlxy0577+U2TA8jrJF7oeAI+HXrpsZxewgPDEz1F4jbr8Dr6wgzOTWLvd+PtlQASWz1tWgrWUuyFmbe548S8I2ca1DntDw1evFLuIpbjz4rvIK5fAUcVu0ybUMZv+vcKKCoRu6Tk1Ox/W6T+gMHnH+9Nvkk/Qqinmd4uHns/X60pQJI4uDNW2niRccvqmkphjS4zx/U6hGyEbxrzl/D+ovW57bRi1/8eDOUDIb4ncRc0mba+l23fv10IT4v4NdOpHbNXaC2mcN5pS19AEnIk78gyuYO6Yu1LTx6IT/d+tPQscvp7Oj07Q/sJnn5xfm3M3kvGRxGnqpd9vY6bR79iGuL95a3njcPdu2aXsoh7zb9pJgPICV5ykyNsrmDY6svSLKWXgNzB/j+O77P0lOWxt5dFKQQ2BxeUdb9ep2FX5aR1C6eJ6JMOq5vQwRmzHD+rYePY2QkWPhD/B2Vt7nL9u2Of8AbutrtUwm3FTEFEEEtY/vTEhVj76V/bn+iHUBXoevgs2x4aEMsB3FPZ0/kPayDVyXVNFrPmjATSHmMvBuBU62Pw89hHke4b96cXPnceed038LoaO3nnkdMAURQbVvJcpJGFHmd0FG4mbpxyj64zOmaE6uMQ/nzx7mHFXCbTrPbkctbIoIj3BYvDo7hT+vjCHKYxy3DkET5jIxUZhzXY+55VALmA2ggaZqdJ63mqVdoLF+Bi9eXkSRBLs49LAGrdUmSvJXGxxHkcygU/GP8g6gmaQ1qO/csE8XMB5AR3hX/0q8vjR1RlMTs4+Kuyv12LUH1g7y+jCTmrvKyErUOv8xT7oVRSZKKmKrJzSBB0UUTE/EieKLGiXtOHP9MubknSJnksTS0KYA6Up5DEGQ39+uKFdfs41IucMvr6aw+b3WkcE9q7nLvoVdoTcMv85Z7YVSSVJjFNYO4wjTIMOGazaISxlziCPCgc0Si/TN+5p4ggsJXs8RMQHUk7gq+3FQS57rerl6K3cXAmkNBdYRqVaeonlhT+PwTttINM9MUi07UjR9RZqXy0Myo+jxJQkL9Sl4sX+70PAgjSc9jtxRFFj4fqwWUAWEFylz8fABxrgvLQ0jja8gTecq9MPzxE5pegRtWO2d42F8IhglTv9pDYfeIqlVUjjcvwK8YXBBRNYL85pWFH8B8ABkQlCtQkEKoqSROjkHYOXnLXk5KnnIvDH+iIprCTC9BkTVBZiUR/3ILQfdwhWyclb9ru1+1yhH6SUs5J83hyJsfwBRAHQlyqq570zrfWvdex29YQlaUg7XefXXr7aDNQ+6FEU15WKhXaIbZzoOEYNJEuWryKmoVqjk0lKw1Zd6S/kwB1JEkTtVyx6+iB5WA2wUsroO1nivoRjhoa517YTSewcHgpjC1EujV5FXUqi7T4KDjKyhXAl1djs3fSy6T/lS1aV6nn366tioDnxlQrqTiNfCZgcRjDd87rD1DPdPG6Rnq0eF7hxs6z+F7h3XgMwMqV4oOfGagJvc3mofhYdWeHlVnje28enqc42HXDAyoijj/hp0b5/5BY4lMn5f7EqndvWr5LNUCbFQfmWpO4JwQ5vhcf9H6xNE7texMFneeXgdtszuijdqQ1rlai/uGOanzmKxVTywKKOcEhT4Wu4vsO7AvN4I0boimhXIaWRIl4KMURJ6ohRK1KKCcE+T4BHIV0RPXQVtvR7Rh+OFG9kRl4zZLXaZ61xUyBZATghyfO/b5tz/KSpDGddBaKKfRaFasgCVLwhOzypu8BEUxZUV5WYmVK+vbRCgTE5CIfAK4ABgD/gBcoqpPRV3XyiagIJrVlGI+AKMRJGkmn1cTj0s9C+zlzQR0G/ACVX0h8HvggxnNI1PixNM3a0y8hXIa9aa8D0EYeTXxeElSYK9W+QSZO4FF5E3Am1U18n9NK+0AkqyQ6xXRYxjNTNw6PM0S2RO3rESanUxuo4BE5NvA/1XV4YDPlwHLAPr7+0/fHLfyUs5pVtOOYeSFOAJTxGkqn+eVv0uQQisWnT7ITRUFJCLfF5Hf+Lwu9JyzCjgABPq0VXWtqp6hqmccfvjh9Zpuw2m1KBmr3280migziFvRsxmEPwRnQq9eXT9n9YzaDTUdVX1N2OcicjHwemChZr0NyYD+uf2+O4BmjJIpN2e55SEAM1UZdWNoyL+Ms2ryaqB5wJ1rIxPnMnECi8i5wOXAG1Q1ptujtai3c7eRK/Jmrz5qNCd+sfzr1zsKIC9hnUlpdGhq3XYAEVwDzARuE6eK0s9UdXlGc8kEd2VcD+duo1fkrWbOMpqHwcHmFPR5IXMncBJaKQqonjTawWwObcPIN3nLAzDqSKNX5M2aq2AY7Y4pgBak0WUYLOnLMJqTrHwARh0ZWjjkm2RWzxX54MmDJvANo8mwHUALYitywzDiYE5gwzCMFsecwIZhGMY0TAEYhmG0KaYADMMw2hRTAIZhGG2KKQDDMIw2pamigETkCSDrhgB9wPaM51ArWuVZWuU5wJ4lj7TCcwyoakU9/aZSAHlARDb6hVM1I63yLK3yHGDPkkda5Tn8MBOQYRhGm2IKwDAMo00xBZCctVlPoIa0yrO0ynOAPUseaZXnqMB8AIZhGG2K7QAMwzDaFFMAhmEYbYopgBSIyCdE5Lcicq+IfF1EDs16TkkQkXNF5Hci8rCI/GPW80mLiBwlIv8lIg+IyP0isjLrOVWDiBRE5Jci8p2s51INInKoiHy19DfyoIiclfWc0iIi7yv9bv1GRL4oIrOynlMtMQWQjtuAF6jqC4HfAx/MeD6xEZEC8O/AecCJwNtE5MRsZ5WaA8AHVPVE4KXAu5v4WQBWAg9mPYkasBq4VVWfD5xCkz6TiBwJ/B1whqq+ACgAb812VrXFFEAKVPV7qnqg9PZnwPws55OQM4GHVfV/VHUM+BJwYcZzSoWqPq6q95R+3o0jaI7MdlbpEJH5wPnA57KeSzWIyFzgHOB6AFUdU9WnMp1UdcwAukVkBtAD/DHj+dQUUwDVcylwS9aTSMCRwKOe91tpUqHpRUQWAC8Cfp7xVNJyNXA5MJnxPKrlaOAJ4MaSOetzIjI760mlQVUfAz4JbAEeB3aq6veynVVtMQUQgIh8v2T3K39d6DlnFY4ZYiS7mRoi0gt8DXivqu7Kej5JEZHXA39W1buznksNmAGcBlyrqi8Cngaa0s8kIofh7I6PBp4DzBaRxdnOqrZYU/gAVPU1YZ+LyMXA64GF2lzJFI8BR3nezy8da0pEpBNH+I+o6k1ZzyclZwNvEJFFwCzgEBEZVtVmFDZbga2q6u7EvkqTKgDgNcAjqvoEgIjcBLwMGM50VjXEdgApEJFzcbbrb1DVvVnPJyF3AceLyNEi0oXj1PpWxnNKhYgIjq35QVX9dNbzSYuqflBV56vqApz/Hz9oUuGPqv4JeFREnlc6tBB4IMMpVcMW4KUi0lP6XVtIkzq0g7AdQDquAWYCtzm/F/xMVZdnO6V4qOoBEflb4Ls4UQ03qOr9GU8rLWcDS4D7RORXpWP/pKobspuSAbwHGCktMP4HuCTj+aRCVX8uIl8F7sEx9f6SFisLYaUgDMMw2hQzARmGYbQppgAMwzDaFFMAhmEYbYopAMMwjDbFFIBhGEabYgrAaDtE5O9KVSoTZ3CLyAIReXs95lUa/29LVVpVRPrqdR/DAFMARnuyAvgrVR1Mce0CILECKFVhjcOdOBmom5PewzCSYgrAaCtE5DrgGOCWUq332SJyg4j8olS87MLSeQtE5A4Ruaf0ellpiI8DrxCRX5Wuv1hErvGM/x0ReVXp5z0i8ikR+TVwlogsLt3nVyLyH35KQVV/qaqb6vstGIaDKQCjrShlbP8R+EtV/QywCqf0wpnAXwKfKFWv/DPOLuE04H8Bny0N8Y/AHap6aun6MGYDP1fVU4DR0jhnq+qpwASQZgdiGDXDSkEY7c5rcQqx/X3p/SygH0dJXCMip+II6+emGHsCp1AdOHVkTgfuKpUP6cZRMoaRGaYAjHZHgL9W1d9NOyhyJbANp6NVB7A/4PoDTN9Je1sG7lfVCc991qlq03SPM1ofMwEZ7c53gfeUqj0iIi8qHZ8LPK6qkzgF51x7/W5gjuf6TcCpItIhIkfhdFzz43bgzSJyROk+80RkoKZPYhgJMQVgtDsfATqBe0Xk/tJ7gDXA0pID9/k4jU0A7gUmROTXIvI+nKidR3BKHn8Wp3JkBar6APAh4Hsici9OX+lnl59XClHditOn4V4RaeoWkUa+sWqghmEYbYrtAAzDMNoUUwCGYRhtiikAwzCMNsUUgGEYRptiCsAwDKNNMQVgGIbRppgCMAzDaFP+f2wyvCrKmVUZAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEZCAYAAAB4hzlwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXt4FNXd+D8nBEhgE0CQ2ISQxFiVolbUFqwVEy5qX5UA\nVqskCEKlVkUBqVIhJHlTqVq8orU/WpEqSGu9ofVtFdSAWGNtFRWwKptNiEFCvUCuXEK+vz9m7zuz\n2d1ssrmcz/PMs7uzZ86cmWzOd873qkQEjUaj0WgA4mI9AI1Go9F0HbRQ0Gg0Go0bLRQ0Go1G40YL\nBY1Go9G40UJBo9FoNG60UNBoNBqNGy0UNBGhlHIopSbEehydjVKqSCn1ZKzHEUuUUm8opebEehya\njkELBY0mfNoV3KOUylBKtSqluv3/n1JqllLqzViPQxM9uv2PUqPphigMwaIiOlipPtFoEyVc16Lp\nIWihoGk3SqlRSqkKpdRPLL4vUko9rZR6UilVp5T6QCn1baXUEqVUrVKqSik1yat9slLqD0qpvUqp\naqVUqVJKOb87USn1mlLqS6XUfqXUOqVUstexDqXUrc5zfKOU2qCU6uf8bqhS6iXn/q+UUluCXNNo\npdSrznZfKKWWmLS5QClV7bfPrVZTSn1PKfWuUuqgs4+Vzmau8x5w3o+xzvZzlFK7nOf8m1JqpFe/\nrUqpG5RSnwKfmozFtfqYo5SqAl5z7h+nlHrLec3vK6Uu8DpmtlLK7hyDXSl1tdff60mTvuP8znkq\n8ChwrlKqXin1tdX91HQftFDQtAul1FnA34EbReTPQZpeCvwRGAxsB17BeMpMBUqB1V5t/wgcAU4E\nxgCTgZ+6TgmsAE4ARgEjgGK/c10BXAhkAd8FZjv33wpUA0OB4cAdFtdkAzYB/wd8CzgJ5yRrQrCn\n5AeBB0RkEJANPO3cP975miwiySLyjlIqD1gCTAWOB94ENvj1lwd8D/hOkHOOB04FLlJKpQJ/Bf5X\nRIYAi4FnncJxgHN8F4lIMvADjL+L1XUFXKeI/Ae4HnhbRJJE5Lgg49J0E7RQ0LSH8cBGoEBE/tZG\n2zdFZLOItAJ/AYYBd4nIMeBPQIZzhZAC/AhYKCKHRORL4AHgagARsYvIayLSIiJfAfcDF/id60ER\nqRWRA8BLwJnO/UcxJvksETkmIm9ZjPVS4AsReUBEjohIo4i8G/ptcXMEOEkpNVREmkTkn37fe6uP\nfgb8WkQ+dd6ju4AzlVLpXm1WiMhBETlscT4BikSk2dmmAHhZRF4BEJHXgH8B/+Nsfww4XSmV4Lxf\nH0dwjZoehhYKmvbwM+AtEXEbGpVSM5yqhDql1MtebWu93jcDX4onG2MzxgRpA0YCfYEvlFJfK6W+\nAX6HIURQSg13qoQ+V0odANa5vrM4V5OzX4DfAHbgVaXUbqXU7RbXle5s117mAqcA/1FKvaOUuiRI\n2wzgQec1fw18hTHJp3m1+TyEc3q3yQCudPXpvJfnAd8SkSbgJ8DPMe71S0qpk0O/NE1PRQsFTXu4\nHhiplLrPtUNEnnKqEpJFJNgkaEU1cAgYKiLHicgQERksImc4v18BtAKjRWQwxtNwSAZbEWkQkcUi\nkg1MARYppXItxpAdQpeNwADXB6dx93iv89lFZIaIHA/cAzyjlErEXOW0B/iZ85pd120TkXLvSwhh\nTN5tqoEn/PpMEpF7nOPbJCIXYqjiPgF+b3ZdGKurUM6n6QFooaBpD/XAxcB4pdSvo9GhiOwDXgXu\nV0olKYMTlVIuPXwS0ADUK6XSgF+E2rdS6hKllGuyrwdaMASMP38FTlBK3ayU6qeUsimlvm/S7lMg\nQSn1I6VUPLAM6Od1vnyllGsVcxBjAm0F/ut89RY8/w+4Qyn1Heexg5RSPw712lyn9Pu8DrhMKXWh\nUipOKZXgNI6nOldcU5y2haMY99R1L7Zj/E3TlVKDMGwdVtQCI5RSfcMcq6aLooWCJlIEQETqMAzB\nFyulStrbn5NrMCbXXcDXGDaIE5zflQBnAy57wbNB+vHn28BmpVQ98BbwiIgEeCCJSAPGNU0B9mFM\n/jkm7eqAG4DHMNQ29fiqby4Gdiql6jBsHz8RkcMi0gzcCbzlVOt8X0RewLAj/MmpFvvQeXwo12Xa\nRkQ+xzBO34EhiKowjM1xzm0RUAN8iWEf+rnzuM3An51jeBfjPlud53VgJ7BPKbU/hDFqujgq1kV2\nlFILMXSvrcBHwLUiciSmg9JoNJpeSkxXCk6XufnAWU6dcTxwVSzHpNFoNL2Z+FgPAOgDDFRKtWIY\nt/bGeDwajUbTa4npSkFE9gL3Ynhe1AAHnPpMjUaj0cSAWKuPBmMYwjIwIlttSqkZsRyTRqPR9GZi\nrT6aBFSIyNcASqnnMMLtn/JupJTSvtAajUYTASISVuLFWLuk7gHGOf2nFTARMA21F5FuuxUVFcV8\nDL11/N157Hr8sd+6+/gjIdY2hX8CzwDvAx9gBN+sDnqQRqPRaDqMWK8UEJESERklImeIyCwRORrr\nMWk0XQGHo4rnnisjN7eIgoISHI6qWA9J0wuItU2hV5CTkxPrIbSL7jz+7jp2h6OKyZNXYbffjpE0\ntpHy8iI2bZpPVlZGrIcXMt31/rvo7uOPhJhHNIeCUkq6wzg1mmhRUFDC+vWLgYFeexvJz1/JunVF\nsRqWppuhlEK6maG5XWRmZqKU6hFbZmZmrG+npgtRU9OKr0AAGMjevWb5+zSa6NGt1UdVVVURW9i7\nGobzlUZjkJYWh5HB2nelkJra8c9xDkcVhYVrqalpJS0tjtLS2d1KZaVpH91afeRcGgXsb25u5pNP\nPqG+vp6kpCROOeUUEhMTwzpnNPoIB6tr0fROPDaFEgzB0Eh2dsfbFGJ1Xk3HEIn6qEcJBbt9N+vX\n/y8tLe8wZsznJCUdor4+gfffH0F8/Fjy85eTnX1S0HNFo48Ir1ELBY0Prif2vXtbSU3tnCd2bcvo\nWfRqofDYY3dy8OAqrruulqSkwD7q6+H3v09h0KCbmTvXtF57VPqIFC0UNF2B3NwiysoCy2Lk5hbx\n+uvtKZehiQW9ztDs4rHH7mT48LtZtMh8MgdISoJFi2oZPvwuHntsRYf0odF0dzy2DG86x5ah6Rp0\n+7+03b6bgwdXcdll9SG1v+yyeg4efAi7fXdU+zDjm2++Ydq0adhsNrKystiwYUNI/Ws0saK0dDbZ\n2UV4BINhUygtne3TzuGooqCgRAfW9URinZsjxPwdYgYgJSUzpa4uvC4PHkRKSq5x9xONPsy46qqr\n5KqrrpKmpibZtm2bDBo0SHbt2mV5LRpNV6CiolLy84slN3e55OcXS0VFZcD32dm3CjQIiECDZGff\nGtBOE3uc80pYk1u3dkkFaGl5x1LdY0VyMhw9Wk5zc3NU+jDzSmpqauK5555j165dJCYmct5555GX\nl8eTTz7JihVa9aTpumRlZQQ1KhcWrvXyTgIYiN1eQmGhNkb3BLq9+mjMmM/bbmR6XA2ffvopn3zy\nSbv7MOPTTz+lb9++ZGdnu/d997vfZefOnRGdS6PpKujAup5Nt18pJCUdivC4Zurr6xGRdvdhRkND\nA8nJyT77kpOTLdtrNN2F5OQmzALrkpKaYjQiTTTp9iuF+vqECI9LJCkpiaSkpHb3YYbNZqOurs5n\n38GDBy3bazSR0tlGX6VagEK8jdFQ6Nyv6e50e6Hw/vsjIjwujZNPPplTTjml3X2YcfLJJ9PS0oLd\nbnfv++CDDxg9enRE59JozHBFIK9fv5iyMiPwbPLkVR0qGA4eTAZuAVYCRc7XW6irSw56nKZ70O2F\nQnz8WMLVyNTVQd++40hMTCQxMbHdfZgxYMAApk+fzvLly2lqamLbtm289NJLzJw5M7wTaTQmOBxV\n5OX9glGjFjofPJYBVXiMvmstj9269S2ysi5n8OBryMq6nK1b3wrr3Ib6aBiGQChxvg5rt/pIu7l2\nEcJ1V4rFRhCX1N27P5N7700Jq8t7702R3bs/c/cTjT7M+Prrr2Xq1KkycOBAycjIkD/96U+Wba2u\nUdOzcbl/5uQY7p9btmzz+Wzm5llRUSkjR97s4xIKCwWuE6gUEMnNXW56vi1btkl8/CyfY+PjZ8mW\nLdtCHnNe3gLn+XzPn5e3oF33Qbu5Rh8icEmN+YQf0iCDCAURkT/84Vfy4otJIXW3cWOy/OEPdwb0\nFY0+2oMWCt0D/0m8PZOW2URoTNi7gk6M+fnFXseI18S8TMD4Lj+/2PScmZnTTY/NzJwe8rhzcpY7\nhU+xwHLna6WlIAoFq2uyug5NaEQiFLq9+ghg7tyl7N+/hPvuS8HPtuumrg7uvTeF//73dtO8RdHo\nQ9Ozibb+3szfv6XlEeBp92czVZCVS6ihDT5qGoHs4ptvBpoee+CA/z5rjFQYgeqj9qTC0G6uXYdu\n75LqYu7cO7Dbr+SBB0o5erScMWNqnC6jiWzfPoK+fccyY0Zh0Ayn0ehD03OJdtCW9eTe6vPZf2K0\nqrUArWRmfsymTfdZZlMdMqSRgwcDjx082PAkCqWWQmnpbMrLiwLSa5eWzg/lsk2JZf0IjR/hLi1i\nsdGG+sifpqYm2b59u7z55puyfft2aWpqCm2tFeU+wsHqWjRdB0NtIgFbpGoTazVQcVAVipVNIT39\nujbVWcFsCuHo9dtKhREu2qbQMdBbbQo9gZ50LT2VaOu9I7UpuI6dMmWxpKTMlJSUaZKXt0AqKipD\nsnls2bJNMjOny+DBMyUzc7rbyBxrvX60BY0mMqHQY+opdHd60rX0VDqiKtnWrW8xa9Z9HDgwkMGD\nG/n1r2fw17/uCLuwjsNRxcKFD/DKKwc5dGiV5fiCqYd0LYWeRyT1FGK+CghlQ68UNF2EaD7NRktl\n4ulnWdAn/bbOF+uVgib6oNVHvjzy4IPB71gIRKOPUNBCofcRrUnY009wm0db54vEphAN11xNxxGJ\nUOixpv0dH33ECxv+zM4dO2Lah0ZjRbTcMD39BK+aZnW+l1+2U1BgqIc2bZpPfv5KcnOLyM9faaoa\na8s1V0cmd3PClSKx2IhgpbB88W3y5cZNsnzxbW2L0w7sI1SCXYumZ9LelYLraX348JlO1dE2gfDV\nQzBdYFfIqqtg49ZeRF0L9ErBoKmpCdXQxNBBg6G+0V1Mp7P7eOSRR/je975HQkICc+bMCft4Tc8m\n1NKXZng/re/f/wSwBHgWmAbcRf/+VzNixFUMG9ZCYeFaHI4q0/MZgWe/Ah7Dbp8bNGeSi2ArnMBY\nji+x2xMZN65Qrxq6CTH3PlJKDQL+AJyGEbUzR0Te8WsjZuO08tj54x8e45x4G6OzstlRsZv3Wpu4\nZm54k3I0+njhhReIi4vjlVdeobm5mTVr1li21d5HnU8ogVqdNYZwvY0KCgy1jX+wV0rKTMaOzeb9\n9w9SXX0//l5I1dWfc/HFy2huHgE0AYuA8zAExEpyc1uDehpt3foW//M/y2lsfDHg3Pn5K6mpafXy\nYKoCVmFEPUfHW0sTHpF4H3UFobAW2CIijyul4oEBIlLn18ZSKKz+7aP8c+ubpKWkuPe3HjrC/149\n2/15+Ya1xCX0c3+uqa3l++PP57qfXw/A7x/9Xbv7CEZhYSE1NTVaKHQhOsK9NFrjcgmqQYPqEImn\nrm5AyO6jffpcQULC1zQ2PgyM8vqmkby8Zbz/fit79qzAdc1wB4YtIhn4kLy8TF544X7TsW3d+hYT\nJ/6elpbbgccwm+wLC9d6CasSIFBw5efrsp2dRSRCIaZpLpRSycD5IjIbQERaAIvMQ+bMmjuHmsoq\nzhwynKnnnm/axntyf/7tN1EJCczyeuqPRh+a7kVXrDPsK6i+BB4EinFNvOXlHqFllRbi2LHTaGxc\njKEWmg+4BNxAysurqK19Eu9rhhXAXRgTeCPvvnsbU6cu5ODB5ABBNGvWfbS0POEcmwJ+DtSTkLCf\nTZueIisrwy8FRuSG9K6wiuutxNqmkAV8qZR6XCn1nlJqtVLKvECBBf369aP47l8j2SMo3rCWI0eP\nmrY7fOQIRU89jspOp+iuFfTr1y+qfWi6F10xAZuvoFoLlBIotNYC5vYIQxDMxvOUvtar90ZEbJhd\ns2caGMjevfewcaPN1KvISKb3JYZKqBh4AljH4cMnunvLyspwezClpHxEMG8oK2JROEjjIdZCIR44\nC3hERM7CUHIuiaSjaVdcwazbFlG44XHT75f/aS2zb7+VqVf8uEP70HQPPE/a3nR+AjZv981Nm+x4\nJu3gQst78u3T5wqM6me+KwNwPdwY6p1x41Iwu2bfacBXSNjtJSxY8DBgJNMzzH++KyyR3/kYqLOy\nMli3roi3374/ZEO6932YMGGRxSpubcBxmugT6yypnwPVIvIv5+dngNvNGhYXF7vf5+TkkJOTE9Bm\nZEYG/fuaP73379uPjMzMNgcUjT40XZ+OyPQZLoF2DVfdY++YA+usoa7J9623LqeyMlB3P3Dg23z/\n+0VOA7ZxXdu33+FnUyjEKK3pOc5fSLz66l4cjir++MdFXHDBg4S6wnIJrsLClV6GdOu4B899WBby\nOTS+lJWVUVZW1r5OwvVhjfYGbAFOdr4vAu42aRPMB9fNrl27ZF3RnSJl70rFhhfkloJZUrHhBZGy\nd+XJ5XfKxx9/3JZbb1T6cNHS0iLNzc3yy1/+UmbOnCmHDh2SlpaWkK5F0/F0RgK2YJG/gf7+leKp\naOb9Pri/fzjV1LwT6Q0deqkkJl7pc5xxzkq/OIZl7tiJSZNujHoqjMD7oNNtRAu6Y0I8pdR3Mdak\nfYEK4FoROejXRszG6e+xs+7xtZzTx8bHe6v58MB/uXXZHawsvZMzhwznlNQRvNfaRP7sWUHHE40+\nXJSUlFBSUoJSHuN/UVERy5cvb/NaNN2fYB5O1dWfc+GFhRw+PAI4CBwPpAFNDB26g29/+3Sqqz/i\n0KF44uOHcPrpyQwc2NfUAAyBifX++MdFjB9/XkhjdLnE9unzFZs37wB+iPHveCWGl9F8cnPX8Prr\nJR3itRXoSaVdWaNFt3RJDYVQhcIdCxYR33yYsybl+uj9X/jLM7y3+Q1aBvRnxf33BT1XNPqIBC0U\neh5WsQQTJy5iy5bDziprLjXOjcB1wJkMGHAjQ4f284oz+Jj4+Lt92rdnknQJkG++GciQIYYASU8f\nETDZGzaKucCZPm6kkcZW+OPqZ9OmD9i/39srCuBjMjOXkZV1GklJTSjVYikQNdb0+iypjz64Sirs\ndtO2FXa7PPrgKtPvot1HJFhdo6b74inK41vPuF+/CUHSTbjeTxVX7eO21CnhJKfbsOEZUepCgaXO\nfndJfPwsmThxnsk5dglMlYSEGTJlyuKoqtd802FYq8p02oz2gc6S2n3pSdeiMTB05bvEPx8R/Nhv\n8nVtM73eL3e2vVXgNtP2ubnLpaKiUtLTrxMj99FygWWWFdgqKiolPn6G31huFdgl/ftP9uu/MmDc\n0ZyMze0pyyQlZaaPYNPpvNtHJEIh1i6pGk2PpbR0Njbb7fi7cMKpmLuGesccxOGJN9ht2j41NY6F\nCx+gutqG4cldAiyhuvoo8+aVBoynsHAtLS2r/cZSAjxNS0sfDE+kIue+hwPGHcwtNNzMqIFxIhlA\nKd/5Thbr1hW51UNdMZ6kpxNrl1SNpseSlZXBaaeNorzcf1L7KXA98Dt8bQqL8AShuVxjBwKpxMXN\nprX1VAxh0Up6ei2lpUsZN24h4B+l/DBvvHE5DkeVj+7daoKFemAIhmBxjec607Z2eyMFBSU+aTiq\nq4/w4Yc7OXbsO85+Wti69U7WrZvF6tWbTaOSrSKy/eNEQm2niSLhLi1isaHVR5puipX6Y+LEee46\nyWlpU2TSpLkydOh0py3hNi97QoOkpV0sqak3+KhyRo68WSoqKp1ps7c57REzna/bBJYGqFisU2ef\nb7LfvIqbzXaZpR3A485qvE9MnGSpfgrVVqBtCu0DbVPovvSka9F4CGfyGzny5oBJNj39OpkyZbGl\nXv3cc2cIzPI7bpbAXLfNwWWEzstbEHAOpa6SxMQ8LyHk6r9S4FqftoY9YpcEiyUw9rveTw1qCwg1\nTqQz4kl6KpEIhR6rPhIRfvPLX/KLX//aJ06gs/vQ9G5CjeotLFzrFWmM87WUMWOKqasbgJVefc+e\nBuApv+MeAa4mOTkpwM30W9+az4gRV3HwYBLNzV/T0nI/zc2j8FVbZQDDgEEY6TNagTgSEw9RX+/K\nvGqlimr1ep9kOmbvexNK8sFQ22miQ48VCltfeYUvHn2UjaNGMXXWrJj1odGEMqlZ6fvr6wcE1au/\n994g0+OU6kdDQxN2+3DgHgxbxGy++GIVhkG5CqMoj7/ReSVGuutCYAGeXEqNDB16DfX1wdNweFJk\nNGIIFny+17aArk+P/Qu9dM893FtXx9YHH6SlpSVmfWg0oRAsQV+wCm1GkrrA40T28MYbrvySrroG\nqzCynNZi1FoIFCZ9+uzAyIDagDGpVwGFKHUtzc0H6d//BuBj5/fX4REwrjxKszGK/dxKenqD6Zj9\n0TWduxjh6ptisRGmTWH7u+/K2uOOEwF5Lz5eHv/Nb0JRv0W1j8OHD8vcuXMlIyNDkpOTZcyYMfK3\nv/3Nsr3VtWh6B23ZHqz06hs2PCNQYGJTMM9RZBiQl/nZBFwBcktl4MAJTrtBpcCCALsCXB1gw+jf\nf5akpEyUoUMvlpSUme5At1BsAdqQ3LGgDc0Gt19yiRz2+m+4bfRoaW5uDu0uRqmPxsZGKSkpkT17\n9oiIyF//+ldJSkqSqqqqsK5F03sI16DqmVA3ieF1VCCQI/CMGIFsYrJd4ZzwXcFpgcF1RnK9XRbG\nZHOvpEiDyXRwWseihYIYqSgeOuEEn/+Ez5SSh5YsCflGRqMPM8444wx57rnnTL/TQkETLnl5C8QT\nyexxYTXeW3kH/cBvhTDdtN3AgRMkKWmGiVAxFza5ucsjugZPKpDo9KfxJRKh0ONsCo/fcQfX7tvn\ns+8kEfY/+ywHDx60OCr6ffhTW1vLZ599xujRoyM6XtP7CKZrdziqeOWVg5jbDL7B0PnPw1fnXwTc\ngGELaMQwIpvbFhobz0WknkB7RavJvsgNyF2l2JHGi3ClSCw2Qlwp1NbWyq8zMgIfO0D2gqyYN69N\nyRqNPvw5evSoTJo0SX7+859btrG6Rk3vpC1du3Ug2nyB2eJrB5gthn3AFYewSyBXjBxMwZLzbRKb\nzd+mcJ3zHJ59Ntu1prUbIrvOXWKzXSbjxt0W9ZiEcBIH9hTo7eqjFfPmyX5zRaoIyJ0jR8oXX3wR\n9CZGow9vWltb5Sc/+YlccskllgV2zK5F07tpS9dupXaJi5tkepwnqMzYlPK3LQQmyYNb5cwz50h+\nfrGMG/cLycycLuPG3SKTJs2VAQMuFe9Mq+0xDrsm63HjbgkQQtEyOvdWg3avFgp1dXWy/NvftpzM\nBeQbkMKf/MTyBkajD3+uvfZamThxohw+fDhoOy0UNN60pWu3EhpDh5rZAUR8bQENMmLEpeJrW5jg\nNclXuttlZk4PGFswgeWZ4G+TzMzpMnbsLSE/lXek0bm3GrQjEQo9RnG3dsUKrv3ss6BtBgNDt27F\nbtEuGn14c/311/Of//yHF198kX79zOs+azRmBNO1OxxVNDQcICFhPv5xAOedl2p6nCfS2Gi3fv0S\nr9iHDGAM8CsMu0OGs+1ATjghO2BsVoF2dvs3TJ68ivXrF1NefjeVlU/wzjvxrF9/JZMnr4ogc6rR\nbzQyoupsq6HTI4TCkSNH2PvSS2SG0HbeF1+weuHCDunDmz179rB69Wq2b99OSkoKSUlJJCcns2HD\nhhDOoOntzJs3CZstcNKfN28SkyevYuPGX3HoUBFwFwkJ+UyZUsymTfO5+upxxMfP8zlu5Mg7yMtr\nIDe3iPz8lWzaNJ/x489j06b55OevJCXlGsCOmTDJzvadSB2OKiordwDLMAzcVe62+/ZVe6XUAO/U\n3MHSbrvoSKOzNmiHQbhLi1hstKE+enzlSvmwT5+gah/v7bGhQ+X9f/7Tp69o9NEerK5R0/vw6L9d\nsQJLxWa7TLZs2RZUDbJlyzavGIPFYsQtTJBhw3KDqnEMVVWgbSEx8Vqf9uZJ+2522xTGjTMvBuRS\nXbXlZhotvb+ZQVnbFHqRTeHYsWOy+KyzQp7MBeQoyMKcHHc/0eijvWihoHERbOIPtDUY0ciDB890\nRiO70lqbG4/NJkLP+bzLhi6TSZPm+kyu5iU7DfuEayK2NnKHpr9vb0bUYJN/b8y22iuFwvNPPCFb\n+/cPa0IXkGeTk+WN//s/EZGo9NFetFDQuAhmZPadeP0n/wLna/DJOTNzuk/6jClTFktCwgwx6iEs\nEFgqiYmTAmo4xMUViG96bWNLSZnp7st/Qg4mjDqC3mpQtiISodDts6R+9u9/8/7YsbwWZmprESFp\n82ZyfvSjqPSh0USLYFlRS0tnU15e5NTdPwDY8GRB/RKPUdkqrfVAKitHMXnyKtasmcacOc/7pNY2\ngt2uo7lZ0dy8BG/7QGvr74C7AO9Sn40YgXKeNOELFhTz1ls1NDTsw2YbwnnnreGBBwLThZvhcFRR\nWLjWtFpbKAQzKLe3715DuFIkFhtBVgo9hZ50LZr2EUpyPCPFxTTxpLlYJkbltR+LVX4izwrCs2Kw\nbmeVO+lqv5XAbDnuuOkR6+699f9TpiyW9PTrQj7WDKuVwpQpi7VNIdT5NtwDYrFpoaDpbbSl/zaE\nglk5zHxJSPiBKOWfOdU7+Z2hAho8eKbFxO/KpWQmMBY7hc7VApeJpxKbMcka4wpNfWOublooviqq\n8FQ/VkIpnHH1JCIRCt1efaTRdAfCVV20VZjn7bergCfxr9QWFzeVXbueAqCwcCU7d37BRx/t5Nix\nERhupIsw4hAaGTy4kQMHrArlzMZQJZXiUS0V4arM1rfvhRw9+rzXsV9ityeyZ89OjEI9s/GOd7Db\nv6GgoMTn+gsL15q4sJY6jy9y7wsnlsCq0t2cOWvQcQqh0a2FQkZGRo8pk5mRoXWbPRWHoyqgLObG\njfMZPTqZb3YtAAAgAElEQVSZk04aEqFu24bZJDdkyHB3X6Wls5k8eRXHjv0d34n9OLKzH2PNmkVc\nffVt7N17D742hVswCuw0YBTc2QechKdUZyNxcd7nr8JIxlfC0aOBAgQ+ZseOOsrL73Sfp7y8iOOP\n72N6DZ5AO4gklsBMoAaz02j8CHdpEYsNrVrRdGPactUcOfLmAPVQW8nbpkxZbNqnyz002HkHDpzg\nTmCXlnaxeOwSl4qR7M43FbfNdpmJKspbdRX8+nyP93xvbdNYFnW9v45T6CU2BY2mO2DlYuox5hqG\nUBehTGBtBZJVVFQGOe9Sd5tBg7ztCoHxDa4MqMYE7p0bqdJLMJifZ/Dgme48SGbfn3nmzwKuc+TI\nmyUvb0GHxBLoOAUtFDSaLoH5E/suMdJTG0/lQ4dOb6N9oFG0oqLSZLL2tA0lmCzwab3S+aQ+TcDI\nXCpiJdgqJSVlmqSkTAs6XqtxxMdfJBs2PNPrJurOpNsKBQzL1nvAixbfR/lWaTSdh1nNAP86x336\nzHBPiOFUIwvW1jqYrNLdxpMaw7/G87aQJnbXRN6WC21gXQbDG8pmu0wLgg4kEqHQVawstwC7Yj0I\njaYjcHnE5OevZOjQGRjVzx7B2+vm2LHV7oRx4SRvC9bWdd7MzGswPI9W4m0sTk2NY/z483jttetI\nS5uBUj8GCjAqs53JyJF3UFo6GzCM1p6sqsY5srOL3EZy1/V5J93Lyspwe13BQTxeRa5xjKKh4Qz3\ndQerNKfpRMKVItHegBHAJiAHvVLQ9HAqKiqlX78rg64EwjGKhmp/CKWNETjmCYZLT78uoE04qh7f\n81qrsqxWNf6rjd5WNS0a0B3VR8BfgDOBC7RQ0PQGrDyHvG0G4UzAobRtq00kOYPamqgD8zSZq5CC\n2T9CUU9prIlEKMQ0TkEpdQlQKyLblVI5gGXQQXFxsft9Tk4OOTk5HT08jaZDeOCBm9i5s8gnbsFQ\nxcx3t2kreM2bUNr6t3GpalzBZHZ7E+EEd5nFXpSXF7nVRuCfhygDmAtcDZwB9AXmkp39WJvBZWZB\nbkZ9hpUh36PekveorKyMsrKy9nUSrhSJ5gasAPYAFcAXGNEyT5i0i7oE1WhiSSzdI82evK1iCaxW\nCqGsLKy8rjIzpwdcd3jpwsVH3RbJ9faWlQbdUX3kHohWH2m6Md1J5201WXs8hAy31Li4K2To0Esl\nL29BwPWEMlFHyzbS3nTYvTmddiRCoVunudBougKhqFK6EubppQfQv/9/6dfvGg4cSKC1dTWtrQP5\n6qtGNm4s5L337mTLlqXu6wklbYRVHiKzexKsrW+6cHN1W/jXq/MeWRKuFInFhl4paLowHfkk2hEr\nkMDxekcnW3kJLQswhHemSqY96ja9UtArBY2mU+moJ1GrFciaNdNYvXozNTWtDBpUh0g8dXUDQjag\nzps3iY0br6ahwWXwPYgnG6pVgZ44n+sJZxUQDcIxvPvT3pVGb0MLBY2mnXRUBk5zr5u5XHLJb2ho\nWIVRae1BjEymoamtHI4q5sx5noaGDe5j4uKupbXVdQ7za4FWUlN9p4u2Juqu4vHT2QKs2xPu0iIW\nG1p9pOnCdJQqxdyY660KCV8tYq5K8a7UFpgUDxYGBLJFck9cye66gzG+p4BWH2k0nU9HPYmar0CO\nen0OX21lrur6Kf3738jhw4/gHU+gVF+OO+4IP/zhSdx/v8fIHMoKwGyVs2fPCvbsuQsooasb43sz\nWihoNFGgPTpvK8x04TbbhzQ0uARF+Gorc0EzjGHDaqmpucvZZxywCpFhXHzxyoCgt1A8razsLLjT\nrYUfgKbpHLRQ0Gi6KGYrkHnzbmfOHJegmI1/ycy2DKjz5k3iz3++kZaWR9zHxMffyLBhqdTUlHq1\nrAJW8uKLn5KVdTkpKemcdNIQ6usbQooutrKz4JODU7uFdkW0UNBoujBmK5BNm0a4BUVysiBSTH39\ngJDUVqtXb6al5XaMTKWtQBwtLbdz8OAyPJO4p7xmff1A6usbqaws4p13riQh4VeEorIyW+V4Sn26\n0OUwuyJaKGg03Yz2qKoMtc4ojBTWHk44IZs+fVyT+FoMvb9nNWB8XsmhQycSisrKf5WTlNTE++83\nUF09zH2MdgvtmmihoNH0IqzUOtnZA3nqqdkUFq7k5ZftHDhgZg9oBX5KYuJ8mptX0ZbKyiwJn3YL\n7foow2upa6OUku4wTo0m1rTlGWRmKM7O9jUUFxSUsH79YgLtASuBxeTlLcNmG+w1uffMjKM9AaUU\nImKZfdr0mO4w2WqhoNG0TSgTvqtdYeFay0ndrB9D3WSkutZupN0HLRQ0ml6M1RN+fn5obp/eq4zk\n5CaUaqG2ti/79tk54YR0srOH6FVBNyMSoWBpU1BKpQO/AdKAvwG/EZGjzu9eEJGp7RmsRqOJLu3J\nwWS9yrgxqkKgq6S+0FgTzB9sDVCGUWH7W8AWpdRQ53f6r6jRdDE8RmRvQnP7tK5utjZq43MJnvXr\nF1NWZqxqJk9ehcNRFbVzaNpPsF/L8SLyOxHZLiLzgd8CW5VS2YDW5Wg0EeAqg5mbW0RBQUlUJ8TS\n0tlkZxfhEQwuz6DZbR7bkTUHfvvQQ0DnCB5N+wnmktpXKZUgIocARGSdUmof8AqBvx6NRtMGHV2M\npz05mDoq0+uOjz7ihQ1/5oIJE3Sxm+6CVaY8YCFwgcn+McCmcDPvtWdDZ0nV9AC6crGXjsr0unzx\nbfLlxk2yfPFtEV1/dypz2hUhmllSReR+i/3vA5OjLZw0mp5OV35S7ohMr01NTaiGJoYOGgz1jSxd\nOiesYjfdrcxpT0FHNGs0nURHqWhctNezJ9qZXv/y1AauGPtDAK4Y+0Pe/cdbYQkeaxuEzqzakWih\noNF0Eh1ZFjLWT9W/f/R3/HPrm6SlpLj3tR46wqyrZwNw2okn8fSGtVR8tIOThsFJw6CmtpbNf/8b\n1/38etM+u/LKqiejhYJG00l0ZFnIWD9Vz5o7h5rKKs4cMpyp555v2uZ/nQIC4Pm330QlJDBr7hzL\nPjt6ZaUxp82IZqVUCrACSBWRHymlvgOcKyKPdcYAnWOQtsap0fRmcnOLKCsrMd3/+uuB+zuK5//y\nFz54bQt3/Diffn37Bnx/+MgRVjyznjGTcpl6xY+D9tVW2g4dCNc2UY1o9mIt8Diw1Pn5U+DPQKcJ\nBY1GE5yu8lQ97YorOPPssym88y7uvmZewPfL/7SW65cuIevEE9vsK9jKKtbqsp5MKL+YYSLyNEbe\nXESkBTjWoaPSaDRh0Z7AtWgzMiOD/n37mX7Xv28/MjIzQ+7LZfx+/fUS1q0rck/4OhCu4whFKDQ6\n01sIgFJqHHCwQ0el6fY4Kh0U3FxA7uxcCm4uwFHpiPWQejSup+r8/JXk5haRn78yZk/Nn376Kaec\nkAqA44saFvzhYRxf1ABwckoqn376abvPoY3QHUco6qNFwItAtlLqLeB4ILgyUNOrcVQ6mHzTZOzf\ntcNQ4AiU31TOpoc3kZWZFevh9Vii7VIaKf8uf4dzTjyZ599+kw8P/JdfPfowK0vv5MzK4Zyd/W3+\nXf4Op556arvO0VXUZT2RoIZmpVQcMA74J3AKoIBPxJkttbPQhubuRcHNBaxPWg/eGoQjkF+fz7qH\n1sVsXJrO4Y4Fi4hvPsxZfsbkF/7yDO9tfoOWAf1Zcf997TpHqLUjzI7rTcbpqBuaRaRVKfWIiIwB\ndrZrdJpeQ01djbFC8KYf7K3bG5PxaDqXkSeeyEWX/o+PMdnhqOKZjTux2/swoG8lDkdVuybjSNx7\ntXE6NEJxSV0JvA08F+3HdaXUCOAJIAXDkP17EXnIpJ1eKXQxHJUOCu8rpKauhrTkNEoXlbpVQ3ql\noPEm0qf6aNPeIkTdkUhWCqEo4H4G/AU4rJSqU0rVK6XqIhphIC3AIhEZDZwL3KiUap+yUdPhuGwG\n65PWU5ZVxvqk9Uy+abLbmFy6qJTsD7LhiPOAI5D9QTali0pjN2hNzOgqnkLaOB0abQoFEUkSkTgR\n6Sciyc7PydE4uYjsE5HtzvcNwMcYld40XZjC+woNI7JrJdAP7N+1U3hfIQBZmVlsengT+fX55Dpy\nya/P10bmXkxXmYzbU4SoN9Gm95FSarzZfhHZGs2BKKUygTOBd6LZryb6+NgMDgDbAYHNjZtxVDrI\nyswiKzPLUlUUTPWk6Xl0FU+hYLmnepsBOhih2BRe8vqYAHwf+LeITIjaIJSyYZT+LBWRjSbfS1GR\nR+eXk5NDTk5OtE7fZalyOFhbWEhrTQ1xaWnMLi0lIyv2k6fbZrAPeA/4H4xVg1NNFGxV4OOuGuIx\nmu5NMJsC0KmTsWvy9xinZwN0CZtHNCgrK6OsrMz9uaSkJGybQptCIeAApdKBB0Tk8rAOtO4vHvgr\n8DcRedCiTa8zNFc5HKyaPJkSu935M4Wi7Gzmb9oUc8HgqHRwwZwLqK6pNiJWwjAoayN076QrT8Y9\n2QDdUYZmfz4HRkVwnBVrgF1WAqG3sraw0C0QwPi5ltjtrC0sjOWwAMNmMCZrjOEz5p/NoA3X05q6\nmrCPaQ86srprYJauQhuguyah2BRW4UxxgSFEzsRQGrQbpdR5QD7wkVLqfed57hCRv0ej/+5Ma02N\nyc8UWvdGb/JsS7cf7Pu6Y3XQB8PDyO+pPzU51fKcaclpYR8TKTqyumvTVSbjrmLz6CqEkubiX17v\nW4ANIvJWNE7u7KdPNPrqacSlpZn8TCEuNTqTZ1sTZlvfpyWnwWjgDSAXt33A9pqN0j9Zu56WLiql\n/KbyAJtC6cPRd1cN5iWlVVWxp6tMxh1Z/Kg7Eoqh+RZ/1Y7Zvo5E2xSib1NoS7ff1vduoZFpN2Ld\nj4HtgI2Xf/sy439o6rDmxrUC2Vu3l9Tk1A7zPsqdnUtZVlngfkcur699Pern04RHV0pVYWbz6G5G\nZjMisSmEIhTeE5Gz/Pa970x90Sn0RKEQimeRu83evcSlpkbV+8hnwvRyK01pTOHtv7zNnOI5bU6o\n/pP7vCvnsfrp1V3G1VQbtWNPWxN4uJNxOILE6ty9yf00EqGAiJhuwNXAS8A3GFlSXdsbwGtWx3XE\nZgyzZ1BZUSGLp0yRGQkJsgykEqQB5NbsbKmsqOi0ceTPzxfuQFiAcC7G+2LjNfuSbJl0+SThfIQL\nEHKc7e5A8ufni4hIhaNC8ufnS86sHMmfny9b3twi2ZdkB/RT4ei8a/KnwlHR5cbUm6ioqJTs7FsF\nGgREoEGys2+ViorKiPvMzy/26k/c/U6Zsjikc2/Zsi3qY+rKOOfO8OZbyy8gA8jByHt0gdd2FhAf\n7onas/UUoVBZUSG3ZmdLg/PX3AByq5dgKM7P77SxuCfM870Egmu7ERnwvQE+kynjkPTcdKlwVJhO\ntrbTbYH9eAmRWOESXrmzciV/fr4WCJ2I1QSen18ccZ85Ocv9+jO2hIQZPhO71bkzM6dHfUxdmUiE\ngqVFR0SqRKRMRM4VkS1e23tiVF/ThImpmylGvdMvgQ82b6YoN5eSggKqHB3rOulKRTH82PBAF9Gd\n0DS5ycdAywQYkzWGrMwsUwNuw+AG334OAP+AF99+0e0K2hnuof7nAFj30DpeX/s66x5ap72OOpGO\n8C6ySlVx6NCJPq6sVuc+cGCg6f7Nm+3k5hZRUFCCw1EV8fh6AqG4pI4DVmHEJvTD8BZqlCjlP+pN\nWLmZNgIPAk/W1jKwttYwKpeXd3igWlZmFpPPnsz6I35692OYxhLUH6sHLFJje7unHsBIVpIL9f3q\nWX9kPW/+7E3kqFB9bnWHuYdqF9SuRUd4F5WWzubZZ+dz6NAqPP89RcB87PZHKCgooaamlcrKHabn\nHjy4kQMHAvfX1mZQW1uCTqcdWvDawxj2hc+AROCnwCMdOaieisvN1JtGjBt7HbAS4+e9EpjbSYFq\nZhlN42vjPZ/x7HfFErhjDbwZDfyf0Y7teNxUMV73nLOH6pZqyyR60aCtRH2azqUj6kZnZWVw0UWD\ngLvw/LfMB4axY8d/WL9+MWVlJVRW/or4+BsDzv3HPy4KGBMUYkxroGs9hxangIjsVkr1EZFjwOPO\nQLNfduzQeh6zS0spKi/3cTOdDxwCHsNQJXk/+7TY7R0+JpcaqfC+Quz77ezYtYOGsQ0B8QfesQRm\nsQa2f9loOL0B/gF8jelKI+ARJMqRzLq4T9cikkI4oXD//QvYscPXA8lmm09Dw914VgCjaGm5nczM\na8jKOs3n3Js2jXCPaefOj9i//34ME6qL3hvNDKEJhSalVD9gu1LqHuALIkuP0evJyMpi/qZNXDNh\nAqMqK+mLMfkvwiMQwGNrmFFd3SnjcmU0Lbi5gPLscmMCH4oxwR+DzJZMNj3lUcF4CxK3O+rKecy5\naw72H9iN40yilvH/P4tyJHNyn+ROi5bWhEZH1I02Eza7dyfzzjv+2XdGkZV1Gq+/XuLe4++Ompyc\nwcaNw/yO673RzBBanEIGUIvxr7YQGAT8VkR2d/zw3GOQtsbZnfAPTFuMsQj25yf9+3PPxx93WgI8\nq2CvlFdTGPXtUW3GHrjiFux77ez4fAcNExvcK4mR/xrpsSl0QHZUd5K+5mqYgM95y/5fWYfZFHQa\n8OjRnriCUJLamcU4jBx5ByLNVFffTzgBdN2FDglec3acCIwUkU8iHVx76GlCAXwD03Y4HDxRWRmQ\n0uIuID4/n6J1nRNoZRXsxZvARMKayM2iloEOi2R2j70JdyAerZB3Yh4vrH0hKufwR6cBjx4ORxUX\nXHAn1dUpGIqIVtLTa1m3bhZz5jzfZrBaKEFtVoJjypRikpJspgF0nRHo1pHn6KiI5sswHmT7iUiW\nUupM4H9FZErkQw2PnigUvKlyOCj5zndYdeiQnz8FrMnNpeT1jk3J4JrAd+/dzc7Pd/o84fM6MA4Y\n7GzcRSOCY5HSQkdMR4+pUxeycaMCSvFY1gpJS/uYmppn8J/Ihw+fyeTJ32XevEmsXr2ZmppWkpOb\nUKqFurpkkpKM9wcPJrsn2jlz1lBWVhJw7tzcIh8Vk4vOqC3d0eeIRCiEYlMoxiisUwYgItuVUvox\nKIpkZGUx6KKLuGvjRuIwnpMMf4roJcCzwudp93TgBEh8NpEBAwZQd6SOo4OO+h4QA8NtKCqazsy+\n6kIbtqP3lPv221XAk/ha1krZv38aZnEF+/efzvr1V/LnP99NS8sjeE+oa9Zc6Fxd/Mq9v7y8iNGj\nFeG4yC5c+AB2uw24B+O/crbTMyl6dRas04fHrpZDKELhqIgcVMpH2PTcx/YYseD++1m1Y0dgArzS\nji12H+DG2ReahzTTPKHZs1p4AxiLsVroZMNtsNgD1/hr6moYxCBGfjKSPefs6fDsqy5iIYi6EmZP\nuZH7+Nswm/zj4myYTeTGJP20l0Aw2tvtJcyadQ2VlU/47Z/L4cO3kZAwj0OHTsRwQR1mmQ3V4aji\nlVcOAh7B4lq/R9MzqaukD/cmFKGwUyk1A+ijlPo2cDOGf4kmirg8k1Z6JcCb3wnlNwOedrfjMdTi\nfM3F+Iv/oOMnWn+sYg8WFi9kx5c7fIRF+p50puybQv2xesNm8XDHGn07Mw24GbFO7Naep1zX2Hfv\n/oba2moOHYrHEy/guoZGzjlnCPv2+aa19lKuYjahfvUVGBrvVgzhMQl4ns8//5O7j8TE+Vx44SDu\nv3+BqTG7vr7BK0AOPD6Bd5GaGpInf0h0lfTh3oRydfOBpcBh4CngFQzxqYkyGVlZHWJUDpaRNeBp\nVwiMMWiCvjV9GVI2hKyRWSwsXshBDlqqcqLpkWOloinfWU7thbU+wqL63GrG149n40MBZb47BDPX\n3I4WRC6i+5QeGW095QbzJjLGPhcjQsf1VO8KJLsFQ3layMcf7+X885MZPbqYd96ppbY2A2NKysCY\n8P0n1M00NNQBR4G+wJUYTt/edomBNDevwmZb6Tcez71MSJhnem2wi9rab+FwVJne53AFdZes5WCV\nFAl40vl6S7gJlaK90UMS4sUC0yR8XhlZ39y6RUYfnyg/GIBcOBA56TiEG7yS2i1AGIMnY+r5zs8L\nzLOOhpqZtLW1Ve6+/XZpbW0NOn53Nle/RHvDfzDcd59zy52VG/2b2AXpiGRz0RxDsAypnuPMj4dp\nzu8qBZYL7BKb7TIZM+ZmsdkuE9jlbLtL4uNnefWxS5Sa4XNOuFkgzzSJXm7u8iDXscxibEbbkSNv\nDsisGmlWWNc9yc1d7r530YJoJsQDzlZKpQJzlFJDlFLHeW8dLq00hldSQUHQJHlttQlW67nK4eCJ\n/AIu/G8zrzbBK42w/Wu4fE0f2O884C2gP3A+hhrpfOfnckzTSISaamLrK6/wxaOPsvGJJ4LeA7M0\nHNkfZDPu1HFBU3H0dLqCLto3jUUVUEhCwjzq6xucRlrz+st2e5Nzv/k1GB4PRRirhTrgMRoaNvD+\n+w/S0LABm+03jBu3gPz8p3nttevIy1tGSsp0+ve/BZHV+Kp8VgAuA7M3HhVN4L2sAhpQ6nqv41xq\nq9nAQPbsWRGQCiPSmtNm9atjSTD10e+A14ATgX9j3FkX4tyv6SBMK6/5JckLpY1/Er4qjKys9pdf\nZtFbb/Gd6mqW4Ptv9MdDx6jbnEnLuVn8o+4fHL78cEDGVJ7zfPb2tgnVI+ele+7h3ro6Fj/4IJfm\n5xMfb/5TtFLRAOy8aWfM9Pmxpivool2RxQsXLuPVVw/S3LyKQ4cG8uKLjSQkzMfI/es9voHY7Y3s\n2PEfPMZiKyOyaxKOx3CA9PxCGxpWMXx4MevWFbF161u89pqdhoYzgD2YC5lvO/vyqGj69Lme3buH\nMnXqQj7++CNgGpAEJGM8bdyPyJcY0UIfYwgql9rK6NdfAEcqqGNtGwqgraUE8Gi4y49ob/RQ9VFl\nRYUU5+fL8pwcKc7Pd6t0KisqZHpmplvl49r8ay4U5+cHbePqZylIMcg2Z/0G1zFLQZabratBluca\nahgrNQ1nmNdMsFL3eLfZ/u67sva440RA3ouPl8d/85uQ7pdZYZ/eWiuhIwrYRIqVGslQwfjuM+oZ\nbBKY5VQD+V5DfPwM6dPnYuexLvVR4E80IWGGbNmyTWy2a72Ot1L5uPoqdva3TGC+c99PBRb6qZxc\n3wVXJfmr6iJR6XX035EI1EcxnexDHmQPFApWuv5tW7bIrdnZsrSNyVpE5LZx40QwivQUOyf4YpBb\nxo0z7f9akF1efRWDLPMSEv6CpcJRIWnfSzOd5PlB5DaF2y+5RA57ne+20aOlubk56P3SVdQC6Uhd\ndDhYFb6Ji5sqHv2/MdmNHXuLc3Le5Xy9RWC6wE0Ck5z7K70mamuBE1gwx/s4V7trBK7127fQS0gE\nsx149zvbp49o2RQ62jakhUI3wuop37VCKA4yWYsYQuUym012+T397wK5KD5epgwdan681+dKkOtA\nFnod3wBy88iR8uZWZ3nNGwPLdXIGcubFZ1o+nQerdlZht8tDJ5zgM67PlJKHliwJer9CWYFoYkOw\nlYJSV8mAAXmSmTldtmzZ5my71ESI+PdRKbBMhg6dLnFx/sbjWwUqZfDgmSb9VApMlf79p4lnheAS\nAEsFJotnFbBcrFYivvsbJC3tYklJmSYpKTNlypTFlhN9MEHt+i4nx/OdlUB1GcHbSyRCIXoOt5qw\nsCq4M/DAAQZimLOK8Eun7RXMtrawkLsbGrgd2OBsU4Xh4PdsSwv3fPWVaf/1zj5dHtxXAvempTGz\npQUbkHz66fQdOJCf/+wK7NP2G/r6sbgzpvIlMAFGx422TOXgyrpqxuN33MFt+/b57DtJhP3PPsvB\nJUsYNGiQ6XE6erjrUlo6m61bF/rkLTJyaC5FZBhNTVdTWflr5sx5jDVrprFx4900NPjbEo76fc4A\nSjnjjCKSk+vYuLEQ48fX4PyuyaJgzjDi4w9w6qkn8sEH3valIufrdAwDNs6xtmBu12h1vx858g7K\nyn4Xkp7fPyusw1FFQUEJdnsTO3Z87EzvPYpIo6w7g96bHzbGWBXcaRw8mEaMn/18jBCcZcA1mZkB\nBuRRGD8v189pLR4hYl60ED5SisXOdouBdfHxLHvqKZ7bt4/St98mweHgVxs3Mqxxv8e4PBijWvdE\nYDhwfOBkHEqpzf379zOgvBybyf244bPP+O1tt1neL9PCPr3I26irY+TMXILxy1qCUY8LjF/jGcDT\n2O0lrF69mZdfvh2bbT6+nj0fYuUhdNVVP0SpncBIIBvj6aSItLTBpKcv9OvnDlpaTuejj+ox4hOq\nfPoz/rOKnO9nA/swYiO8+5gLvAtcAxQi0hzRPXHFP6xfv5jy8rtpaNiA8dhWhcszSamWqBciajfh\nLi1isdED1Udt2RSs4gpcuNRPxV6qH2+jcaWfWqkB5FqnuslKJeWt0so/DnNbQk6g2sZM359wToLk\nzcrzUR2tmDdP9puv1UVA7hw5Ur744gvT+6VtCl0Xc/XRLjFsBUudr7f4qEVcqpSUlJlONc828Tc6\nZ2ffKlu2bJMBA2aJuU3A0O2npV3sPM9igess2u4SuEzgNoEFAgslJWWm5OUtkIkT50lKyjQZOnSG\nxMVNEG87iDGmXRHp+K3Vah57RW7u8i4Xp6DVRzEiWFqLESGku3BVcZtrt7vVTHUYzzxxGBmkDwAF\ngOrfn+yLLkJVVfH0Bx+4VUezMZ6bWvcaT/3eKq3Sr6H8WbBfjicH0t+N9wl/S6B+TD2OSgdZmVmm\nsQmHLjzExjc3suOmHWx6eBPDhg7j0BtvcHyQe3LDnj1cMX4sLT84MSASOpbRw5rgmPv5+0cqzwc+\nJjU1DoejioULH+Dtt6s4diyRAQP+RVPTDGebu0hIqODCC1N54IH5LFjwME1NvvmNjEyqRvHaPXtW\nMHz4TIwkCyX4u69CKcnJ06ivPx6RDe7xxMffyNNP/4zx489zjzov7xe8+KJ/nEMJsDKi+A8rF1Vv\n1TGBjxUAACAASURBVFRqalyHFCJqD1ooxJCMrCxml5a6U1CsLSx0p6BoK92FS6isLSykxW7nx9XV\nDP/vf/nVkSM+CQMKgWGHD7Pw/fc59tVXuLLJu7zA5+LJxOpSaQ0EsoBNn8AvfwdvZQ5FSOBL9SWH\nJxzmUL9DvHjkRXbetJNND2/Cvt9uqu/nmCdwbezAdGZ/9lnQaxoMnLV3D/ck7YEkT+I7b8GgU1JH\nh1B940MpfFNZuQNfvfhaAmsJrsJmu5p582531k2w4cmK2siAATdwxhlDyM4eQmnpCvdYystrCT6x\nDkQpV9I880m4oWEg/kFtLS2PsHr1StLTR7iv4+23P8AstgKOkpraN6T76o1VLAl8BBSSnl5LaenS\nsPvtcMJdWsRioweqj0TaTkERDlbeTFOcKiZvDyPv7y+z2XziI6zGE8z7J/PcTHNV0yjj/QUFF8ii\nk0+2VBt5b00g3/m2tXeRf6xCNNRHHdFnVyZU10mrdlu2bPPb759uwsy7SCQ5eYbTjdTbbVTE42lk\nfD927C1uNcrw4dPaUME0yIgRl8rIkTeLtXvpVNPxjBt3S8D1edRNnuP79LkoIpWO2f3zV311tBsx\nEaiPusKEfzHwH+BT4HaLNtG+V12CtoLPwmF5To7pJLvc2ecMi0n4F+PG+fTjDqjLzfUJqMuZlWOZ\na2js5WMD3VbPRRhrvJ903hh5LwSB4NruSkTifxqYy2jLm1vEdrrNyL+Ug3Bj++0KAbaKGxHb6TYZ\n95NxPVZAhOob72nnG/g1YsSlJsfvkszM6ZKbu9wkfsB7Im8QmOEnEPwnzmsFNkl29q0yadJcCYw9\n8EysLp1/evp1MnHiPFGqwK/trWLYEALHYz3OZV7vZ8ukSXMjvteBthNfgdPRuaoiEQoxVR8ppeKA\nhzH8WvYC7yqlNorIf2I5rs6itaaGL/FN8jsbj44/HLxVPy4+BnZglAhpwnwhOzA726cfb9WVd3bV\nvnsrjYOHezU+Akl9kkhNTeWdE94x3FYFIyHKWcCHcOL2E8n+bwNjwriWW5vhT5tge77RPxjeTZcs\nvoSGyxp86jzYzzLUU/5qpVAztfrYQw4A70HDZQ2U9yun/Eh5gAqrJxBqOgaj3ZfAKrydo2tqrjU5\nfhRZWafx+uslTq8bq3TXAzEy5Lh+jWsxUzXB1djtdzN69BrS0w9SXX0Xxn9IPXFx5bS2DsDIgmqk\nnqiuvp/x41cyZcoBNm50tXWVq2rCZptPQ8Mq93iys4s4/viTqKw0U01VOsfbSnp6X1avXuqjLnNV\nePOu6mblruqyF+TmFlFb61/dLbZ1E6yItU3h+8BnIlIFoJT6E5CHsXKIKcHSTUer/39+9hl7MKSi\ntx1AkpPD7m92aSnzn33WXdLzY+BuPKa+j4HrMRJahVLEp8rh4L6cHFbs2eNuP6u6D89ee8wQDM5S\nna/UvcI5J51DQnUCh2yH4GxgAPR/pT/DZBhJzXB5G7YEf+KBm7+AG54FNc5IuVV4X6GnTCj41HnY\nmxHoHmtVmMd/cveJf9ju7NMkmV9PsmVY6bodjh0+KaGNdn/Af9IWOcX0eJdvvSsnUmHhSl5+2c6B\nA9n45g36KXATxi/fyhhruLHW1w9gy5abKCxc66yhPAi7/XzKy/2z9xsT7GOPLWDHjsDylmvWzGX1\n6pVedZjnU1i4lvLywOvIzGwiKwtSU+PdOn//1NrGf+ocYFhIKcu7Qq6qkAl3aRHNDbgcWO31uQB4\nyKRddNdUbdBeXb9VTiP//q1STCyeMiWicS/Iy5NlIDNBppr0vQsjYtpfNWTG4ilTTMd20vEYKbRz\nEOYgjPNVGyWekygTr5wo6bnpwh1I6lhkfDJyQUbgljtQyW1jvy9FF1wgeSmD5II05IJBxjZ+EHLC\nGI/6yEp9xfmBdodwop992l5g0n9xz0vHba7rNtQw3raFiopKSUjwVvV4VD6Jib6pI6zSOeTlLXCq\nTZaLJx22J0I4IWFyEFXTUlP1Slspu6dMWSzDh8+UlJRpkpe3wB1J7R1JbHUfzK6jbdfSttVAscpV\nRXdTH4VDcXGx+31OTg45OTkddi6rdNMrCwvb9AoKJXOpq/97MH9GGlBf3+Y51hYW0mS3s3vfPtJT\nUhhy0kn8eNEint+xg1/a7e4iggDNwCcY0czDhg1jycsvk5iYaNk/QG15uenYsppg93eB4zCqdvtV\naWu+sBn7G3aqc6uNiOMfwd5E4AcYOqztGCqmVkhJHo6cOoC05DQkexBbTngxoLTlxHrDM8qq9KXt\ngI3SRb6rnXCin32qpyl6RXlN15P8hAnXUFk5Cm81jHfltKysDC68MJUXXwyMGr7wwkHYbL5P3v5P\nyg5HFe+/3wruPLyNwE306/cNZ599Gg88cBMAZ5zhq9px+cXZbLdTWroqYPxWhWnmzZsW8ET/97/f\nwKuvPkRzczHwNHCUjRvn8/LLtzN+/HnuFU2w62jbtbRtNZD36inYudpLWVkZZWVl7eskXCkSzQ0Y\nB/zd6/MSTIzNdPJKwdJom9v2E2MoxmNX/8UWK4VghmbTVYxzFeAKfluQlycX9OsnH4KUnIgUXoE8\n9wTy6t+RDU/FS2HhyVJSMlN27/7M8jzThg83HdsykLwhCLOQhO+YP1n3Pb2v774FCGcFrir4Pu5i\nPem56TLywpGWwWlmwWu2sTbZ8uaWgLGHmyfJ5X007vJxYhtr6zUBcqHk3WnPE27wJ2xPP0a208vE\n8FoqFsObaYZs2PCMZd9mAV/W51soZtlYt2zZFtJ9isZKIVbQDVcK7wInKaUygC+Aq4CrYzskc6Nt\nIx5//mBY5TTyNh67+p9N8PxGZpiuYjCM1SV2O8X33kufnTu5aPARnr0Gbl0OSUnePbQAn1Jf/ym/\n//2rDBp0M5MmXO22n9QNGkS8CKqlxa319TcVNn0DfZ+CPknwZ5Mn66NHj/o+cQ/GU4fB2yYwCcM4\nnWOU0syryeP8+vNNg9P8g9eSSUZGC0V/KCLtaV9Dcri1k73jH1wG6t4QIBeKnrs9T7jBn7CNNA8L\nFhSzceNvePnl27nkkruddRGepqVlGcuWPUZq6gmsXr3ZMp7CeGZs63xfAo96fTeQlpbVXHLJ1Xz4\n4ao2r8VsZeIpG9pIevpC6usHkZtb1DXqIbSXcKVItDcMl9RPgM+AJRZtoi1Ag9Iem0IoKwXv/iud\nT98zEhJk8ZQpbZ4jmOupgEzr319+Oxx58cnQ/gTPP2+T6acOcY/FFc9QCTIfZAKelNyVznMUO9tU\ngGSf4vf0P85pa/BzUU0Yk2BuE/DS44equw8l5UWwTK0ag47Wc4eS5iEu7scyceI8GT7czGVzl1+9\nBKuynA2SkHCthausVZxCpcBUGT58ZkipJbxXJlOmLJa8vAWSm7tc8vIWOGMkYl/XwgwiWCnEXCiE\nNMhOFgoi1v76oRxnldPI2/js/hxm/5ZCx/k6GeTexeHd4pWLkd1efVTiyZvk2ud9Pu9aDxUYeZJy\nRyKpaX0NdZBLZZRjTPop56TIpKsmWddlaEO9449Oox09opF3xywltGu/uUG70uvzQvGNC/D+3luo\nmMUz+Pc13y+IzlWjeZKfsKgU/9iHSCfyrlArOxiRCAVlHNe1UUpJdxinC7c7qzN30aR583h+zhxf\n43N2to/xOZy+S844g1UNDQHpKn4PfHYiPLXdX2UUnLo6eGAMfF0BQwA7hvPgT53f+3qpG/o9VxYZ\nF43A5MT+vH3tYU8swwHg3zD82HD6HenH58c+hx/hiTN43dlugqHeWbNkDaufXt1mbEHu7FzKssoC\n9ztyeX3t6wH7NdHDP+3FvHmTmDPn+QCjr8tF0+GoYsKERVRW9sP4lXhSRzsdsDFKYLp8+Btx5TUy\n8gO7XE9deX39f3WutjhfryItbQlffpnA4cNHMH7JjRgpt//gPL4QfIrQGn3l568MOwdRbm4RZWX+\n8QfG/tdfD9zf2SilEBHVdksPsbYp9Ej8cxeVFBRE7M1k1vfcl1/m6ksu4eSGBhxAKoau/xFg7dnh\nCQSA5GRoOssQCncSaENwpfD+KD6ewyecwPBhw7jhk0/4bXOzj4Z1dPNhBj8Wx9/mthoTfzkwAfb3\n228IgdcwBEF/DE+fcTD4H4O5pP4S5i2ZR8HyAqpbqt0p+bfO2cqWNVsCBIOVJ1JP8xLqSriS2L3y\nykEOHfJ4Cm3ceLUzJbR/sXqPB1Nm5mlUVoLh178WT6jmLRiPMt6++gMxHksKGTDg3zQ1uWwebSeX\nM/oZxfDhmfTpA3v2rHCP8/jjf05j449pajobq1rOkQSSdav4gxDpviPvolQ5HJQUFFCUm0tJQQFV\nDkdIxudwOG/8eFZ9+CFJ+fmclpvL3sxMzgC+Br5/WWTj/u6lcAOB+SHXYjxrLQZGtbRwYlwcyRkZ\n7G9poQC4DUNg3AI8AJx9uJXJmzNJ2ZYSaFieCCRgBIjlAANgcJ/B1NTVkL8wn+oD1XC+8/vzobq5\nmoXFCwPGOu/Kedhes3nqK7gMyYusDfSayPn/7Z19eFT1lcc/JwJFSECrJa4pITGurUAtWtvG1rZQ\nQ/UpJVHrsoqggNVtq7y1cbWIJi59wRZr+2htl6p9cW23re1u9HHdivUBSh9p1dUq4rZKGEh9AV9A\nCJEF5Owf9yV3Zu6dzExmcmeS83meeZjc3Jdzh8nv3N/vnPM9Xl+Ajo7KgEMAR2zuFPoaYJ2B8zBO\ncxsvtaLN/flpnJQLj304PROuZezYv6O2dhm9A35YhxBve5t7nn389a+bAg7BsefVV79PU9NkLr54\nONXV3aHnymcgX7FiXsBG5zy1tcvi7YfQT2ymUECiahRk0qS8s5miCM5G2qZNY0EiwTXAZeMyHxfF\n0eOcvKQgvc9sXh8tOHb7dlZu386DJP8perkWFcAZNfUcrFV2jNiRfEJXORVwBvQHIHFmgsS7ElAD\nPIxTyzACP1tp40Mbk06xNbGVBSsX0H16t98NrnJ3JXfdftegzRIaaFKXiLq7d7Nly1chtLJmOGFP\nylVVPcyZc6MvC3HUUU+ze/f5wAfdY2bhSGCPpLcTWrIcxssv30pT02LeeOMiursnuNt7Zykil6O6\nB1jp/u5Y4EpUq0LsHM3evaPo6GgLleFwGtsszPnzGTOmhwMHXnVtcJxfvk15SgVzCgUkquht+eTJ\ntDU0pMcUVqwoiJxGRU0Nx+Kkcb26Mz/bd70xjKNS3IL3zNYKLAvcU0XgvZcO20avePH+qipqxlSF\nLvHU7K/h9Y7X2f/Wfmfm4DVY8FJU1wKfCmwLHk+KVtFUZ1v3gW5W/3I1Hz/z4/ndvOHjzQqCA+bI\nkQtx0jrDlkpmpekK1dYu48kn36Krq53eAfzzON8iL56wEFhATc3NfOAD7axfvyNEDmM0zzzzRmB5\nahvOt+0gdXXPcfBgDy+++G2corS7XPuuoafnUpxHmb1AF3AiMIIxY7qB/qXZhn0+zrU+59vd1bXP\nXz4rR8wpFJCoZaIxe/awIKRxDtBn9XM2zFuxgqXr1zOyq4sx9wNzc7f9z0/XsrFeed/WraESZl/H\n+XNsJX0F+DC9fxp7gUqRyFqByRMn01HTAX+AtI47I3DigR4H4MPv/XDSLtarubhcf/2PAwMewGh3\nyWglzsDnLf94T9h3pukKdXdX0NFxS9I5VH9A7+ODJ3q3ipNO+hAdHTcyZ86N3HPPLJJjDrNQrQyc\nZwJeULm+vo1du3by4ou/JFlOEhzHM5vURj+PPfbPvrZTvo1twj6fYNMfb1spCt1lizmFApKp6C2s\ncU6hAtAT6usZe+qptHd1cfMTsHdv7tlHo0afyRd+186q669nywMP0LB7d8ozm9Na3SvZAee57Q6c\nVeGZONqX1wN37dkT2SltQfsCZ/CPkJQIxglqH6/lO//6nSRbLchcXKIKwEaO7GT//h6c/7jPU1Hx\nCtOmncAPf7iM+voJSR3Mpk1rCz1Hb1DY+7m3ec0VVzTxi1/cxKFDXpc1pztaQ8Pb7Nzp9RP0Bv5j\nGTNmD3/841uQ1jbqAHA7bjknwcH7pZe+6RfL5csLL+wiXdd4Qsq9lXegOfYahGxexFCnEEa2QnfZ\nFr31R04j6lwv5FGncPPN1UmSF1G1EE0jRug5o0bp5pRCN/9eceQ2Msl0+DUGS9IL3GhEa06ryVhw\nlm+v5s6tndq8oFnHfWScjjt9XFr/aMMhKu++qenKlEKy6Nz+bIrWoFsrK2f6x0f1ea6omJ1Sd7BU\nx4+/XJubWyOu0eS+D5fwqK6em/dn09mZSPsMPCHBYK2FFa8NEaeQ7YCfS9FbIZvsBM91R04VzVV6\nxx1f6/Nel7qOoBt0fmWlThs+PNT2s4cNC71nX1/oHxudRjlXuo7hYyjvcxzC+Gnjsxqoc61W7tza\nmaarlMv1hhJRVc6O2ml2RVph5xCZq8EK5MrK+UnaQ+E6TOHOpbm5NVK3yale7o48trr6vMhiu74+\nF6cpj6fP1Fs0N2rUZ/wK53wLAIuFOYUiUsgB3KOQ7ThTz3X7OPSGayr0zTfDP9Y330TbWtHz33t0\nWrV1orNTE52demVTkzbjyHAkUu67OfwvUhedemqabVFidlM+M0XrzqjTxs8Wt8tZVAV0mOy2EV7l\nnI14Xtg5GhuvdiUp1qgnh11ZOTNNjC58phDe1tOTmgifKcwIPL2nt8JsaroszWHV1i7SlpYlkU6i\nr8rsxsari/Z/0V/ycQoWU8iSQtcagBMLWBgSgM6nmU/YuV56/GW+deojvHYaTP8MVI2DvTvhqQdg\n+BPweid8lV18a8aMpArphR0djJk0iec2beJUnDBa6n1HtSR/58SJabZ9qW0pktjCmc/CK1XwwjTo\nPqubSXsn8W/3F795TVRwmgoLUIcRFoTNtjFP6jnmzLmRjRu97KEmALq797F69aqkOES46NzTodes\nqurhySffBL4CfCOw//VUVHRz+PBlOBlJh4BLgHpgC+PHv4tRo45my5Z2grGG7du/zvbtK3FiEPvS\nmuaEB5e9vLtWGhpSR4YyJ1cvEseLMpwp9BV/GAi8OMN1oI+C/h70KdAeenWNWgmX717izhDOjZgp\nLKFXH8nbNhv0irPOSptxXFg1Mmm/lqNRFg1c85pSnil4S2FTL51a0sJ92TbmSSWXGUZ6P+MNaU/7\nyUtZCYVWhbkK52pNzTm6bt2GNDuPPHK+trQsyTjjSY5BJC+LRR9zXUnFD8LAlo+KRy5LPYVcFuoP\nniNLgC5KGcAXgW4AvSjlm55wB/w5KfsHYwoXgh9sbsdRUV0K+g8px3y5oSG6g9ukgRuQSzWmkG/Q\nPC4yratHCcDlIxiX7IASCst15MjZ2tzcGjKwJ1xbbvDjBZlE/rILgic7rahj6urOL2mHoGpOoehk\nG0QuRvwhHzasW6fzKyt1M+jl7hP/De6/l+NIYwcziBLu039Um9BzcVRYbwCdiTMDaXcdxNkRx1x0\nzDGa8tekCjq1skJ/vz69QU6x8LKPqj9SrdWnV5dE9lE5qr3mE1vIR54708DeG09IV07t69zhM56l\nmizZney04mqlWQjycQoWU8iBsFqDMIoRf8iVbVu38h8LFnB1dzfL6S3h8dgHNI8YQcOBA1yPEzf4\nMc5KaVSbUHnHOzj/ppvY2NrKzw8d8ldyr8AR5Us95jXgjd27Q2MPU7oP85/zFzA+D6XYfKivq6fj\nzo6iXycXyrEQL1cBuHyrhzMVl/X07MLR6h0N7McRYDkamJckxpeNPU58opuurl6pjVTJi4FqpVkq\nmFMoAv3p3FYogpIbJxI+yI8V4RacwXsVjs5RpiDy+y+4gB2PPcb3XIfgnWc1MCfkmDuAW95+O627\n3EJcObQ8lWIHC+VYiBfVH9kbRD1doBde2MWOHV0cd9yJNDSMKlg3sq1bt7Fhw2F6xdu9orVZOFXS\nC7Pqlxx0GuvX/4HZsy9g5863qaiopL4+/fPPtgI6VTeqLLuw5Tq1iONFiSwfZUuhU01zCVh7+88d\nO1bb3bjBzIilneaUpZ120pvs+DGI2lpNdHZGFtxddMwxuqi2NjnwPHKkvyzVTm8Ht8WB4/Ip1Bss\nlFtMwSNqaad3mSU9HTTf5ZbUmoLoVFRv3X+5jht3Xk71B+PHX66pTXdqaxflbG8pLjNhMYXSId/O\nbannyMW5hO0/013zTx3k51dW6pKWliRnkSC5HedynIyipaBLWlpUNXO8JPWeo4LM7SnHDWXKvW1o\ncNB2gtCbNapwLNduZGGD7MiRs0NjGr3ZQxe58YHsBmQniLy8IPaWYhc2cwqDjFwC1onOTj2/rs4P\n/ibc/b3WmWlP642NoU5k1ogR2kp6X2bvib6/WVjBLKb+ZGSVSyrnYCY6TfWfQwfuqGB0FOGDbPgA\n3uuIWnMakJ3AeW7B89TPwHOKTp/p/t93IcnHKVhMocQISmk/s3kzr5G8Th8WsPb6OPw0kWA08BzO\nuv3JwAvuzyfTq+G4D1jV0BBa8HZ8dzftHR2R8ZBcCu5S9+2pqkJFuGvPnn4V6m1NbGX6VdMdBdZj\ngAOw8aqNrLltjfVUGECii7ouIZdCtyjCxfk+x5FHLuSttzyp7ueAa4CTcILP1wT27Vut1AmcHwq1\nty9Ru61bt/GJT3yNrq5qnEjcXnr/2nrPU1XVk/E8JUeuXiSOF0NkppDpyTrTTCE4o0iELBXNFdHN\nEU/2qTGLDevWlUSNRSbKMZVzMBJd1HWVpktM9F3o5uE9fY8bd17orKClZYlefHG7TpnyTzpsWKpg\nXq/8RDYzhf7EFJwiuqUp179EgxpPnoBfXHEFbPmovIlaLlrexwAdDP62Ex5UPr+uLi2+EbUU5Gsh\n9SMeUkymXjo12SG4r4GqkDYcMhV1NTYu1tGjP6lhhW6Zir7SC9eSB92gU8lciJZ9kLezM6EtLUu0\nuvo8ra6e6xfJ9UWU03JE+W4I3Hd8cYV8nIItH5UQUfUN26qraZs4MXLJJZgCG9XefHJ9PTc+8kjS\n9qhOcatWry7pNNFyTOUcjESlp65Z823q6ycwbVoba9femHLUaBKJk5k+/dYkfSGP5CWp0TjdO1ZS\nXb2NpqaGpPqAqN4PRx21hRkzVmWsJUhNHb3lliV5pI4GGwD1Xh9OwVlG66Wcmu6YUyghouobGpqa\n0gbpYOyhZ8wYlo4fzy1dXZE1BmE1EsUssitEm9Eoorq6rbgtVbrPKCZ9FXVFFbrBcLZs+UpokVn6\nQD8BWMHEiW1Zi/TNmNGQsaYgrKVmqgheNjQ2VnPffWH3l+oAyqzpTq5TizheDJHlo1x6NqTut6i2\nVpe0tOjixkadX1mZVUygWHIcA6H9VO6pnEOBviSnw7JycknrzLcuoFCpo52dCa2tXZR0/eOP/6Ib\noyiNWgUsplD+ZFPf0Ndgnm2NRLEG71xTaeNWkzWKR64ierkO9JkK6aIa6eSq39TX/aVeP5Nu00Bj\nTmGIkKmNZ74V0IUMKmfbZrRU1GSN4lKogb5Q1yvFIrNiYU5hiBD1JN7a3FwSg2y2M4VSUZM1is9A\nPj33NeiXohxFkHzahUZRVk4BR4zzOeAp4NfAmAz75v2hDEainrBTZSviGmSznQFkO6MwjGzp7Ey4\nqaLBlFBNWx4qpSWeIIV2WPk4hTizjx4CrlXVwyKyEqe33lditKdsiKoqvmvBgtgluzPZlymV1mOg\n1WSN8iaYWnrEEa/w6KP76em5m2QF1YXAsUkZQNmqng4EwXtIJDaRSASF7kf3KQdecHL1IsV4AecC\nd2f4fV5ecjCRTayg3JZjLKZg9If0p+ooXaTlJbU8FCT9Hq4rWBBctcyWj5KMgPuA2Rl+n9cHMljo\nT6pqqQ+yxQh0G0OD9NhBeFZRdfXcknQIqmH3UNggeD5OoajLRyKyBqgObgIUuE5V73f3uQ44qKo/\nK6Yt5Uxk5XFKg5pcxOpKhWy72RlGKumFbuHFbE1NDSXb6Cb9HuZBSluq1E5wxaaoTkFVp2f6vYjM\nAz4NfLKvc7W3t/vvp06dytSpU/tnXBmRS+WxDbLGUCG9onke+M1lnQG1snIhK1aURuwgjPR7mABc\nRl3dJdTXT8659efatWtZu3Zt/4zKdWpRqBdwDvAscEwW++Y1dRoslFusIAwrUjMKTXjF9OfU6alw\nnVZWztR16zbEbWZGip0eSx7LR+IcN/CIyPM4yjWvu5s2quoXI/bVuOwsBbx+Cd4S0j6graGBhQVo\nel9MjaLgNYplvzG08TJ3XnrpMFVVPYgcYs+eMe4Tdnn0Rw7eQ6HtFhFUVXI6phwG26HuFCAweLux\ngkIM3gM1WN84Zw6t99yTlnq66uKLbanLMIpIPk7BVFLLhGLECrINYPeXYqqxGoZRWMpIz9UoNAM1\nWHtFakGsSM0wShNzCkOYgRqs561YQVtDg38tb5lq3grrf2AYpYbFFIYwAxkALkZMxDCMzFig2cgZ\nG6wNY/BiTsEwDMPwyccpWEzBMAzD8DGnYBiGYfiYUzAMwzB8zCkYhmEYPuYUDMMwDB9zCoZhGIaP\nOQXDMAzDx5yCYRiG4WNOwTAMw/Axp2AYhmH4mFMwDMMwfMwpGIZhGD7mFAzDMAwfcwqGYRiGjzkF\nwzAMw8ecgmEYhuFjTsEwDMPwMadgGIZh+JhTMAzDMHzMKRiGYRg+5hQMwzAMH3MKhmEYhk/sTkFE\nviwih0XknXHbYhiGMdSJ1SmIyLuB6cC2OO0oNmvXro3bhH5RzvaXs+1g9sdNudufD3HPFG4Bro7Z\nhqJT7l+scra/nG0Hsz9uyt3+fIjNKYhIM9Clqs/EZYNhGIaRzLBinlxE1gDVwU2AAsuBZThLR8Hf\nGYZhGDEiqjrwFxWZDDwM9OA4g3cDLwIfUtWdIfsPvJGGYRiDAFXN6YE7FqeQZoTIVuA0Vd0Vty2G\nYRhDmbgDzR6KLR8ZhmHETknMFAzDMIzSoFRmCllTrsVuIvJNEXlORJ4SkV+LyJi4beoLETlHDzZF\nlAAABcRJREFURP5XRP4qItfEbU8uiMi7ReQREXlWRJ4RkUVx25QPIlIhIv8jIvfFbUuuiMhYEfmV\n+71/VkQ+HLdN2SIiS0Vkk4g8LSL3iMiIuG3KhIjcKSI7ROTpwLajReQhEfmLiPxWRMZmc66ycgpl\nXuz2EDBJVacAzwNfidmejIhIBXAbcDYwCbhIRN4br1U5cQj4kqpOAs4Ariwz+z0WA5vjNiJPvgv8\nl6qeDLwfeC5me7JCRI4HFuLEOU/BydK8MF6r+uRHOH+rQa4FHlbV9wCPkOWYU1ZOgTIudlPVh1X1\nsPvjRpyMq1LmQ8DzqrpNVQ8C/w60xGxT1qjqK6r6lPu+G2dAqonXqtxwH4I+DdwRty254s6EP6aq\nPwJQ1UOquidms3LhCGC0iAwDRgEvxWxPRlR1A5CaqNMC/MR9/xPg3GzOVTZOYZAVuy0AHozbiD6o\nAboCP/+NMhtUPUSkDpgC/DFeS3LGewgqx8BfPfCaiPzIXf5aLSJHxm1UNqjqS8DNwHacVPndqvpw\nvFblxThV3QHOQxIwLpuDSsopiMgadw3Pez3j/tuMU+zWFtw9JjMjyWD/zMA+1wEHVfVnMZo6ZBCR\nSuBeYLE7YygLRGQGsMOd7Qgl+H3vg2HAacD3VPU0nJqka+M1KTtE5Cicp+wJwPFApYjMjteqgpDV\nw0VRK5pzRVWnh213i93qgD+LiFfs9oSIhBa7xUWU/R4iMg9nOeCTA2JQ/3gRqA387BUYlg3u1P9e\n4G5V7Yjbnhz5KNAsIp8GjgSqROSnqnpJzHZly99wZvaPuz/fC5RLskIT0KmqbwCIyG+AjwDl9iC3\nQ0SqVXWHiBwHZDVWltRMIQpV3aSqx6nqCapaj/OFO7WUHEJfiMg5OEsBzar6f3HbkwWPASeKyAQ3\n8+JCoNwyYO4CNqvqd+M2JFdUdZmq1qrqCTif/SNl5BBwly26ROQkd9NZlE/AfDvQKCIj3YfQsyiP\nIHnqjPI+YJ77/lIgqwejkpop5EA5FrvdCowA1jjfMzaq6hfjNSkaVX1bRK7CyZqqAO5U1XL4wwBA\nRD4KXAw8IyJP4nxnlqnqf8dr2ZBiEXCPiAwHOoH5MduTFar6JxG5F3gSOOj+uzpeqzIjIj8DpgLH\niMh2nKX2lcCvRGQBTsbmrKzOZcVrhmEYhkdZLB8ZhmEYA4M5BcMwDMPHnIJhGIbhY07BMAzD8DGn\nYBiGYfiYUzAMwzB8zCkYQwIRWSQim0Xk7jyOnSAiFxXDLvf8HxORJ0TkoIicX6zrGEY2mFMwhgpf\nAJpUdW4ex9YDOWvfuPLj2bANp+L0nlyvYRiFxpyCMegRke8DJwAPishiERnlNiXZ6D6hz3T3myAi\n60XkcffV6J7iG8CZrtrnYhG5VERuDZz/fhH5uPt+r4iscquoG0XkNBFZKyKPiciDIlKdap+qblfV\nTZSnGqoxyChXmQvDyBpV/YKInA1MVdVdIvI14HeqepnbjepPIvIwsANnNnFARE4Efg58EEfd88uq\n2gwgIpcSPYCPBh5V1VZXkG8djt7V6yIyC/g6cFkx79cw+oM5BWOoEBQL+xQwU0S8hk0jcBRhXwZu\nE5EpwNvA3+dxnUPAb9z37wEm4+hdCc7MvKSbtRiGOQVjqPJZVX0+uEFE2oBXVPUUETkCeCvi2EMk\nL72ODLzfr72CYgJsUtWPFspowyg2FlMwhiK/xVHwBMCdGQCMxZktAFyC05IRYC9QFTg+AUwRh/E4\nrUv90wXe/wV4lxebEJFhIjKxD9vKTf3XGGSYUzCGCsEYwFeB4V53POBf3O23A/PcIPFJwD53+9PA\nYRF5UkQWq+ofcBzDs8B3gCfCruP2tr4AuElEnsKRYD4j1TAROV1Eutx9f+DaZBixYNLZhmEYho/N\nFAzDMAwfcwqGYRiGjzkFwzAMw8ecgmEYhuFjTsEwDMPwMadgGIZh+JhTMAzDMHzMKRiGYRg+/w97\n+EA882AZjwAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA0KklEQVR4nO2df5RdV3Xfv/uNZqwZy5bjkRMazMyYxg1xo9hgLQLxSkqQ24AMMTisVZKRq9hlDbJCYmhSBzI0wjTTdDkJtYmRjJaDKjSvTQm1A8Q2EESSpi4Qxj+wgg3YAc2ghCSSDJJtKZY8s/vHfXd05849555zf7/3vp+17pLmvvvj3PfO3fvsH2cfUVUQQgjpP1p1N4AQQkg9UAEQQkifQgVACCF9ChUAIYT0KVQAhBDSp1ABEEJIn0IFQEgXICITIqIisqbutpDegQqA9BQickhErq67HWUjIn8uIm+rux2ku6ECIH1F2SNojtBJN0EFQHoGEdkPYAzAp0TkWRG5JeI6+fcisgDg8yLyGhE5HDt32XIQkZaIvFtE/kZEjonIx0TkQsM9XyMih0Xk10Xk7wHstZ0vImtFZLaz/3si8mUR+YF4Gzp/v09EZhPuOQPgJwHc2XnOO4v5Bkm/QQVAegZVvR7AAoA3quo6Vb0t8vG/AvAjAH7G4VK/DOBNnXN+EMB3AXzIcvyLAFwIYBzAVMr52wCsB/ASAKMAtgM45dCmZVR1GsBfAnhH5znf4XM+ISFUAKRfeJ+qPqeqLsJ2O4BpVT2sqs8DeB+At1jcO0sAdqrq853r284/g0Dw/5CqLqrqQ6p6IuezEZIJ+itJv/Btj2PHAdwrIkuRfYsAfgDA3yYcf0RV/8nx/P0IRv9/KCIXAJhFoCzOeLSPkEKgBUB6DVN52+j+5wCMhH+IyACAiyKffxvA61X1gsi2VlWThH/SPY3nq+oZVb1VVS8D8BMA3gDg3yW1C4Fryfc5CXGGCoD0Gv8A4KUpx3wDwFoRuUZEBgG8F8A5kc/vAjAjIuMAICIXici1Hm0wni8iPy0iGztK5wQCl1BoKTwK4K0iMigimwC8JedzEmKFCoD0Gr8N4L2dDJtfSzpAVY8D2AHgbgQunecARLOC7gDwSQCfFZFnAHwRwI97tMF2/osAfByB8H8CwF8gcAsBwH8C8M8RBI1vBfA/Uu7xFhH5roh80KNthCwjXBCGEEL6E1oAhBDSp1ABEEJIn0IFQAghfQoVACGE9Cm1TgQTkXcBeBuCnOaDAG6ITahZwYYNG3RiYqKi1hFCSG/w0EMPHVXVi+L7a1MAIvJiAL8C4DJVPSUiHwPwVgD/3XTOxMQE5ubmKmohIYT0BiIyn7S/bhfQGgDDnRopIwD+rub2EEJI31CbAuhMq/9dBNUbvwPguKp+Nn6ciEyJyJyIzB05cqTqZhJCSM9SmwIQke8DcC2ASxCUzD1XRLbGj1PVPaq6SVU3XXTRKhcWIYSQjNTpAroawLdU9UinEuI9CIpjEUIIqYA6FcACgFeJyIiICIDNCGqjEEIIqYA6YwBfQlAU62EEKaAtAHvqag8hddM+2MbE7RNo3drCxO0TaB9s190k0uPUOg9AVXcC2FlnGwhpAu2DbUx9agonz5wEAMwfn8fUp6YAAJMbJ+tsGulh6k4DJYQAmD4wvSz8Q06eOYnpA9M1tYj0A1QAhDSAheMLXvsJKQIqAEIawNj6Ma/9ZcAYRP9BBUBIA5jZPIORwZEV+0YGRzCzeaaS+4cxiPnj81DocgyCSqC3oQIgpAFMbpzEnjfuwfj6cQgE4+vHseeNeyoLADMG0Z/UmgVECDnL5MbJ2jJ+GIPoT2gBEEIaEYMg1UMFQAipPQZB6oEKgBDiHINgplBvIapadxuc2bRpk3JBGELqIT5bGQishCqD1SQbIvKQqm6K76cFQAhxgplCvQcVACHECWYK9R5UAIQQJy4cvtBrP2k+VACEdBkMxJKi4EQwQrqIOstGP33qaa/9pPnQAiCkC2gfbGPDbRuw9Z6tmQKxO+7bgTXvXwO5VbDm/Wuw474d3m0o0wVEq6YeaAEQUhHtg21MH5jGwvEFjK0fw5ZLt+D+J+9f/ntm80ziKL59sI0bP3EjTi+eNl7bFojdcd8O7J7bvfz3oi4u/73rml05nqgYuBhOfdACICSBokekSdU2d8/tdqq+OX1g2ir8AXvJhj0PJa+0atpvoiwXENNL64MKgJAYZZRGThJycUxCLy3NMq1kw6Iueu03UVa9IKaX1gcVACExyhiRugqzpONsAnZABlJn4g7IQOp+F4unrHpBLERXH1QAhMQoY0TqKsySjpvZPIOhgaFV+wdbg9j35n2pfvKpK6es+10tnrLWLGAhuvqgAiAkRhkj0iQhF8ck9CY3TuIj134Eo8Ojy/tGh0ex9017nYTvrmt24aZNNy2P+AdkADdtumk5AOxj8UxunMShdx7C0s4lHHrnoUKCtHUvhtPPsBgcITHKKnq2474d2PPQHizqIgZkAK+ZeA2eevqp1CygtLZGM4uSrpF2TOvWFhSr5YBAsLRzKdvDkkZhKgbHNFBCYoTCMU2w+tA+2Ma+r+xbDrwu6iK+cPgLmZVK+2AbNz9wM46dOra8Lyl90iXFcmz9GOaPz6+6B33wvQ8tAEIqYOL2iUQhO75+HIfeecjrWkkWiumaLvd1tXhcrA3STFgOmpAaKTKwnJZSGr2m6frzx+eXs31cfPAugWLO5u0+6AIipAKKdLOkKY3oNU33BVa7g2yjeVugeHLjJGfzdim0AAipgCJSHcMRdlLA1nTNtOwj1/kNaRaMSUFsvWcrrYEGQwVASAXkTXWMumBMtKS1LNBDgTu5cRLbLt+GlphfdRc3VFpqrO0aRcykJuVAFxDpaZoUuExzs9iw+f1Hh0dx4vkTOLN0BsBK9wsA7PvKPiypOZ0zrZpn+2AbR08eXbU/am3YXE3ASncRaQ60AEjPUkZNn6IJ3TphmWa5VRJdJrYR9rFTx5aFf0gocF1qED1z+hnjd9I+2MYNf3wDnjvz3KrPtl2+bVmgu0x0cw14M5hcHbUqABG5QEQ+LiJfE5EnROTVdbaH9BZNrzIZd+uEcwSSFFXWYLGL0D29eBo3P3BzotCdPjC9SrmEfOyrH1v+f9TFZcLlGbpBafcSdVsAdwD4tKq+DMDlAJ6ouT2kh2h6lUnb6DyuqFxG2HHG1o85K45jp44lCt00yyMqmMMyEbPXzWYOeDddafcatSkAEVkP4KcA/AEAqOppVf1eXe0hvUfTqkzGXRs2nzmwUlG5jLCjhAJ3ZvMMBOLd1lDopn1XpnpBPgHv6Pdi+k6aorR7jTotgEsAHAGwV0QeEZG7ReTc+EEiMiUicyIyd+TIkepbSbqWJlWZTHJtpAnmuPANR9hpSiAqcCc3TmL7pu2ZlMD88XnMbJ7BYGvQeIxJMLsWjYt/LyZYlqIc6lQAawC8AsBuVX05gOcAvDt+kKruUdVNqrrpoosuqrqNpIupusqkLXiZ5NpQqFEw2xSVSSgPDQxh9rrZVQJ31zW7sP+6/cvfw+jwKEaHR5e/E1MbBmQAkxsnsfdNe41ppHkFs0uQmqWhy6PONNDDAA6r6pc6f38cCQqAkDzkSb30wTYT9sGFB42uDYVifP045o/PY0AGsKiLGF8/bk1XDfdHi8GNDo/ijtffYT3H9JncmqwAwqB0eF5SvaC8gtnm2hFI7am7vU5tCkBV/15Evi0iP6yqXwewGcDjdbWHkDyYgpdv/9TbE1MoQwSyYnH48fXj2HLpFkwfmMb191xvFIC+ii1einrqyinsumYX2gfby4onTtTVVEaFVMA8fyBLkTziT63VQEXkCgB3AxgC8E0AN6jqd03HsxooaSqmmvpFEK/M6Tu57eqPXo0D3zqwav/mSzbjC4e/kOiCEciydVLGCDx8hjAWEv3u8j4vWY2pGijLQRNSAC5ZPXkIR8ThxKxobv5ga9C4Olj7YBtb79ma695FLIYTb1PcnWRSOGUtztNvUAEQUiJJgrlIwtW5Nty2YcUiMCGjw6M4esvqcg1FKaYiXTI+ayMUuY5CP8P1AAgpkcmNkzj/nPNLu35YrydJ+Nv2F5U/b7rOjvt2LJewWPP+Ndhx347UUg4+E/SaPpmv22ExOEIK4ulTTxs/CwOtLWlheM0wTp45iZa0EoOvSdjq9YSEi7tEsRVpa0nLWiQuyoXDF2Li9gksHF8wKqNFXcTuud348NyHsYTgunmXoORyleVCC4CQgjAJpfH143jhN1+A7lQs/uYinv2NZ7G0cwlTV06tysEXCNYOrF11jdOLpzF9YBqjw6PG+yfNyjWVkDhn4Bxn4b+mtQYnnj+xPFnr2KljRosDwLLwD3Epa2FKKW3SZL5ehAqAkILwEVbhIvHR7BeBYPum7Xh+8fnE6y8cX8AVL7rCeP/QLRJ1wUwfmMa2y7etmgRmukcSi0uLuWMbprIWaRP0qp7M128wCExIgbimLNqCmwCMnx0+cdjoNgozaOJZM0MDQzhv6DwcO3VsVcplVTBoWy+mIDBjAIQUiOsELVtwc/91+42zbm0pnVsu3YJt925bpSBOL55edtlUIfxbaK1wA9Fl01zoAiKkBmyVSm1ujwEZMF5z99xu56ByWWy+ZDM+et1HM1UC5eIv1UMXECE1kHWC0477dmD33O4qmuhEnhnDnORVHZwHQEiDyBrcvGrsqopa6MbY+jHoTrWWfDbBxV/qhzEAQmrCt6Bb+2Ab2+7dVmKLAkzF4ZLIMyGLk7zqhxYAIV1A6C4p28c/MjiCqSunnJefzDMhq2krtvUjVACENATfBWXK4OSZk7j/yfux5417rJPOgPzZPUnzJgSC+ePzDAhXBBUAIQ0gacnIcGF2oFq3yPzxeUxunMTRW45i9rrZFZPI1g2tWz5ueM1wrvvE1zmOzlGIP39RMOtoJVQAhDSAtICoyS0yIAOpI/UQ07KOcQSyLBija/ve8fo7VpSPOHbq2AohnUW4Rtc5js9RKDognKZk+xEqAEIaQFpA1FRmYt+b91mL0EWPffuVb3fy7Ss0UfDalFSScL3+nuux474dqfcDqgkIM+toNVQAhDSAsMJmnLH1Y8vlJU6eObk8ESyaNmo6d0AGVqSY7rpm14rUU9ukMt/SzKZF7++au8tphF1FQJhZR6uhAiCkZtoH2zjx/IlV+4cGhrDl0i3LI2sgKLkcBl8nN05ix307EitzDg0MYd+b92Fp59KKHP2oS8dWDTQueNsH20YX0tj6MaMQNVkTcaqo+smso9VQARBSM9MHphOrbZ43dB7uf/L+RLfF1nu2YsNtG4yzgk8vnsbWe7ZaffE2wffs6WeXffk77tuBGz9xY2IKaiikbddyGWEXWfXTFItgaenVsBQEITVjWlA+XCsgbwG3sMz0rmt2rdifVIoBCOr/v7D0Qup1W9LCR9/8UUxunET7YBvX33N9YlurrASaVl6iXxeY55rAhDSULKWhfREI9l+3f8Vi69MHpjF/fH7FymA+q4QBgO48Kz923LcDd83dtUIJVF3bh2sIJ8NaQIQ0FJtrwrSily9RX3w0YwfACoHvI/zjXDV21YqA9OjwqJfwLyJH3xbo5RyA1bAWECE1EwpIm2vi5gduti7D6EIoHIucVTxx+8SyDz3uejn1winruVF3zIXDF+LE8yeWYyFJawm7YFpD+MLhC1e0L+v1ew26gAjpAjbctsGoAEaHR51W+wrdIKaYQ1ZGBkcwvGY4sX0m14sp/uB6vglTDMC3fb0GXUCEVEQZrgbb6P/oLUehOxX7r9u/HDeIE812KTrt8eSZk8b2mVwyrlaIb46+KZvINFmun+cAAFQAhBSKaUas3Cql+50nN04aC6xtu3zbsqtjy6VbMl3fNnHMxIXDFyYqQ1fBm0VZRec6hHMgOAcgGSoAQgrENCMWCPzON37ixkQlkGY12Or9RI833f/+J+9f/jv6fxNhCmqURV1M3G9isDWIZ04/k1h7x0XwFpmjzzkAyVABEFIgaSPb04uncfMDN6/Y51Kk7I7X34GhgaHEa0aPN91//vi88+h7aGAI2zdtTxzxK9RZCZx/zvk4vXh6xb6TZ05i273bsOXSLasE8tDAEEaHR3NPBEuiyIlmvQSDwIQUiCkPPU40f941dz2au59E2ryBMCffdg0gsDaO3nLUGiweXz+OheMLaEkrcYZw+LnpfIHgtZe8Fk89/VTfTcqqAwaBCamALHn7rkXKQt+2aQS+cHzBev+w8uXM5hnrKD4MmJrcNKFiWtq5hH1v3md0rdjcPArF57/1ecxsnllVr4hUR+0KQEQGROQREfmTuttCSF7ii5yYiLp3fAOUtv3h/U0sHF/A5MZJbN+03XhMeH0Xv7nNtZKmDOOT0zhJq3pqVwAAbgbwRN2NIKQowpH67HWzxmOiFTJ9A5Rpx09unDQqoFC477pmFzZfsjnxmDBLyNVvnpR1Ey1hbSOcocuFWuqhVgUgIhcDuAbA3XW2g5AysLk0ou4d3wCly/EuSuWpp59KvH40SyhJuKcRLzVhY2z9mNNCLbQQyqFuC+B2ALcAyF6AhJAGkzYSD/EVtGnHuyiJrAukpAlj10leoUJKa0dRFkK7DUxMAK1W8G+bOqQ+BSAibwDwj6r6UMpxUyIyJyJzR44cqah1hBRDnfnncSUBYIXgtq1CZsJFGNsUSJJCSot1FLGUY7sNTE0B8/OAavDv1BSVQG1poCLy2wCuB/ACgLUAzgdwj6puNZ3DNFDSjTShBn1SjZzB1iBEZEWuflr5ZpeUVd+SzGk1/G3rJSztdHMeTEwEQn9Vm8aBQ6ub1HM0Lg1UVd+jqher6gSAtwL4vE34E9IUfP3RWfzoRZM0ij6zdAbnDZ237KZqSWvFamNJz+XiNvK1etLcVUWUcVgwGCWm/f0Cy0ET4kF8tNotZYVNgjtaxC26FsCxU8dwwx/fAGDlc5nKLUeFsUt56ziTGyeNn89snkm0EHzcaGNjyRbAWH+XAqo9CAwAUNU/V9U31N0OQtIowh9to6xsF9NoWSDGSp5nls6sei7X0X2RVk8RZRxmZoCR2JSEkZFgfz9DC4AQD7Jmzrhgsi4eXHgQ9z95//LCKUAwW9cnnrDl0i2rlmtMWz8ASJ6NDPiN7ovAZiE4nd85dXo6cPuMjQXCf7K5RlslGIPAIjIA4G0ALgbwaVV9MPLZe1X1t6pp4lkYBCZ1U+aas6Zr2wS1y5q7SUFWF+EPZHuuJgS9yUqyBIE/DOBfATgG4IMi8oHIZ9cV3D5CuoIy0zpNVoRNULu4n0wlotPq+w+2Br2fKylN9MZP3IgNt23gJK4GYlMAr1TVX1DV2wH8OIB1InKPiJwDeBQFJ6SHKLOscNbFSdLcT6bPk6p4howOj2Lvm/aueC6X+ESSsjm9eBrHTh1jmYcGYnMBfU1VXxbb95sAfgbA96vqpRW0bwV0AZFeJqurJs1NY3ItDciAsZRz/HppufohrusN98tavE0hiwtoTkReF92hqu8HsBfARLHNI4QkWRfbN223VtR0cT9tuXTLqvLPI4MjRgsgyWJwzX5ytWL6fS3epsAFYQhpONGgqm8WkMmq2L5pO+5/8n5jwbZwCcrwPqbj4rNxk+6XBC2AajFZAEwDJaTh5EmBtK0RnDTBKiQ6N2D++LzRFZVU1C68b6iwTjx/AmeWziwfw7V4m0MjJoIRQsrBNm/BdfEaIHktYJMgj04CO3rLUex9016uxdtQ6AIipItJy7l3nbfgE7xlfn/3kdkFJCICYBLAS1X1/SIyBuBFqvpXJbSTEOKIS10i1zo6Nj9/CP32vYeLC2gXgFcD+PnO388A+FBpLSKEOOGSmeM6byFt/V767XsTlyDwj6vqK0TkEQBQ1e+KyFDJ7SKEpOBal8gWRI5nGA2vGcbTp57OXHOIdBcuCuBMpy6QAoCIXAQu4UhI7biUZrYRdyEdO3UMI4Mj2H/d/lKEPWsENQ8XF9AHAdwL4PtFZAbA/wXwX0ptFSEklbx1icoubR2lqHV9SbFYFYCItAB8C8HC7b8N4DsA3qSqf1RB2wjpasqq7R+Sty5RmaWt41SpbIg7VheQqi6JyIdU9eUAvlZRmwjpeqpaOSzPJLG8LiQfqlQ2xB0XF9ABEfm5TjooIcSBbhjxllnaOk6WdX3b7WAx91Yr+LdNb1HhuCiAtwP4IwDPi8gJEXlGRE6U3C5CuppuGPGWWdo6jq+yabeBqalgHV/V4N+pKSqBouFMYEJKoMyVw7oVnyygiYnkRdzHx4FDh0ptZk9imgmcqgBE5KeS9qvq/ymobc5QAZBuwbV+fhH36cXUylYrGPnHEQGWmITuTZ5qoP8x8v+1AF4J4CEAry2obYT0HFUsnl5VoLkOxsaSLYCx4uPTfY23C0hEXgLgdlX9uXKaZIYWACFn6WU3UxgDOBmJo4+MAHv2AJOTZ4+ZngYWFgLFMDNz9jOykiwrgpk4DOBH8jeJEJKHbgg0Z2VyMhD24+OB22d8fLXwZ5A4Py4xgN8HluvEtgBcAeCQqm4tt2mroQVAyFl62QJIg0FiP/JYAHMIfP4PAfgCgF+vQ/gTQlZSZR5/01gwGDmm/SQZFwVwgaru62xtVX1QRG4uvWWkuXCGTiOoMo+/aZiCwQwS++HiAnpYVV8R2/dIpzxEpdAF1ABconOElAy7oR/eLiAR+XkR+RSAS0Tkk5HtzwA8XWZjSYOZnl751gHB39PNKXFAep+0ILENGrBnsc0D+H8Iqn9uAPB7kf3PAHiszEaRBkPnK/GkrHTNyUn/68QthzB7KLxev2G0AFR1XlX/XFVfrap/EdkeVtUXqmwkqZC04RGdr8SDpqVr0oBdSWoQWEReJSJfFpFnReS0iCwWUQxORF4iIn8mIo+LyFcZWG4ALm/rzEzgbI0yMhLsJyRG0wQuDdiVuGQB3YlgQfgnAQwDeBuKWRT+BQC/qqqXAXgVgF8SkcsKuC7Jisvbmsf5SvqOpglcGrArcZoJrKpPARhQ1UVV3QvgdXlvrKrfUdWHO/9/BsATAF6c97okB65v6+RkMNtmaSn4Nyr8GWEjEZomcG0GbD92XRcFcFJEhgA8KiK3ici7HM9zRkQmALwcwJcSPpsSkTkRmTty5EiRtyVxTG+lqtsb0TSHL6mdpglckwEL9GnXVVXrBmAcQRXQ8wHsBPABAD+Udp7rBmAdglnG16Ude+WVV2pXMzurOj6uKhL8Oztbd4tWMjurOjioGrwDq7eREXubx8eTzxsfr+oJSANJ6vazs0F38uleZdLrXRfAnCbJ36Sdqw4KfP8/7HKszwZgEMBnAPwHl+O7WgE0rcebGB01K4C0N0Ik+RyRctvcdMVKVtE0gVtX160KkwJwyQJ6I4BHAXy68/cVIvLJvJZHZ43hPwDwhKp+IO/1Gk/T0iFMPJ0yx88WvavD4Uu3U1fC4HAzcPHlvw/BIjDfAwBVfRTAJQXc+yoA1wN4rYg82tm2FHDdZlJVj3dxrNqOSevxts/rSBHtFsVKVtA0gdu32c1JZkF0A/DFzr+PRPY9lnZeGVtXu4CqsHld3ExpxyR97uOyqtod0+u2e4/SRI9oL3sSkTUGgMBN8wsIyj9cCuD3AdyVdl4ZW1crgCp6vIuScTkmfBMA1YGBs5838Y1omjOZLJMmULMK3F4W1GWRRwGMAJgB8OXO9lsA1qadV8bWOAUQ7Ymjo8Fm65Vl91zTaBg4e6+sI+amvnVNHEqS0n4Wn+vaumxTu3NZeCsAAPs7/95sOqbqrVEKwOYqqUsImUbD0faYsnzCEbMpZ29oaOXxQ0PNeWv67W3uAsoyzEzXHR1deZxNUfTjmMGkAIzrAYjI4wCuBvAAgNcAkFjsoPKS0I1aD8C0Jl2UqtenSyqSHmV0FHjmGeD06ZX7BweBvXuD/ycVWW+1gGefTb7e0aPFtJ30FK1WIFrjiAQTyIu+LgDMzp6dlG5bMhLov+UksywJeReAAwBehrNLQoZbQ6Rwjbhk78zP1zPN0cSxY6uFPwCcf35wrimjJkn4h9eLPlsVUzv7cb5+F1JWlo/t/Gjily3pzvRZ1a9rI0gyC6IbgN1px1S1NcoFZHO31O0S8m1b6P+3xRDSnu2mm8q3q/vRdu9SyowB2LpxNH/B5IJyeT16rVshz0zgpmyNUgBpMYAyHKB52jY0pNpq2dtlejNcFEOYLVTmMzPjp6soKzRjCmONjrqF5Vxf3V7qVlQAZWAbjpi2KtsWzVAy1fhJmwMQju5tNYJsW5H5+Mz5J2ruprYqJrYsoCq6bt1QAZSFj7ul1WpWGwcG3JOz02xrWgCkQpK6adbxQT90KyqAsvB1BdXhWEwb5vjOwjFZCWX752+6afWzVOmsZbppaaSNO1y+cp85jk2uTFoGVABlEu9VabZo1RQd9SribfUl6S0VCZRCFfSDlKiJpCrkg4P+Y4osVU6icYFenjRGBVAlaakKdbSn26Neddvpdd+/hzGNl0yG68BAtvISWX7CqvV+WcqGCqBq0mbclk28J910U3qt/7qiXi69vu4AcN3372HSxiW2bXAwuQJLUTGCKvV+mcqGCqBq6nQZJN17cHB1OYcmjGZdv6e6R+B1379hFDlSzaMA4pstHJVlTFblWKnMLkYFUAd1OQ99J4JVqZxc2xp+X9FU1rgCqzoAzBiAqub/KqIJZabkMUB17Vr/qTa2a557rl8Ogc1qKEPvl2lkUgH0E74zeuuMbNnammTFpFVcLZOao4FNCUamjVTTAqquQj0MBIfXsimLLFs8h8Anl2N0tPjvnxYAFYA7WaJdpuGSaznrtPtmwTZHoaqhVxfQJAPENlJNa2cW49SWrpl3iyot32vbCuJmeU0YA6ACcOs5LvluSTN3fYZQST2vjB5quqZt2NaHNCkEYWtLWjuzlpsCgvFJ1CJI8gr6bmF3yqKYwjbFyfOaMAvIsnW9Akj7dYsKiM7OJgv7NWvOjvJd3sS4dClLCiV9L02SeA2gSUlIptGyzWUStjMtES1tS1rhNM81i1BMcfJ0XSoAy9bVCsBFuLv2HFtvdZ2I5tKz49KlSinUJJ9HA2iaPjQJXlvQ1GSY+m7RCiZJk8Ndt/C8vEopTp5F9+gCsmyNVgBpkS8Xn7ZLz7Fdy0eouxxblQVg+g6j9n63TsEsiCbqQ1N3MGXa2Nws69YFWTqu3ThM98wzci9iS3IBZX1NGARO2RqrANLmmLv6tG0B0aKiYKEgNZWGtkmXMqVQEyVcw2hKFlBImiEab2fRwrrorCDfbXAwW4jO9/tkGqg2XAFkiYolqfebbrIfmya007ahoeRZMvHNluNWlhRqmo+DpOISOI12Ed9Aa92j+6TXwrXrpzkEkj6jBZCyNVYB2FR3Wp571vRNl94adW6uW+fu7KxD6DYpykmccDVIo8awj1AP00pNI/0qLQBbyqfP95X0ClaxWD0VQJlksQCSavEXNeSJ26a+rqO40K3C90ALoCtxzcIJf0Yfv33Y1datS/587dpigspZXqks35PtFXSZRJcHKoAy8Y0BmNR6FgtgaGj1UCg+XPG9blTo2nL+ilQEjAF0Ja5ji3geQ1qXNNX0Ser+ecdNo6NuAeg8Y5G05y3b0KUCKJssTr+ka7i8TdF6uC4Vrnzt7uj8eFvPLWINAd9jSKNwHVvExxTheUldMxxbFOkRNQn4+HIStjBcHiGd9gqWbehSAVRFXiHm2vPDa9uOCbFdL+nNiAp2n55renaO7huBzzjEdSzjOqYIjWHb3IH4vYoMArtWArXFFcqyAKp4FagAqqBoQediJ5sygwYG3NqV5nt3XUMgzz1I6bh2TV9vpquQHh21++uTuoKrghkdzZ4dHSqnUKnZji0rBlBGYbk4VABVULSgyzsEimIa1qVl36QpgPDZbM/uk+FTlhuoz91Lrl0zSz5DUSP16FgmrPuTdu3QY+kajM6qPFqt/L+BzfVVthVABVAFtl6ahTxOUJvSiQrDtBnKLmmsNleUzVcQb6PPou8+Aj1p+FV3aemKcdXBWYW5zaefdRscVN28Of2a0S5iUgJJgt62SEx8K3Lp6ToM4kYqAACvA/B1AE8BeHfa8Y1WALYk56y/bJqPP9x8FkpxCTRHA8F5ZyeHJR3S3iqf78/X1eaiSHs8JpHXArAJd1OAt4gt1M2u45U0F1Z8zJCmXAYGznbT+PlZK5XUMeWlcQoAwACAvwHwUgBDAL4C4DLbOZkUQBWmv222SuhkzIrLEMVniqLP2xkmYMd77NDQ2dGzLWrmEwNIkzwuz2BStD6J5z2KazZvmj53NdDyFlgz/fSu5bLyvg4uYw5Td0+DFoAqALwawGcif78HwHts53grgCKCsmm9yaVn5MFlmOIzdMjzJoYSw3X2jWucwXZM0pvhO4TySVfpYdJmokaPs31NLtm8aXX64xPVXX/6NOFpS0TLk6CWJd3V9jtUnRTXRAXwFgB3R/6+HsCdCcdNAZgDMDc2Nub31HlVrcsvldYzXHtEeJ1wRB3tpWnRMJ+hQ57587ZIYJIw9ZmrYIswur6Npu/BdX5FD1sAIUUEg7PeI/4apU30Spp965ulBASZzvFuH722i8XgakS6jiGqzknoWgUQ3bwtgLzONpe3wKfWTxI24RQ936QEfIcOWYV/nm1wMD1OYcoxTIq+ZRlCRd+4uheYrxHXVyLPKNW31EPSa3buuf7zFHxjDz7e2SItgDpoogIo3wWU1wJweVvSgqRZ2xh/S/KWYygiOpcnxcMlThEX0rYsnbxDqD5NC/V5JbJ+Rb4eN9/AraltWbqnz1KNaUZkkxPLmqgA1gD4JoBLIkHgf2k7p/IYgMvbkvceLv79LIosbcRb9ebjX6/DSdonVPHVunrc1q2zK4uk1M3wdUl6bfJUS3cR2LYsoKYblY1TAEGbsAXANzrZQNNpx1eeBWR6W+L5X3lWrkobLrkstOrS7jK3LNG8LN9JU+3rLqMo48d2naLTQavYypi035Qu20gF4LvVMg8gSe0XOYTKarvaelfVb97oqFs6qKvkqSNRmljJ+hrUoQTyWgJZaHqXpQIoijJUfZbFTfPMbjEJ8aKSt6NbGAvxmeXb9OFUn2GKz7v8RFnHNqE/PWu3i7tjBgbM6woUIbCb3mWpAIqiLFUfF+SuE8DiOfk+89vjQjotATw8tkgFkfSG+CgLUhpZ3Diuc/ZcBLjLegC+XS3tmbIK7KS5D0WsIlYUVABZSBpdV6Xq82bc+L45Q0NuE7zC/P6i3kqX/ENTOigpDBcXj6+QFXEbdduulcU4dulqRQfDZ2dXvz55VxErEioAX2wBYFvPKSrClsd5GiY4l+GADdM5TffN8pa7PHdTbOkexMfFYzvGdRUv1/vYEuDCNZHydLW8+SEuBntTui0VgC82QZR3XrkLtqWJfHp60UognHtgUo4+7qekmThNj6b1IFm6SFIynO+Yw8WotnUHn/YWaUT6JNk1pdtSAfiSRRAVOXrNKrjjQrXolNDo7J080zFNbyQtgMrJMpL2TeBK2kJsxWJN3SGccOXT7qJ88r5KrglQAfiSRRAVOXrN4/iM4zo0c8mfS+vRLu22SZA8VlSfzu7Ni49ASxOirtcaHU0/xxQDyJLnkHTfrLjeq0l5C1QAcdKERRZBVIUFkJaumTY72GYNDA2ZV88OFVlaj06b2ulCFkHO4HFmTF3d1BXydLEkJZIWB0j6SYscH/l8T7bu3Wo1d/xBBRDFVbj7CqIiYwBpBVLOOSe5F9qqaEWfydSLbWmeNmGadt2yUyJsgekmvYkNxWc6SZpBOztrX5kr72Sx8fF8oS3T86Y9k4sntalQAUQp089cpBsi6VouPdEUoQvJGmA2tTHNHq9i1WvbkLApjtguI89r4nOub5gqtAKydGFTDkN0jaOk19ZF4TS5m1EBROnmTBOfIGvS37bUCtuWtCp22ptb5Rth+1664XdtILb00LSxje8r5pNBZJvmMjhoNmJDI9TlPnHDPe2VaZK/PwkqgCi+Q5smBReLnISVZfPJ+KlS8Np8Fg0amjWpK7kQFZg+k7OzWg9pXcoWAI5OaA+vk7S+kusr5JpN3Q2/IxVAFB9ffdFTBvNSxuQu3y18/rQ3qWrB2/ASEk3rSj5kGTNleVYXqyOvAe9jROd9nqZABRDHdSjWtLz0IufG59ls0x/rfDsaPMRuWlfyIYvQzfpTpJ1n6natVvaEMZffpcFdKxUqgKw0KV7g0nOzFmvbvNl/wpipdhDTLxNpUlfypUnKy5apnGXKiKmmYjcJ+DRMCqAFYmdszG9/mUxPAydP2o9ZWgIGBvyuOz4OfO5zwLZtgIjbOQMDwJkzyZ+pAvv2Ae22Xzt6nCZ1JV9mZoCRkZX7RkaC/UDwU09MBN1nzZrg34mJ4rtAuw0895z585Mng9ckjclJ4NCh4HU5ehTYuxcYHT37+fBw7qZ2B0laoalbbQvC1O3880mR8I0RRGfluJ7rail0g2+jQprQlfLgUwKriOdLup/Pa+Bz36LDR01zF4EuoByUndufdrxP5SmftwRYOTs3LZfe903sBt9GxTRNMOTBtRtkGQeYlKXP2MbHHVRkAlkTFT0VQBMosryEaTPdx0VIFz17hxZAz5K1i7li6oq+Ia48k9aKbnudrwMVQF1Eh3ym3msSsFnmyCfd15axEz/HR0FlTRL3/d66fajcg2Tpmj4/oc0Y9Z01nOdeLkI73lWLVCZFQQVQB67DJJdVsdK2NIHrKtzLyt3zoYk2NFlBlkxk13kALpOufGIBaZiu5VJGyudVLaISaVaoAOogay91OW/dOrvANdUR6oZRdRNtaLICWxe1uWlsQjBNmMYViMus4azzAlwzmX0soTqXiKQCqAOXYVJSL3Vdj89Et4+guzlhvk9I62K2Luw75zI68o+S5rrx6e5Zx0Z5l6WsCiqAOrBFsmw9LW9qRbePoLu9/X2CTWimCfMkfPV+3m5ShEHsGwupawxDBVAHRQZVfUbzZY+gy3YldbsFQ3R21l8IVlVvKO+58ev4WAG0APpJAai6C0tbFaxwFTBXgVvmCLoq4dwt8QpixCXxLEqWrpW1mxT5iiRNIhsaalZ5CSqAplNkjyxTSPvOFaAQ71uqFOi+1yraSG56zgUVQNOx9cgsPams3uf65tCNQ7Q+IZjW/fotzEQF0HRMPTJp+aMmrkfgmsraq28YaRRp3a+bxidFKFGTAmA10KZgKrcIrK4A6lrysAzSykKGLCwkn2/aT0gBhFVJ5+eTPw+73+QksGdPUAhXJPh3z55gf5Not4GpqeB5VIN/p6YKrLKapBWauvW0BaCarOqbmBPvMiShBUAqxmWtpKZ3vywVXFxAk1xAAH4HwNcAPAbgXgAXuJzX8wogiW4VpN1kY5OuxacsRNO7X5kF9kwKoC4X0J8C+FFV/TEA3wDwnpraUS+hvdpqmVfPcHW5NI1usbFJ1xJ1j6TRDd3PZb2nkMIWEUrSClVuAN4MoO1ybE9ZAD4j5CblkxHSEIosCNcEXCeUZbFkYLAAJPisPkTkUwD+l6rOGj6fAjAFAGNjY1fOu6j7bsAUqRofD9aqI4RYabUCkWhDBNi/v9kj/xCTSBgdBdatCwLYY2OB8e/7PCLykKpuiu8vzQUkIp8Tkb9O2K6NHDMN4AUAxpi2qu5R1U2quumiiy4qq7nV02tZMi7uLEIKJM0NIgJs394dwh8we3vvuOPs+sWHDhX8PElmQRUbgF8E8AUAI67n9JQLqFuDu0kw4EtqwFY9pVs9pWV5e9GwLKDXAXgcwEU+5/WUAihbaFYZN+glZUa6CobH3DApgFpiACLyFIBzABzr7Pqiqm5PO2/Tpk06NzdXatsqpd0OQv95nHum605NrUwpGBkpLw3C5IwVCexWQkitmGIAtQeBfeg5BVAWVQeYGdAmpNFUHgQmNVJ1gLlb5yoQ0udQAfQipvSIwmaPxOCkL0K6EiqAXqSOEfnkZIm5aoSQMqAC6EU4IieEOLCm7gaQkpicpMAnhFihBUAIIX0KFQAhhPQpVACEENKnUAEQQkifQgVACCF9SleVghCRIwDqXhBgA4CjNbehKHrlWXrlOQA+SxPphecYV9VV9fS7SgE0ARGZS6qp0Y30yrP0ynMAfJYm0ivPkQRdQIQQ0qdQARBCSJ9CBeDPnrobUCC98iy98hwAn6WJ9MpzrIIxAEII6VNoARBCSJ9CBUAIIX0KFUAGROR3RORrIvKYiNwrIhfU3SYfROR1IvJ1EXlKRN5dd3uyIiIvEZE/E5HHReSrInJz3W3Kg4gMiMgjIvIndbclDyJygYh8vPOOPCEir667TVkRkXd1+tZfi8j/FJG1dbepSKgAsvGnAH5UVX8MwDcAvKfm9jgjIgMAPgTg9QAuA/DzInJZva3KzAsAflVVLwPwKgC/1MXPAgA3A3ii7kYUwB0APq2qLwNwObr0mUTkxQB+BcAmVf1RAAMA3lpvq4qFCiADqvpZVX2h8+cXAVxcZ3s8eSWAp1T1m6p6GsAfAri25jZlQlW/o6oPd/7/DAJB8+J6W5UNEbkYwDUA7q67LXkQkfUAfgrAHwCAqp5W1e/V2qh8rAEwLCJrAIwA+Lua21MoVAD5uRHAA3U3woMXA/h25O/D6FKhGUVEJgC8HMCXam5KVm4HcAuApZrbkZdLABwBsLfjzrpbRM6tu1FZUNW/BfC7ABYAfAfAcVX9bL2tKhYqAAMi8rmO3y++XRs5ZhqBG6JdX0uJiKwD8L8BvFNVT9TdHl9E5A0A/lFVH6q7LQWwBsArAOxW1ZcDeA5AV8aZROT7EFjHlwD4QQDnisjWeltVLFwS0oCqXm37XER+EcAbAGzW7ppM8bcAXhL5++LOvq5ERAYRCP+2qt5Td3sychWAnxWRLQDWAjhfRGZVtRuFzWEAh1U1tMQ+ji5VAACuBvAtVT0CACJyD4CfADBba6sKhBZABkTkdQjM9Z9V1ZN1t8eTLwO4VEQuEZEhBEGtT9bcpkyIiCDwNT+hqh+ouz1ZUdX3qOrFqjqB4Pf4fJcKf6jq3wP4toj8cGfXZgCP19ikPCwAeJWIjHT62mZ0aUDbBC2AbNwJ4BwAfxr0C3xRVbfX2yQ3VPUFEXkHgM8gyGr4iKp+teZmZeUqANcDOCgij3b2/Yaq3l9fkwiAXwbQ7gwwvgnghprbkwlV/ZKIfBzAwwhcvY+gx8pCsBQEIYT0KXQBEUJIn0IFQAghfQoVACGE9ClUAIQQ0qdQARBCSJ9CBUD6DhH5lU6VSu8Z3CIyISK/UEa7Otd/R6dKq4rIhrLuQwhABUD6kx0A/rWqTmY4dwKAtwLoVGF14UEEM1Dnfe9BiC9UAKSvEJG7ALwUwAOdWu/nishHROSvOsXLru0cNyEifykiD3e2n+hc4r8C+EkRebRz/i+KyJ2R6/+JiLym8/9nReT3ROQrAF4tIls793lURD6cpBRU9RFVPVTut0BIABUA6Ss6M7b/DsBPq+p/AzCNoPTCKwH8NIDf6VSv/EcEVsIrAPxbAB/sXOLdAP5SVa/onG/jXABfUtXLARzrXOcqVb0CwCKALBYIIYXBUhCk3/k3CAqx/Vrn77UAxhAoiTtF5AoEwvpfZLj2IoJCdUBQR+ZKAF/ulA8ZRqBkCKkNKgDS7wiAn1PVr6/YKfI+AP+AYEWrFoB/Mpz/AlZa0tElA/9JVRcj99mnql2zehzpfegCIv3OZwD8cqfaI0Tk5Z396wF8R1WXEBScC/31zwA4L3L+IQBXiEhLRF6CYMW1JA4AeIuIfH/nPheKyHihT0KIJ1QApN/5zwAGATwmIl/t/A0AuwBs6wRwX4ZgYRMAeAzAooh8RUTehSBr51sISh5/EEHlyFWo6uMA3gvgsyLyGIJ1pf9Z/LhOiuphBOs0PCYiXb1EJGk2rAZKCCF9Ci0AQgjpU6gACCGkT6ECIISQPoUKgBBC+hQqAEII6VOoAAghpE+hAiCEkD7l/wM1ko/w7fKnXQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEZCAYAAAB4hzlwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXt8VOWd8L9PEiDAEFGU0ERC0tiL1bbY7paoVYkk1q01\nEdf1VRIUsNK+rdyUtm4hJmzabevaale33ZddqbbQm267uKVVoxAoStzaalVib0kGIhTU1hjCPeR5\n/3jOmTkzc87cMpOZSX7fz2c+mcs5z/mdSfL8nud3VVprBEEQBAEgL9MCCIIgCNmDKAVBEAQhgCgF\nQRAEIYAoBUEQBCGAKAVBEAQhgCgFQRAEIYAoBUHIcpRSPUqpyzMthzA2EKUgjArGysSplGpWSn03\n03IIoxdRCsKYQCmVn8vjC8JIIUpByHmslXMZ8D9KqX6l1Gql1Cyl1JBSaolSag/wtFLqMqVUb9i5\ngR2GMtyplPqTUuoNpdQPlVJTPa55mVKqVyn1eaXUn4EN1vufUEq9oJR6Sym1Uyn1fsc5X1BKvWbJ\n+KpSqtp6/ztKqX8KH9vlmh8Dvgj8H6XUIaXUC8P97gQhHFEKQs6jtb4J2At8QmtdpLW+x/HxpcB7\ngY/Zh0cZajlQB1wClABvAd+KcvwMYCpGIS1VSl0APAjcCpwB/D/gMaXUOKXUu4HPAh/WWhdZ8vij\n3ZbLfT4B/DPwI631FK31BVHOF4SkEKUgjCZU2GsNNGutj2qtj8dx/qeANVrrP2utTwL/BFynlPL6\nPzlljX/SGv9W4N+11s9rw/eA40CVdex44HylVIHWeq/WuieJexSEtCJKQRjtvJbAsbOAnyql/qqU\n+ivQCZwEij2Of8NSHs7z77DPV0q9BZwNlGitu4CVQAtwUCn1faXUjERvRhDSjSgFYbTgZRZyvn8Y\nmGS/sJzDZzk+3wv8ndb6DOtxutZ6stb6z3Fesxf4ctj5Pq31jwC01j/UWl+CUR4AX3OTC3iH1026\nXFMQUoooBWG0cAB4Z9h74eakPwCFSqm/U0oVAGsxJh2b/wf8s1KqDEApdZZSqi4BGf4D+LRS6iPW\n+ZOVUh+3fr5bKVWtlBoPnACOAkPWeS8CH1dKnW7tHlZEucZBoFwpFX5vgpASRCkIo4WvAk2W2eZ2\n672QVbXWuh/4DMYZ/BpwiFDz0jeBzcCTSqm3gWeBj8QrgNb61xi/wgOW+ekPwM3WxxMsGd8A9mN2\nKP9offY94CWM4/lx4IfhQzueP4JRdn9RSj0fr2yCEC8q0012lFKrgFswq6aXgcVa6xMZFUoQBGGM\nktGdglKqBFgGfEhr/QGgALghkzIJgiCMZQoyLQCQD0xWSg1hnG37MyyPIAjCmCWjOwWt9X7g65io\nj31An9b6qUzKJAiCMJbJtPloKlCPCdErAXxKqQWZlEkQBGEsk2nzUQ3QrbX+K4BS6ifARcD3nQcp\npSQ2WxAEIQm01gmFL2c6JHUvUKWUKrTirucBr7odqLXO2Udzc3PGZRir8uey7CJ/5h+5Ln8yZNqn\n8L/Ao8ALwG8x8dfrMymTIAjCWCbT5iO01uuAdZmWQxCyjR5/Dz/5xU/Y7t9OaVEprbe3UlFekWmx\nhFFOxpXCWGDu3LmZFmFY5LL8uSp7j7+H2ttq6XpXF1QAJ6Djtg7aHmjLKcWQq9+/Ta7LnwwZz2iO\nB6WUzgU5BSFVNC5vZNOUTaGVmU5Aw6EGNv7rxozJJeQWSil0jjmaBUFwYV//vlCFADAe9vdLbqeQ\nXkQpCEIWUlpUamqpOjkBJUUlab92j7+HxuWNVC+qpnF5Iz1+6QU0lhDzkSBkIQGfwge7zI7hBFT+\ntjLtPoVMXVdID8mYj0QpCEKW0uPvoekbTezv309JUcmIRB+JL2N0kYxSkOgjQchSKsorRnwi3te/\nD6aFvSm+jDGF+BQEQQiQSV+GkB2IUhAEIUDr7a1U/rYyqBgsn0Lr7a0hx4kzevQiPgVBEEKI5csQ\nZ3TuII5mQRDSjjijcwdJXhMEIe1IYt3oRpSCIAgJUZRf5OqMnpI/JSPyCKlFlIIg5Dgj7fRVpxRs\nJcQZzVbrfSHnkTwFQchhQpy+0xiRaqpv8zZUAc8CGtMFpQr63+pPy/WEkUV2CoKQg/T4e6i/pZ5z\n686lq6vLrNz7gPHQ9cEumr7R5Hnujp07qLiogqlzplJxUQU7du5I6NpF+UUwCZgLVFs/Jw3ffCRh\nrtmB7BQEIYPY4Z/7+vdRWlTK0uuXsv7H6wOv3Upb9Ph7mPupuez9m73w9wTMN+wALgWmejt9d+zc\nwbwV8xi8chDGw9sn3mbeink8/c2nufSjl8Ylc8B8dDmBkFS2gnpP8uajTOx4BHckJFUQEiB8Eh9O\nPSK3eP+CxwsYvHAQzsIz/t8rJJRfAvnARd7hoRUXVeCv9kecW76tnJ5n41uZVy+qpv30dniRoPlo\nNlS/Vc3Wh7Ym9B3EuicJcx0eEpIqCGnEnsQ3TdlEe0U7m6Zsova22qTNHE3faAoqBIDxmBX87uBr\nN1OQV0goecAp9wxkm7dOveV6bt+pvrjlLi0qdTUfDacUhoS5Zg+iFAQhTtwm8Vj2+2h4Tu469HX4\nxOhVn4ghKB8sj2pyOT3/dNdzp+ZPBeKz68dbCiMRpOZS9iBKQRDiJNWrWc/JXYW+Dp8YW29vpez5\nsoiQ0JkFM9n6/a1RzVkP3/0wBY8XhJxb8HgBD9/9cNw7oYryCtoeaKPhUAPVPdU0HGoYtu0/HYpG\nSA7xKQhCnKTa7p2sT8E+d2XrSp773XNwAqrOq+LelnsBYvo8duzcwc2fv5m+U31MzZ/Kw3c/zKUf\nvTTjdv1M9I8Y7UjtI0FII+koBBc+QX9l1Vf42S9/lvDE2OPvYVXLKp7Y/QTHrjjmKV80R3n1omra\nK9ojxq7uSd6BLGQWUQqCkGZSuZpNlZIJjNPfBZfgudKPdb1M7xSE1CNKQRByiFRNwoFxnsFEA4Vh\nr/RjXS8RJZXK0FwhfUhIqiDkEKlyXAfGUUSN4PG63pbnttC4vBEgLgdyLIe0ZCbnNpLRLAgZIhB9\nFLZyjzcM016td/6xE7qBdwHbMLsFx0q/9YHWqNfrO9THpqFNgQziWLuUaKG5rbe3SmZyjiPmI0HI\nEMPxKbidy1bgfcAfYcKhCZxVcBals0o5p+ScQGhnxDnbgA8BvzE/G/Jim66iOaRLikpCTVR9wK9h\n+qnp1H64VsxMI0xOmo+UUqcppR5RSr2qlNqtlJqTaZmEsUGmzRzDifd3W61zORS/VEzdu+qYfvp0\nXrviNZ57/3MB8w7Ahjs3MPGRifAT4KfAuZjw12pgd2zT1Y6dO/jVrl95mqlCTFR9wHPAJfD6Fa8P\nOwNcGBkyvlNQSj0EbNdaf0cpVQBM0lr3hx0jOwUhpWRrn2GnA/c0TkPna/pP9ccdPpr/aD6FJwo5\nXHvYTPY2J6B+Xz0v/PkFU0jP3ik8jfFFTAAOQv2cev77of92lS1QTO/CQbOzCDNTtT3QRtM3moI7\nhXbgIiSaKYPkXPSRUqoIeEFrXRnjOFEKQkrJxvDLEEV1BOggpBJpPOGjPIuZiLcBc4CpwY+Lf1bM\nwSsOuhfSm2eel3SU8Lcz/5a3eTtCEQWK6R0B/hc4DByHwuOFdG7tpKK8IvQeYkRDxfouJLpp+OSi\n+agCeFMp9R2l1G+UUuuVUhMzLJMwBsjGAmwhJqEXCSoESzZnnSW3shBsA2Zb51RbYxD8XI/X3oX0\nrOf7q/azuXuza1TRW6feMgrhOUwRvPnAtXC86HhgOKdJrPhwcVL1jFJdeFBIjEwrhQKMm+vftNYf\nwvzJ3ZlZkYSxQLYUYHP6Ndp+3RactDVRlZZz8s1/NN/sEJw7g/HAKeu5tcuoem9V7FpLYUqi64Nd\nrGxdCVjF9H5N0GxkHaOv0iFFASvKK9j4rxvZ9ciuuOsZOb+HyxdcntLCg0JiZDok9TWgV2v9vPX6\nUeALbge2tLQEns+dO5e5c+emWzZhFNN6eysdt3VE+BTs8M2RIKKxTDfBkFGFa/ioU2nZk+8zFz2D\n/yJ/xLGTD07mIz0fMZnX1n29+KkXQ30KWzGtNR3nhSuJJ194kh5/Dw/f/TCXffqyuHdYtuIKyQB/\nwL1pUMT3kGW7uFyhvb2d9vb2YY2RDY7m7cCtWus/KKWaMY7mL4QdIz4FIeWMRAG2aLbxCL9AH0E/\nQgyfgpPwbmp2YT23bmrOQnqDRwY5whGOfvxopJKwdxyWz6FhtvG11N5Yy1PvfCqlvpiI76EdcVCn\niJxzNAMopT4I/CcwDrNGWKy1fjvsGFEKQs4RLcKp97VerlhyBccnHofjmKY1RcBJmHZoGu9637vo\n/WMvx4aOUTCpgPeXvZ/JEya7OoDBu/JpPDLaijH/eD5PdTwFMzEd3M7DRBnNCXZVS0fUVkQklR3K\n6hLdJM7mxMhJpRAPohSEXMQrQmjen+ax/U/bQ1b2bAE+DMyASW2TmOabRu+FvebzN6BgV0HI8cOZ\nJG0F8taptzg9/3QevvthZp49MzKx7ecYj9+M0FV6qnZY9jhtu9p4/YrXQ7+nN6D8N+VUvLuCKflT\nUKeUp0IUvBGlIAhZRGAF3EdIP+Pxr43nxPUnIkNDfwr8H+v5T4AZmGiiF4lqTkkkfPOHj/yQBV9c\ngH6HDuwGCnYVcNk5l/H0OU9HTMw8DYUTC7nigiu4r+m+lE3G8YbfQmQWtuwa4icZpZBpR7MgjFpK\ni0rNxBqW6HXiv0+4OlIZ53heTDDfQOHpeO3x93DZksvoHew1UUNDsGPJDrZv2O7q0F345YXo63VI\nmYvBCwfZ+dROUyLDps+S+1o4Nv4Yj514jN237U7ZZBwSfjse48f4JRSfKqbmwzUBh3Tj8kbPSCTx\nL6SHTIekCsKopfX2Vnw7fBEhnHahuBBOACcdz21FUA285X58SVEJq1pW0Xu01/RRqAYugd63elm6\nemmEPE3faGLwqsFQWazyFoNDgya7eRvG0fu/RMgdLSw00ZIhEXkiU4F58L53vY+N/7oxoHiyMZ9k\ntCM7BUFIExXlFZz/vvPpGN8R+sGHgZ8BnyDUp3AhwSQ0uwLYeMAHeZvzGDpjKLAbmFkwk9YNrVT9\nQxVcQehE/3HY9sg2evw9Iav6ff37jEJyMp6go9tu0HMCeAzXybjr9S4alzeGlOHo/WsvL738EqfO\nOGXGsXYrG/9pI+t/vN7VrBVvhdjhVpIVEkeUgiCkkcrplXSc6Aid1CbBvPfOo2tbF32n+pisJ3Pu\nOefywosv8Jcjf4EzMH6E2ebY0lOl6GLN/qr9gUlbPW+ZiccDB4BdGPPTSeBCODXjVISJxWuCZT+c\najgVqlhOx/XYVzpfoaOyw/gjbD9AGcb0tBW4wMjcu7WXKz95JUf//qhrCe1480SyIZ9krCGOZkFI\nI/GGcPb4e5j7qbkRiWUzJ87kgooLeGzGY66O5u7ubna9tguuInTXkQfVH6jmwZYHQwrshRfEU/+j\nKBwq5OhZR40SsvMT+jBmpI8Hxy3YUsDgRwdNob12XJ3fPIspgWE7y2+IlDnRKKaRyCcZrUj0kSBk\nIfFMal7hq3UH6ug/1e/Zv+APnX9gX+2+yMn5Uai/sJ5X3nwlRCG945fvIP9oPm/rtzl66CiDtdYk\n7zRbTSWYyFZIIGpqyltTODT/kLmG3cwnHOf7PwGujZQ5VjE8IXVI9JEgZCF2OYpoeNn7D506FNWu\n/hv1G1fbvypQDBwdoKvfqlaqgNnw50v+bCb7t4HrCDUZVROssuqS2Txt2zQOnTgUtQxHoETGCYx/\ngdDPxReQ/Uj0kSBkAdEK9LlVRLULy52ef7rrebpPs+3324JRSRdhsoSPYEpen4mrMsl/M9+YhuxJ\nvQ94GtRmxdGBo0x4YoIJs7Wd0U9bx9g7i9nmefEzxcycODPhYnjS0znziPlIELKAWL4HLxPUDx/5\nITd+6cbISKbxQC3uvRPAOIptn4CdXHfKFNE7XHvYOK07gGOE+BXYjLEvOHwYE56YwNQTUxlkkIIp\nBcx57xzua7oPIKbZLFubHY0WxKcgCDlMog7VwIR6Rhc8j5nI+4GPAAdxt/n/GBPCCmbnYPdndiTX\nFTxeYLqr7SbSmfw0wdBVm2EUq8vGZkejCfEpCEIOE4/vwcmqllXGZzCAyYC2Qlh5Fm+bf791zHiM\nU/kJTLMch29h8MpBJj86mbyiPA6NPxR60TxczU7JJpN5+VIkOS1ziE9BELKUaLb2Hn8PT+x+wt1n\ncBSjAP6HUJv/NuBvMb6AExgnsodv4XDxYfRxHemvGCKlzYmypdmREETMR4KQhcSytXv2aG7DJLA5\n/QA/x4SW2tFEb2D8DpMwCuRG3Ivz/Q34/uBjYN5AcKzHMfaFmuD4vqd9bLlnS1ylumPe5xvg2+Hj\n/PedT+X0ypTmJIzFvs/iUxCEUUIsW3tEDwKLvO/lMfR/hryTyizUIwpda/1PhfUuYBsBX8Ps02Zz\n3rvOo+v1Lg7sPcCMkhn48PHs757lyBlHApVWK/3JO4ftybprfxevvPZKiBJKldN5rDq0k1EKYj4S\nhCwkViE4L7PL6Wee7l6BVYceVzqx1OwUpmJ8Cz/AmJqetV6fBVRD39t9pt/yD3fR82wPux7dRXFJ\nMUfqj8A8jKI5K1gszzZ5XXjDhVRcVEHVdVUxw0xtX0plSWVQIVhyp6o3c0hV1hSPPdoQpSAIWUg0\nW3uPv4eB/gEKnyyMyAO4+LyL3SuwDoUet+neTcHch6mY3g32JG8nrI2HGWUzImTzUlhd+7uova2W\nTVM20XFuB/5qP8/tf45NQ5uova028cqp1ripcDpLtdX4EaUgCFnI0uuX4nvaFzHpL71+KbW31bK5\ndDPHPnoMfgmFmwupO1BH2wNt3HjljRRsKQg5r+z5MurfWU91TzUNhxpoe6CNSz96KW0PtNFwqIHi\nJ4s9y3NXTq8MeavH34P/D36zq2jHOLGtYw/sPxCxGrdLc8ezKk+n01kc2vEjPgVByDIC9u/yLpMr\ncAp8fT62fGsL63+83tPXsPT6pcxbMc/kGLyACVU9BGdOOpPK91ZyTsk5rs7V6kXVtJ/eHuFbmPjk\nRHY/sjtwvGvRvqeBvzE+hbN8Z9FxbliZcAjUQ4pV9yhVdn83hzKMzQ5u4mgWhFFANCfzvv59kU3u\nX4SpR6Zysu8kh687bMJSPZzHbg7hwPWOEGwbOgQ102soLikOTK4HDh6IbNl5As5+8mx2PLKDpm80\nuUdEWfWU4klIG25F1GiKBWJnWI82RCkIwijAK7KouqeakqKS4MTbR+jkb1clbce7rPVFUL6tnK3f\n3xoon7GydSVPvvAkxyYcM8eOg4mvT+T00tNDejjkbcljqHoo6HOwKH6ymAPPHHCdkKMpo3QgGdKh\nSPSRIIwC4i6O14HJGXgGowiOmOPQeEcgjQd/gZ/a22rZsXMHtbfV8tiMxzhWf8w0zAH4MBydfjSo\nEKzzh64agl9HymXLWlFeQdsDbdQdqGPaz6cx4ZEJTDs+jbqjdXErhOEWx4vmUJbCe/EhZS4EIcuI\n1m3MnnhXtaxi89ubTUYywClMiOlPMe95lbU+AeQbx+/Nn78Zf7U/1DF8OWZH4VHOIuCQdiTGncw7\nSePyxoDtfvfB3fyl5i8wHo6fOM7u3+72vFen/b8ov4gXel6g98Je125t8eBVZnxK/pTgLibJsccK\nYj4ShCwklm39mkXXsPn3m80k7ujUxgAUHi7keNFx9FXaNSHNbqQz9edT6ft4X8S12YZRIG4mqHZM\nwpqtHGoJNOmp/G0l5595PptLN8dlvnE1N7n0cUjE9OPlU0hErtGEFMQThCwl0RILsYrj7dq9y1Q7\nDVvl5/0oj86tnYBxqu7u2c3Lr7zMKd8pM+FeSKCz2tT8qfSd6HPfUczGHO9UOo7ObOM2jePkP5wM\nnnsEuvq72OvfC3sIbe1p5TA0Lm8MuX+3hLLATmVu8L1EcgnsnVSIQn2glSUtSyRPIU5EKQhCmglZ\nvVqmi803bOa8s8/zDBONyXhcJ7nTzzw9MFbr7a3U3lbLqQWnQif2icbxu+HuDdzYfGOIMzmwUp9E\ncGcwAJxBSKvOvMK84PUdDu+T409GtvZ8A1557RU63tMRYro5y3eWa4XU8OzrRHMJ3BRqtO51Qiji\naBaENOO2Ih6YN8Bzf3mOTVM2MfdTcyOcnrGcolXvrXJ1Rk88NTFwrOtKvBomt01mw50buPSjl6L6\nlGm8sw14FOObeAGzWr8UmAs+7TOmJLt38zY4Pvl48PovEoyAclyHF83xvh0+1/IVB/YeiCv72q1b\nW6JE614nhCJKQRDSjFdEjB0NtPdv9rKydWXgI3tnsWnKJtor2tk0JbJMxH1N91H2fFnIJMfT8Nqc\n1wLHel33cPFhlnx1iSmXUTBgyltUYyqrFgAXY8w3k6wKqN/aQvm28tDaSFWYXUWUaKepR6bScKiB\n8993vvvn06ZGTNRu2depcATbZqWGQw0pH3u0IY5mQUgzrrHzb2Am1emAgmn903jz1296H+/iFO3x\n93D5gsvxF/iN89e241vHAjGTyZ55/pnQCKQ+TNjpG8AMqJpWxa5Hd7nnTvRB8c5iAA5ecdBTXq/7\nKXi0gO996Xv87Jc/G1MJZSNJzuYpKKXylFK/UUo9lmlZBCHVRJgu3gB2YjqeWQ1y+k71BXYC8RZv\nqyivoPzd5a6F7Pb373c1mbANozysYx6++2EKHnfUSpqE6c52kXlUlpjaR665E5Og5sIadj2yK6pp\npvX21og6TmyDwdpBbm29ldbbW9n60FY2/utGUQhZQFYoBWAF0JlpIQQhHThNF9N+Ps00uLEb32N+\nnrrqVKBgXCLF26Ida183wvQzNXjMpR+9lKe/+TSlbaWoHyuTFf1hYIYx5Tgndq+JP5ppxo664ph1\n/W2ElOcemDoQuG9JLssOMm4+UkqdDXwH+DJwu9a6zuUYMR8Jo4Iefw/vvea9nJgfPpMHC8YlUhgu\nnmPjPeayJZfRO9hrlopDMLNgJts3bA85JpHaQSHXtUxWbqas6lnVPNjyYFQZx2LXtFSQk7WPlFKP\nYBTCacAdohSE0U79LfU8NuOxqD6DRCbgeI6NdUwyNYNiTdQhY/ZhwludbUKthLqGPG//R8OhhkBo\n7VircJoKck4pKKWuAv5Oa32bUmouRilc7XKcbm5uDryeO3cuc+fOHTE5BSGVZENryPAJvev1Ltey\n117lruO5hwjn9F6ML6WYiDaeS1qWxFcE0CbRTOeePTQ1PcS+fUOUlubR2rqIiopZcZ2bS7S3t9Pe\n3h54vW7dupzLaL4YqFNKfRyYCExRSn1Xa31T+IEtLS0jLZsgpAWvrNuRVAjhyXS+dh9UEndyV7T2\nlvZEHZEwVgbUQvlvyql4ZwUlecH7jpZctq9/n2uSW7zZyD09e6itvZ+urnXAZOAwHR3NtLUtG3WK\nIXzBvG7duoTHyLj5yEYpdRliPhJylFyyeXuFyPqet5LMjgC/hry38ji94HQ++sGPcm/LvSH3E628\nt72zSJVvxKtPQ7w7hcbGdWzatBqjEGwO09BwDxs3NnudNirI2ZBUQchl4kk2yyZcQ17HwYTjEzjj\n8TPI25oHl8DQdUP85eN/YfPvN3PZkstC7ieeCKlEEsaiHTvcbOR9+4YIVQgAk9m/f8jt8DFP1uwU\noiE7BSGbSWdjl3TsQCLk7cP0ZrCL0blFCf0SGmaHOsJH0i8ynI5sslPILZ+CIOQ8w7V5e+Fm+++4\nrYMNd25g/Y/Xs69/H6dxGjpf03+qP26lsfT6pWz+zGYGpg4Yh+8xgtVQvRr05IXez0j7RWJVjY1G\na+siOjqaQ3wKlZXNtLYuS6WIowZRCoIwTNJVgdPVmVvexVWrrzK2/3yCK3xrtR6rcUyPv4clX13C\nwNUDwTabj+UxNN4ypdiNeMJ3CkOR9xNros4WP0tFxSza2pbR1HQP+/cPUVKSR2vr6HMypwoxHwnC\nMEmXKcXVmdtO0LzjfG4Tw2zlaup6GrgE977PVjntmRNDE9li4fadlD1fxgXvuIC3eTvrnfGjBXE0\nC0IGSFcFTldn7imCE7qHqSea2crVyfxhmPDEBHOtqZgObY+C+rFi2s+nUf+e+ojM5ljlKNx2OXv/\nZi+buzfnhDN+LCPmI0FIAcOxeXvh1qvZ1+dj4IRl+vEw9UQzW7mauibBmfpM9v1yn1kmKuDjoCdp\nrjx0ZURl1nh6HXv5WQLLUJe8BiE7kJ2CIGQpbjuQLd/aEgzPtFtmJhCqufT6paFVUU9AweMFnDn9\nzGBfhbnWZ8/CY7seo+KiCqquq6JxeSMrW1d6Jq058QpZxWnIkHaYWYnsFAQhi3HbgTijforeU4Q+\noDl06lBcEUDrf7yewQsHTeipBhQMXjjI2795O7iDcPgVDo0/xKETh/Bv8/PcjOcofKEQ6sMGdZnc\n3XY5gVafNtIOMysRpSAIOcZwTFX7+vdBBcHdgMWMshnk/zbfTOJe7TWfhWO+Y3GZrMJDVqfkT+GF\niS/QO6k3cE7lbytpfUDaYWYbohQEYQzhFT5bOb2S73/1+zR9o4ktR7bQN74v9EQ7h+HDMPHJiRy9\n4mhIpJXb5B6uvCIS0Eaw3pMQPxKSKgijiFi5AfGEz3plaNvZzvX76vEV+aSFZg6Qc6Wz40WUgiDE\nJt58iVglI9zGsXsf2KWuRQnkBqIUBGEMM9waTM5dRlF+EeqU4uCxgxzYe4AZJTOoLKmUXUGOkdLa\nR0qpmcC/AKXAL4B/0VqftD77b631NcMRVhCE1DKcGkxu+QfpKHCXLaUvBG+i5SlswCTSLwPeAWxX\nStl/clI0RBCyjHjKWXsRrWlOqsi1EuNjlWhK4Syt9b9rrV/UWi8DvgXsUEpVYuIQBEFIkHhKRCTL\ncPoOuJa/SHFy2UgoHmH4RAtJHaeUKtRaHwPQWm9USh0AniCyY4UgCDGIt0REsgynnHW6Kr06SVeJ\ncSG1eDqalVKrgN9orbeHvX8BcLfWunYE5LOvKY5mIedJZzOe4TISTXOSuf+enj00NT3Evn1DlJbm\n0dq6SEqYSY7vAAAgAElEQVReJ4BEHwlCFhNPX+NMMpzuZvGOn4ji6enZQ23t/RHNcdrapBdCvEjn\nNUHIYtJtohluZE86Kr2Gj5+Ieaup6SGHQgCYTFfXOpqaRn8bzUwiSkEQRgi3InGpqv+Tbn9FqkhE\n8ezbN0Sk+3Iy+/cPpVwuIYiUzhaEESJdzXhgdEb2lJbmAYfD3j1MSYlMW+kkpk9BKVUM/DNQorX+\nO6XU+4ALtdYPjoSAlgziUxCEKGS7vyIZYvkUxAkdm3T5FB4CvgOssV7/AfgRMGJKQRCE6IxESOlI\nU1Exi7a2ZTQ13cP+/UOUlOTR2hpUCOEKo6NDnNCpIJ6dwq+01n+rlHpBa32B9d6LWuvZIyIhslMQ\nhFiMREhpNtHYuI5Nm1YT6nM4TEODOKGdpGuncNgqb6Gti1QBbychnzCG2NPTw0NNTQzt20deaSmL\nWluZVTH6JqdsYTiJa7mIOKHTRzxK4XbgMaBSKfUMcBZwXVqlEnKaPT093F9by7quLmtjD80dHSxr\naxPFkEbSHVKaTQSd0KE7BXFCD5+o5iOlVB6mq+r/Au/BtN3+vV0tdaQQ81Fusa6xkdWbNoX9u8I9\nDQ00bxwbk5aQXpJNbBtrzumUm4+01kNKqX+zfAm7hyWdMGYY2rfPZWMPQ/ulxs1YJdWTcTQndDQZ\nxDkdm3jMR08rpf4e+Emql+tKqbOB7wLFwBDwH1rrf03lNYT0EM1nkFda6rKxh7yS3I2EEZInXZNx\nRcWshJzKkiEdJ1rrqA/gEGbCPgH0W6/7Y50XzwOYAcy2nvuA3wPvdTlOC9mDv7tb31FZqQdAa9AD\noO+orNT+7u64PhfGFg0NLRoGtPXnYD0GdENDy4jKMXfuXWEymEd19V0jKsdIYs2dCc3LMb0yWusp\nWus8rfV4rXWR9booRQrpgNb6Rev5APAqptObkMU81NQUcCKDWXet6+rioSaTPTurooJlbW3Gh1Bd\nzT0NDeJkHsNkS6SQZEjHR0zzkVLqUrf3tdY7UimIUqocmA08l8pxhdTj9BnswWQ3DgEvP/UUe3p6\nmFVRwayKCk+nsoSrji2yJVKotXURHR3NEc7p1tZlY84BHY14fAqfczwvBD4C/Bq4PFVCKKV8wKPA\nCmvHEEFLS0vg+dy5c5k7d26qLp+1ZOvkafsMXsSktd+P9S928CDNtbVRdwUSrjr2yJbJ2Ms5DYwa\nB3R7ezvt7e3DGyRRexMwE/ivRM+LMl4B8DhGIXgdkxoDWw6RzXZ5f3e3vnXmTH21JZfTQDsAuqWh\nwfPcloaGhM8Rcp/ubr9uaGjR1dV36YaGFt3d7dfd3X5dWXmHw98woCsr79Dd3f4RlS1bfB7pgCR8\nCsmUzn4NOHd4qiiEDUCn1vqbKRwz5/Gy29/T1JTxWP9ZFRWcdsEFTO/tTTj0dKTDVbN1tzXWcIsU\namxclxXRQNni88gW4vEp3I9V4gJTans28JtUXFwpdTHQALyslHrBus4XtdaPp2L8XGYkJs9YE2a0\nzyf19+NuKY4eejqS4apiqspusmUyzhafR9YQaysB3Ox4NAAXJ7odGe6DMWg+SreZZbhhpS0NDboT\n9B0OE9IA6MU+X1QT10iaxcRUld1ki9kmW8xY6YAkzEfxTMgRtn6399L5GItKId2TZ6wJM9bntnyd\noFtArwF9tc+nd27fHte9tTQ06Luqq3VLQ0Pa/CR3zZ2rw2YcrUHfVV2dlusJiZHsZGz7J+bODfon\nUiFLuM9jNJCMUojHp3AzEG7vX+TynpAAsUw3gVj/piaG9u8nr6SEZSm0h8cKK41lvrLle8iSb1xJ\nCV9YupSn1q/nyebmqPb7aOGqqUQyqzNPtOiidJeq8Lq21/uS1WzhpS2AG4H/Ad7CVEm1H9uApxPV\nPsN5MIp2Cv7ubr26rk4vKCzUa0H7MxRZZO8E/C4moDsqK/UtNTV6Lei7rJ2A32Wn0NLQoO+aO1e3\nNDTondu3Z120VDZHcI0F0mGW8TI51dWtjuva27fvHLWmIjdIpfkImAXMBXYBlzkeHwIKEr3QcB6j\nRSm4TlIuE+5IyrLWJay0E/TNkyaFyLkK9K0zZ2p/d7frfVzt82Wl/X6kTFVCJOnwGXiVqigsXBAy\nsXtdu7z82qzwY4wUKVUK2fQYLUrB005vKYb5xcWBlfdITF7+7m69cPr0iP+wFhdFMQB6dV2d532s\nCXvtt8ZZMGVK4H7CdxfpuMeRuIYQH+moNeQ12cPakInd69pTpy50fb+4eGFKfRTZQlqUAqafwq+A\nAUxRvFOkqCBe3EKOEqXg5fj8nLUSz4SZI54JPtxB63YfTkXiZpJaXlamb505M633KOai7CIdO4Xu\nbr8uLFwcYv6BOzT4dVXV5wIOaK8dgdf7sHZUmpPSpRSeB84BXgDygcXAVxK90HAeo0UpeO0UroFA\nFI9tw+8cIdOL20T6sYKChCOTOkEvdux83M5fG2XMVCAhqNlFukI96+tXWpP4XRpaNPg1DGif72rH\ntTp1QcHNEdd28ynAKmuM1CiubCJtSsH6+ZLjvRcSvdBwHqNFKbhNwItBX+mysr4D9IqqqhGTq6Wh\nQX+uqkpf7fPpNjd5YuQwLLbOawG90GunEWX3kQokBDX7SEeop5uy8fkWa+gM+9V36vLyayOu7ZRp\n+vT5YQrBPEZLOe1klEI8IalHlFLjgReVUncDf4bYJbeFSOwwzpsuv5xz/X7GAc2YJtihyf7m9YLe\n3hGTq3njRtY1NvKDjg4mA+8C7gFOAq+Wl/MNRxawW7jsLUuX8tMlS0wpDtwzncPzVFMdHnqkqEhC\nULOMdIR6uoWy/ulPRTz3XHj1nXOpqDifrVvXBd4JD0ctKprF5s1nhp03hrOZIa6dwixMddQizBz2\nDeCcRLXPcB6Mkp2CTfhK+w6PlfX1EyaMqD3ca6W9ME4HuL3jWFFVpRc7opFGwqdgF+kL980sLytL\n63coju3U4ZWUFk+yWjz+C7cdRlnZcj1z5q0pN3FlC6TDfGTGZSLwnkQHT9VjtCkFrUNDJa8tL/e0\nwY+kPdzLJr82iYncLRQ0neGhzryLFstUtRb0yvr6lF0jHHFsp47ubr81Odu+grV65sxb484riMd/\nES3HwcvElY7sabd7T9c10qIUgKsxbTJ7rNezgccSvdBwHqNRKTjxd3frxYWFrvkLI2EPD6zw58yJ\nWOGvsuTIdsdtJvwJ4thOHcZ5vCrCAVxaeqXrRD59+nzd0NCit2/fGZhQ6+pW6/r6lbq6OvjcOdEm\nGiI7EjWR0n2NZJRCPD6FFkxjnXZrdn5RKSUlJlPIrIoKTvvYx/jq5s3kYRw2y4AzSb89PLyS6KvA\nNRMnMmnSJPL7+6k8eTLk+HSWuY4mY6zy15koaTHSZcCzkVQ1ydm1aw/wPUI9a628/vp83Cqpvv76\n+9m06Xp+9KOvMTj4bzib92zYcAVLlvyUrq4v4SyFcd55ikSqoa5adR9dXT7gbsx/5aKUl/Zuanoo\nK8qHhxBLawAd1s8XHO+9lKj2Gc6DUb5T0Dpzpojw1a4fl5wJx24hU5nXbt+L056/sr5eLy8rG9Hv\nb6zvFFK5yp0+3T2pbMKE+a47BROKmkjWcqc+++xP6MLCBZaJyh9V3mj5EKmMTEpHgp8T0mQ+ehBY\nALyECUq5H/j3RC80nMdYUApaZ6YkQ7jZpQX3HAP7/UzVaAqXZ2V9fYSyuHXmTL26rm7Evr9M+xRG\nwt4djeEkp9myz5mzQpeXX6uLiq53TNbBsS6+eIlLXsEd1nHuE+qUKddaCsPOY9hpnRMcY+LExbq+\nfqWnM7uubrWHMlqb0hyGdJcPT5dSmAR8GZPV/CvgS0BhohcazmOsKIV0ES1CJnzSdcsl8IOuHTdO\nL5w+XX+2pkavrK+PGm2TyogcL1/B/OLirFilZ6q2Ujb0AIi1yo0WTWRk74yYrIOJZOb5GWdcqevr\nV+q6utW6uHhhmOJwm1DbtFI1GtZYn3dqcPdL2BOv23dpdhRuf3rX6pqaz3p+z4kq6mz0KUSbiL9n\n/RzR3gkesqTkCxqLxFrN7ty+XddMnKivwSSdXYXJTnYqhE9CoGLqWuu132NlnOrVs9dOwa1mk2bs\nJKplQ4OaaDJEm+yC53nVMZqvg5nKd2no1D7f1fqCC5ZbWct2klp41nKnVmpBmJJZrqE+qvJyv4+1\nHrKZY8vKlicVAeVGOns5pFopdAIlwG+B04EznI9ELzScx1hVCvGsuGMdE83u7RXbvzA/P6AYlhHp\nY1gFeqXH6jzVdnYvJbO6ri4rdgqZIt226HgInQT9GtbqwsIFgcgfL4VRVfV567X7PQTfH9CwUofv\nJny+xbqqakUg+qi+fqUuLp6vJ0yo9ZjIr4mqQCO/S7+GlVqpxjAFY5ut3BVwNijqcJJRCtGij/4d\neBp4J/BrQDn909b7QpqIp79wPMeER8jYDXW6tmzh9mee4X29vdxJaMzHt0+d4qbycs6vqOB3zz7L\nT48fD4sJgYWO185om1RH5Hg1GwJo3r079N4rKwOfjXayoa+wnVm8atVannzybY4evZ9jxybz2GOH\nKSxcBrwZJt9kuroO88orv7Nk9+zybf1sxrSRb8H5FzowcD/Tp7ewcWMzO3Y8w9NPdzEw8AFgL26R\nSsYV2kywbsBh8vM/zZ/+NI1rrlnFq6++DMwHpmBydE8A96L1m8BXMTF578fEBM4KjBveSzrZntOp\niuBKGbG0BvDtRDVNqh+M0p2C1yrf393tmdCWyKrcHmcNxlG8k9CaRmtw9yFohxnGy0yzMEmZUvl9\n7dy+fcz2SsgGn4JNtHLW4e+ZyKA2DTdrN59CQcECnZ9/pQ76Drz7J2zfvtOqeWSf72Xysceync9r\nNSyz3vukjsyPsD/TUcdNxU4hp3wK2fQYjUrByyxidzCLVb5aa60/X1WlNaFZvC2YQnpexfec/oIW\ncG2y4zQv1ZWWuvdWYGR8CukeN5fJlr7CXqasvLxrdND+bya7OXNW6KADuEXDCg3XarhNQ431vt8x\nUXsrnMjQU+d59nE3aQgPLbWd2S1RFElL2LiLQsZIlU8hJ6OPsuExGpWC14ra3iG0RJmstTaT5NU+\nn+4kdPXfiSl9XTdtmmdoqf3aD/pWIn0Gy8vKAsopfPwB0A2gl8yeHdvPkcIV/FjPCchmou0UlLpB\nT5pUr8vLrw1kH5vIoHAlEj6G8VFMm3atzssLdx4b2757wxy/hmus/AZ7h2ArgDUaanVwF3CXju3X\nMNcsLb1SFxfP18XFC3Vd3eqY0UfxlszIxjyFeDKahTTgZXuf3NfHZGAR4VbQUJv5Q01NfG1ggC8A\nP7CO2YNJKvmvwUHu/stfXMc/ZI05hLHcXg98vbSUhYOD+ICi97+fcZMn8/V/+Ae+9/rrTMZYUgMV\nUzExyT8+7zyaN250vTe76moqkezh7KW1dRE7dqyit7cY81c1BBwE1qD1mRw5ciN+/1dYsuRBNmyY\nz+bNX2NgINyXcDLs9SyglQ98oJmion42b27C+CgGrM+OMHXqYfr6wsc5k4KCPt773nfy2986/UvN\n1s9rMbUCsGQdJHpN38OUlX2R9vZ/j8vOH14VtqdnD42N6+jqOsIrr7zKwMDXgHNJNst6JBjD9WEz\ni12Wwclh4PDUqRzG/Nnbk/Fa4Kby8ggH8rmYPy/7z+khgkrEdtWFj/+yUqy2jlsNbCwoYO33v89P\nDhygddcuCnt6+NLmzbzfUghYsjRjlMH51jXDJ+M9PT2sa2ykubqadY2N7OnpSf7LccHr+5Ky2NmB\nUhOBOzF/WXdiamiC+Wv8APBjurrWsX79U2zZ8gV8vmUE/0IPY3JjI3/DJSV53HDDR1FqN1AGVGKa\nPzZTWjqVmTNXhY3zRQYH38/LLx/CFKXfEzJe8K/5MGbpdQBoChvjFkxK1k1AE1ofTeo76enZQ23t\n/WzatJqOjq8xMPADzLJtD3Y5C6UGqay05THXr6xsprV1UVLXTAmJbi0y8WAUmo9i+RRi2c5tc0qL\nw7TjdBr7Xcw+iy1zk5cJxmmicY4bbn4KN9u4+i8KC/XK+vqUlsYWn0J24m4+6tTGV7DG+rkixCxi\nm1KCCWmRWcd2p7RJk27W7j4BY9s3RfPWaFit4VaPYzs1XK3h89qEua7SxcULdX39Sj1v3lJdXDxf\nT5u2QOflXa6dfhAjU2dSNn5vs1rQX1FdfVfu5Clk02M0KgWtvW3v8djk7UnSafNfSTDJbDXoWzCt\nPudPmKBX19XpJR/8YIhD2m8rE5fey25KxfY/LCgs1Kvr6gJyRSu5ncjEHSvnIlPZw0J03OP8wzOV\nFwcm1+5uv66vX6mnTzcT8aRJV+qggzmY69Dd7Y9SbqIl8Nx0T9PayyldVFQbkdRWUHCz3r59Z8h9\nRLtWMjZ+L3+BMw8j3TkMohRykOGUhHA2tbmytFTfNH68a9lruy7QzZMmRRS6c/aCdiuOtxb0jdOm\nmfEnTHBdqdtRUOGPzxHpHPe6V9kJjCzxlmOIp/FNZBSQ++Ts812tt2/fafVNCI0SmjTppkBCmlMW\nr0J5Tkew2W0MaC+nsYmC8s68tu/DJL9FtuaENSneKRgn+MyZt6Y9YkyUQo6RyonQa7VeZ+0KnBFG\nzs+v9vmi9l625YkW/eOVU3Gt9fyu6uqY9xpvdFE6Op2Nte5p8YZOeh0X2fgmvNyEW3SR1kVFCywF\n4lQIWgcjjcznc+YElYPZBUTfKZx99id0Wdly7R1eeo2rPFVVK1yK7dnmpuD5+fkfS2rydvv+wk1f\nohTcJ/wrgd8BfwC+4HFMqr+rrCCVYZaeTWasMRe4L7f056qqQsbxMtFEa2KzYs6cCFPTHaBXOO5n\nZX19wLRlm66c9xpPk5yd27frq32+QDJe5zCUqPN+ncqq01KUn6+qGrUKIt7Y+OBxoYlfZ5/9CZfz\nO3V5+bW6utpt5+CcyAc0OIvNeZma2nRl5R26puYW7dZ8J1g0z9j8Z868Vc+bt9SjNIV7yQ1vOdc6\nni/SNTW3JP1dR/pOQhVONpqPMhqSqpTKAx4A5gH7gV8ppTZrrX+XSblGiqF9+3gTE2Fkh4guIrkw\nS7cmM68Cr2BahBzBPfBucmVlyDjOcFJnc5tX/H5exUQeOc8/MmUKp5eUcP1zz4Xcxy3A9zFhtPOX\nLuXBj32MYMsTE/+xzHGvR4qKXOU7MmVKQJYHr7qKHwwMhIxxS1cXDzU1RYTAxtOYB0xor10qww7p\n/cHAAJM7Ojjc0RFRNmQ0EG85BnPcm5hq+cHg6H37Frucfy4VFeezdes6K+qm2dE8xvkbn4ypkGP/\nth9yjI31837gRrq6vsZ5521g5sy36e39KuYv6xB5eR0MDU0CxmGXnujtvZdLL72Huro+Nm+2j7Xb\nVR3B51vGwMD9AXkqK5s566xz8PvdAp39lrxDzJw5jvXr14SUoigqOoJSg7z9dlHMshR2iGp1dTMH\nD66L+Z1nBYlqkVQ+gCrgF47Xd+KyWyADO4V0mxT83d36ytJSvShshb2K5PoKh7f07AR9s2PsTtCN\n4av5KKtsf3d3RNOamxyF8mxZPzFhgl5y8cV6QWGhXuvYAdw8YYK+srRUr5gzJ64e1Cvr690L71nf\nheeuisjKqImY5Zw7lBbcTWyjLUHOa6dQXn6tS09jN5NM7LIP9grZJJjZFU+duwM7Q9jLGWtKX7tF\n5wQL6oU+7GO9TF7hET7RvgfncbHMQPGUpchUsTyS2ClkWin8PbDe8boR+FeX41L9XUVluLb+eKJo\n7qis9CwxsbquLim5bRPNQkzUUfjYnZiM6Xiid7yqkF5D0AS0k8hs6MUTJ+ql8+bpW2fODKmx5PZf\nvKCwMMQ85bcneYImJrfIKOdjjcuknYhZznlsrDpQowX3Sc6YYZwTnOk+5tZXwK8nTgwtHeE1MZpq\nqWt1sOGNmUjtDOHCQq/KpiYD2W3SjFWyu65utZ4+faEuLp6v6+tXhvRxdu/rEP0+YoeWxp7cM1Wr\nalQrhebm5sBj27ZtKf7qQhmOrT8ehWKPn+wkZCudz1dV6WvLy/WKOXMCBeLsMFUvH0K8E1y0Qnh+\n67nXyjp8Z2Af55z014KeV1wcUJyxSmF7/U6cjnKbePwTbr+vsbJT0NpMUsambjejcS8J7RWmWV+/\nMmZsfXe333IAO5XPIj1+fH0g5LS72x9W1C6ooHy+qz3Hjc8BPqAnTLhJT5x4vQ7WWloTiIKyx4p1\nH7FDS+MrSzEStaq2bdsWMlfmolKoAh53vM4K81Eik0o48SgUe/xkJiFXpUPQ6bpz+3a9sr5eX+YI\nT01mgps/fbp37gFml7CQyO9Ig75u3LiQ137caywtIzRkNlqPZdcEOZ9P79y+PanfQfh3aof2Lvb5\nxkxYbDx1d4azwo2+wg6OY6qdXq2d3dIKChboH/zgUc+x3SZY7+ut0m7VWMPzFJK7j0hFmk0koxQy\nXfvoV8A5SqlZwJ+BG4AbMyuSu9M23pIK8dToscdfRPT6Rm44HaP22Oswzup1XV20fP3r5O/ezbdP\nnIh7bKdTtv+00yjQGjU4yG2YKIBwV+ER4F8wBQPcvqfBkydD3p8F+DB9GJxyf8WSuxm4t7eXtfX1\n3HPJJSF9E2wHb3hfhf6iIqZpzZPNzTwV5khe1NpKc0dH3L0Wwp3r4b0bRpOT2Uk8PRnsnglNTfew\nf/8QJSV5tLYui6sOkJdD24QjmDIPK1e2sHnzv7Blyxe46qqvWX0Rfszg4FrWrn2QkpIZrF//lGev\nAbNmjHW9N4Fv4/zrGxxcz1VX3chLL90f815aWxfR0RHuOG8CVgCHmTlzFYcOnUZ1dXN29EMYLolq\nkVQ/MCGpvwf+CNzpcUyqFWhUhuNTiGeV6hzfb62+w7OEvYgWeqox2cv29f3WbmQNxqQTLTPalsVe\nzfutlfzlRGZAtziOCQ9FXUVk34YB6/6iyR3vTize349kP8cm3XbueMo85OVdp+fNW2olqYWHbHaG\nmZa82nIO6MLCxR6hsl55Cqaa6vTpC+PupWzvTOzOctXVd+n6+pURJrJM9bVwgyR2ChlXCnEJOcJK\nQevkJ5VoNY1S0SAmWhSO7Qh2nXw9Jly3ekfOyd5+zzmW03FsK567QNeOGxdQHM735xcX68/W1Lg7\n1T0UZ1LfwSi0/aebVNi5o2U9uzu0/Y7Xq3RoXoDzc6dScctnCB9rWVgS3YA2PZprwpRFZN+FZCfy\nbGzB6USUQpYQrlDiLXIX79gRdm+MT8Hunew1YbpFRTl3HiusiXwhBMJL3XYDV3tc45IJE0IK7tm7\noIXTp+tPnH22/iSRuwpbXjfF6fX9DMfnIwyPcAXg5twNj2AyDu0btClI5yw2t0qbxLLQ3gXBnYQz\nMzr2rsOM06lLS+v0hAnXa7NDWKFNd7UbHOfH10ktHrKhV3Y0klEKmfYpjErC+wmsa2yM9AN0dXGP\nS9JVPGPfsmULN151Fe8eGKAHKMHY+h+0jmkm1JewrLCQcQcO8OXLLuPe3t6Qfs7qvPM4jLG69gNf\nJtKHYJfwfrmggOMzZjD9zDP5zO9/z7eOHg2xsL7n+HGa8vJoHRpiEvBNLD/C669bRY1NGfAiTFrR\nCqBp6lTuueoq5i9dysONjRT39gaq3H95xw7WbN8eYdMfjs9HSI6enj2sWnUfTzzxNseOBZPANm++\n0SoJHfzr7upaR1PTPWzc2ExFxSzKy8/H7wdYgklWs1McVwD/QWgF/8lAF9DEpEm/5sgR+zcdzT8B\nwd7O5zJ9ejn5+bB37z8H5DzrrP/L4cPXceTIh/Hq5ZxMIlk29MpONbkreZbi1lcg1Q1iLr70Uu5/\n6SWmNDRwfnU1+8vL+QCmdcgsQvswNALNx47xjaefxtfby5uO66/r6mJQKZorK/lPTB5puAP7IWvM\n1cC5g4O8My+PolmzeH1wkEbg89a1VgD3AecODbG2vJxVxcURjuV/BqZa4zZb8h6eOpWhffv4akMD\nurc3pCK/r7eX+1atirj/mqVLWebzhVTAb66sZFEUB72QPHZfgM2bfQ6FADDZcgxHn2DNxDmE+Y3b\nSxb7L+AlTMiFzWFMz4Q7Oe20d1BW9kWCE75rRw2CS5hFwGH+8IdXHArByPPGG9+mpuZ8GhrGUVw8\n4DpWMhN5a+sih4xmnLKyL2a2H8IwkZ1CCtnT08P9tbWhUS+O1XgqV7bO3UhzdTVL/P7Av5s9iTdh\nJupZ1jmtBKN9sOQp6u9nSVsbTVVVTH799ZBrBNdsdh8tOHPvXr66dy+/IPRf0b5GHnB+RQVozeSD\nByPGO+m4/08DX/L7Odfv5zDwj5gdy2Tr0Qos7OgIGWNPTw8/XbKEzw0MBLrBveTz8YUNG0ZtlNBI\n4yzpUFqax8BAH11dX8IUTAlXAONwWylPmXKExsZ1gbIQU6e+RF/ftcDfWudcj/kNFxLshBZaDuPP\nf76fmpoV/PWvNzIwYC93grsUpW5F637gq9ZnZwKfRespLnJO5tChSWze3OxahsM0tlmW8PdTVHSE\nEyfesGQwyi/ZpjxZQ6L2pkw8yBGfgpcDdGV9vadPIRXlNOzr7sRUJl0IupZgtFCI3d3DORvLgb3c\nMV7EGI7nazEZ2Z5VW0tL9YLCQn2N5QcJ/3x12HsLi4vj+o7FyZwa3JzDhYWLdbAoXmQhvPDks7Ky\n5VZ57OB7plCd059git6Vll6p6+pWe5TD0Lq42FklNdhrubz8Wqu5jp2UZmdMd2r4W8tvsEKbBj+f\n17BW19evDLnPZBzs0UteDM8/kQ5IwqeQ8Qk/LiFzRClEc4C6RTOlqnS2v7tb3zpzZkhymFcJjbWO\n54tjlc12KAKngmgJvz+CjuNPWkrQ695W1tdHzeZ2JsQNEFnyQ5zM6cU7jNQOF41dV8iUtojlFA5t\nXmOuGznBe/VTqK6+S8+e/emw4/3W4yZrrFBZS0o+M+xQ0XjCbG35soFklIKYj1JINAeoWzP7VDmg\nZ7kiyeYAABR/SURBVFVUcNoFF9BiOZEBPokx+9h2fdvRm4fZoL8MlJ1/vmtyWNeWLVT29Vn1J4Oy\nnSSYsgOmquh/YqzCV2NqXzYBG/r7I5LN7ESwDUuWhPSQDv+uDjmef7GsjNvvuy/kXsXJnF68EsAK\nC7s5duwIoIBPk5d3gOrqd/If//FFKipmcemlFweOrq5udh0j6BS2X5+kpGQcAEuX1vCjH32NwcF/\nw/6LLSj4LJWVp3j99SaCVU8XAWdSVNTPc88dxRhKnaERJ4BvYaVz4vQr7N9/dyBZLln+9Ke3iKxr\nPCvs3nLb0ZzxXUA8D7JkpxBvobt4V/6pXPW6jeUHXV1YqNdgQj9XE6w7tCyKycXLRFMzfry+ctIk\n3UlooptzZ9EZZVzn2H7cE9+uLC2Nqw1porsrf3e3Xl1XpxdOn67nT5+e0v7RowmvlXBNzWcjzERe\nsf3xraYHQmobefV5zssLbaMJq/TMmbdGaZ1ZYz13DxUtLl6Y9HcTrU6TM9dCktfGiFKIdzJKJOkt\nlfZxr7FuqanR8yZMiCjRvQD00nnz4p54na09F/t8unrcONfrfaygwHNMu4jf1T5fQLGstWRZhal/\nFM9EnWhioVsZ8ESuN5bwynL2Mgm52c7dxlBqoXb6FHy+xSG1h9zj/d2VS13d6ihF6uzWm+7nFhfP\nj7sVafg9eRUQnDTpE4EM53QVuksWUQppJB0OzlS243Qbyy4yF82/4JU05u/u1p+tqdF1BBPZnOfW\nuf9H6uUXXBCXbIt9Pv2p2bNNldc0dznz+t05+zkIQdycsIkmadljVFV9zipJ0abdqpTauO8U3Nt6\n2qUm3HcKVzlW75EO4ZqaWyIUVlnZcl1fv9JTScTKzK6q+lzafhfDRZRCGkmXgzOVNXrCx7LLUXuW\n6MaYe8IzpBf7fHrFnDn68smT9R0e57r1a/BSkrFacaabaPWixEEdH/E25on3vPAdhvvEe7XnTsFE\nNy2LmPTz8i7TQYe1HX10h4ZrYpidvM0/saq9ZkukkRvJKIUc9oaMLLaD00k0B6dbEpsbtgN63dat\nNG/cOKxY+/CxJvX3hzh1I2QHNgD3Wy0uwWqGODCAeu45Ljp8OJCnsCfs3HKMW8+ZQLYU2H/gQMg9\n7+np4e0nnggkpa3GRJq/SfLJe4ni9bsbIvMO6p6ePTQ2rqO6upnGRtPKMhtpbV1EZWX4b7wZv/9L\n1Nbe7yl3vK0/7WqsDQ33UFx8Eybu/wuE/5VVVjaj1CC9vfcCdwAtwE1AI6Wlr7Jt25eprHwQ85d2\nH/BdJk78K/X15Wzfvob+/kmu8gTzeO2M7Idi3gOctPIbFrnee86SqBbJxIMs2CkkYupJpVloODid\nussJ9Sksx+Q13Bi2evZjnNLhrTudPoUbrB2Gn2DRu1Wg/yHsnDsqKz2b54yk6SZbfQqZ6saVLPE2\n5nGSTMG40O/Fr2GtLixcEGjME2rKsnMX7gr4C6LlICQTUprsLikbQMxH6SVeU0+2JFjt3L5dL7ac\nurdaE7EdfXQrJgLJGUHkx0QEefkgrsEkxd2FKYq3xlIKnaA/5nHOjdOm6bD/Jq1B/0NenmuDnHQR\niD4qLtbzi4uzIvoo2ytsupGMbyEZxRdtYg+agNzzJqKNnUzyWa4pbyeiFLKEbEiwsncrnZgsZ7cJ\n+/Lx40M6orVYP718EPMnTNDfvu8+fXNBQUQk02KX4/2gP5af73rtVYzurmbxkO0VNt1IduWfyjaU\nNTW3aONvuEEHK6EG+z/H0y/Z2RshPPvabcIfiVaa6SAZpSDJa2kgGxKsnB3azsHdInqaUtyLse/f\ng6lzFC2x7IPXXcfBX/2KfxscDPFBrMcU3gs/5z+Be0+diqzailUOLclKsaOFXKyw6daFzFk3yK4L\n9Kc/vcXBg73MmHEOlZWTUtaNrKdnDzt3DgF2ZVY7ae16jLdqWcxqpxUVs9i4sTnweseOZ1iw4Dpe\nf/0UeXk+Kioi/0/Dz4kmn7NuVE52YUtUi2TiQY7tFFIdappIbST7+IWnnaZbMH4Dr/4HdWGmnRa8\nO6otLyuL6L/gfNw4bVqE3d7utuYn6HtowfRtyMTuKdvIVbOE16o5eD+R4aDJ3ld4ToF39JC9g1mr\np0+fn1D+gdkphDbdKStbnrC82fj7RMxH2UMqQk0TVS5ux1+NsfmHT/KLfb5AHSKnucfZjtOZWLay\nvl5rHd1f4hUSG3Fs2HljmVw1S9g4J23jhO7UXoljifpK3IvzLXA1uQUzmG8MmJHimZCNOSw1TXey\n0UckSmGUkYjD2t/dra8tLw84f/3W8XbrzIjVelWVqxK5fvz4QDkM5zj2in64UVjOKKbh+BRSUV1W\nGB7eSV2fd524E/WVuE+y7hN4UBGtTmhCNn6d5H07TqUYrXhfpkhGKYhPIcvY09PDQ01NDO3bx8ud\nnYH+AjZuzXnsPg7f9fuZDLyKsdufC/zJen0uwT4Kh4F7Kitdi9aVDAzQsnmzpz/Eq9CdW35F+LFH\npkxBK8WG/v6o58XzHbn1rVjW1iY9FUaQpqaHHL4FCLZmugk3X0lPzyv09OyJ28bunh/wSSZOXMbR\no3ZfhVcx+QzvBm60ntvE7qZm/DqDrvLG8u309Ozhssu+TG9vMcYTd4jgf1twnClTjkQdJ+tIVItk\n4sEY2SlEW1lH2yk4dxR+F1PRQqUCvQvCV+jhK+5U9pNOF9kS8jvW8a4/dJuOLDFhfA2JhKNOn+7s\npRBc/dfXr9QNDS169uxP6YKC8IJ5wfIT8UYiJetTMPWgVoVd3y7bbb82BfwyZRZEzEe5TbQaPdEm\naKfztwV3p/K15eUR/g0vU1CgFlIKSm+kg2wI+RWiJ3VVVa3Qkydfrt0S3aIlfUUmroVOuk6lEqv8\nRLxO3u5uv66vX6mLi+fr4uKFgSS5WHgpLRMm6+zxkDm/giiFHMdrsltYXBx1gnYqE886Ry4TZq6u\nuHNV7tFGrGgb753EmgTKbpuM5uLihRGOeK/xp06NPNZN9kQrpYbj5UNw81Fkyq+QjFIQn0IW4ZXf\nUFlTExHL7/Q9HCkqYtXMmdzb2+uZY+CWIzG0b597K5QU1CRyypdXWsqiJP0HbixqbaW5oyPUp1BZ\nybLW1pSML8SHXa+oqeke9u8foqQkj9bWZQGfgVceBoyjq+sfaWq6JyL2P9KPMAto5X3va4441mv8\nq66qjJpTYHo03x+Sa9HR0Uxb27KEcgqqqop57DG3+wv3Y2R37kkEiWqRTDwYIzuFRHo2hB+3vKxM\nr6yv1yuqqiKqnnr5BNK14h6J2k+prC4rpIdYJafdVs+JhHUmmxeQqtDR7m6/LitbHnL9kpLPxJUh\nPVIg5qPcJ57JLtZkHu+Ema7JO9FQWgktHb0kWkQv0Yk+WiKdl3koleVF3K6fTbknohTGCNEcrclm\nQKdyxR2vIzhbqskK6SVVE32qrpeNSWbpQpTCGMFrJb66ri4rJtl4dwriMB47jOTqOdakn43lKJyk\nwgluk1NKAbgbk+nxIvBfQFGUY5P+UkYjXivs8LIVmZpk490BSGipkGq6u/1WqKgzJFRHmIeyycTj\nJNUKKxmlkMnooyeBO7XWQ0qprwL/aD2EGHhlFW9YsiRt0USpkC88+igbqskKuY2zKml+/gF27TrG\nkSPfI7SC6jLgzJAIoHirno4Eznvw+1/B7/8uzixx0wkuMlIrbSSqRdLxAK4Bvhfl86S05GgiHl9B\nrpljxKcgDIfIVbVXXaS1WWUechJ5D2tS5gTXOsfMRyFCwGPAgiifJ/WFjBaGE6qa7ZOshJYKyRLp\nO3CPKiouXpiVCkFrt3tIrRM8GaWQVvORUqoNKHa+BWhgjdb6f6xj1gAntdbfT6csuYyzYQ5YZcdc\nGtQkUqwuW5hVUTFmm+wIwyMy0c09ma2mpjJrG91E3sMiCGtL5WxiNBKkVSlorWujfa6UWgR8HLg8\n1lgtLS2B53PnzmXu3LnDEy6HSCTzWCZZYawQmdG8CGgCWrEnVJ9vGa2t2eE7cCPyHmYBt1BefhMV\nFedHZInHor29nfb29uEJlejWIlUP4EpgNzAtjmOT2jqNFnLNV+CGJKkJqcY9Y/qT2vRUWKN9vqv1\n9u07My1mVNIdHksS5iNlzht5lFJ/BMYDf7He6tBaf8bjWJ0pObMB1/4BlZUp6R+QzhpFzmukS35h\nbGNH7uzfP8SUKUdQapD+/iJrhZ0b/ZGd95BquZVSaK1VQufkwmQ71pUCOCZvy1eQisl7pCbrdY2N\nrN60KSL09J6GBjF1CUIaSUYpSJXUHCEdvoJ4HdjDJZ3VWAVBSC05VM9VSDUjNVnbSWpOJElNELIT\nUQpjmJGarBe1ttJcWRm4lm2mWiT9DwQh6xCfwhhmJB3A6fCJCIIQHXE0Cwkjk7UgjF5EKQiCIAgB\nklEK4lMQBEEQAohSEARBEAKIUhAEQRACiFIQBEEQAohSEARBEAKIUhAEQRACiFIQBEEQAohSEARB\nEAKIUhAEQRACiFIQBEEQAohSEARBEAKIUhAEQRACiFIQBEEQAohSEARBEAKIUhAEQRACiFIQBEEQ\nAohSEARBEAKIUhAEQRACiFIQBEEQAohSEARBEAKIUhAEQRACiFIQBEEQAmRcKSil7lBKDSmlzsi0\nLIIgCGOdjCoFpdTZQC2wJ5NypJv29vZMizAscln+XJYdRP5Mk+vyJ0Omdwr3Ap/LsAxpJ9f/sHJZ\n/lyWHUT+TJPr8idDxpSCUqoO6NVav5wpGQRBEIRQCtI5uFKqDSh2vgVoYC3wRYzpyPmZIAiCkEGU\n1nrkL6rU+cBTwBGMMjgb2Ad8RGv9usvxIy+kIAjCKEBrndCCOyNKIUIIpXqAD2mt38q0LIIgCGOZ\nTDuabTRiPhIEQcg4WbFTEARBELKDbNkpxE2uJrsppe5WSr2qlHpRKfVfSqmiTMsUC6XUlUqp3yml\n/qCU+kKm5UkEpdTZSqmtSqndSqmXlVLLMy1TMiil8pRSv1FKPZZpWRJFKXWaUuoR6+9+t1JqTqZl\nihel1Cql1CtKqZeUUpuUUuMzLVM0lFIPKqUOKqVecrx3ulLqSaXU75VSTyilTotnrJxSCjme7PYk\ncJ7WejbwR+AfMyxPVJRSecADwMeA84AblVLvzaxUCTEI3K61Pg+4EPhsjslvswLozLQQSfJN4Oda\n63OBDwKvZlieuFBKlQDLMH7OD2CiNG/IrFQx+Q7mf9XJncBTWuv3AFuJc87JKaVADie7aa2f0loP\nWS87MBFX2cxHgD9qrfdorU8CPwTqMyxT3GitD2itX7SeD2AmpNLMSpUY1iLo48B/ZlqWRLF2wpdo\nrb8DoLUe1Fr3Z1isRMgHJiulCoBJwP4MyxMVrfVOIDxQpx542Hr+MHBNPGPljFIYZcluS4BfZFqI\nGJQCvY7Xr5Fjk6qNUqocmA08l1lJEsZeBOWi468CeFMp9R3L/LVeKTUx00LFg9Z6P/B1YC8mVL5P\na/1UZqVKiula64NgFknA9HhOyiqloJRqs2x49uNl62cdJtmt2Xl4hsT0JIr8VzuOWQOc1Fp/P4Oi\njhmUUj7gUWCFtWPICZRSVwEHrd2OIgv/3mNQAHwI+Det9YcwOUl3Zlak+FBKTcWssmcBJYBPKbUg\ns1KlhLgWF2nNaE4UrXWt2/tWsls58FullJ3s9mullGuyW6bwkt9GKbUIYw64fEQEGh77gDLHazvB\nMGewtv6PAt/TWm/OtDwJcjFQp5T6ODARmKKU+q7W+qYMyxUvr2F29s9brx8FciVYoQbo1lr/FUAp\n9RPgIiDXFnIHlVLFWuuDSqkZQFxzZVbtFLzQWr+itZ6htX6n1roC8wd3QTYphFgopa7EmALqtNbH\nMy1PHPwKOEcpNcuKvLgByLUImA1Ap9b6m5kWJFG01l/UWpdprd+J+e635pBCwDJb9Cql3m29NY/c\ncZjvBaqUUoXWInQeueEkD99RPgYssp7fDMS1MMqqnUIC5GKy2/3AeKDN/J3RobX+TGZF8kZrfUop\ndRsmaioPeFBrnQv/GAAopS4GGoCXlVIvYP5mvqi1fjyzko0plgOblFLjgG5gcYbliQut9f8qpR4F\nXgBOWj/XZ1aq6Cilvg/MBaYppfZiTO1fBR5RSi3BRGxeH9dYkrwmCIIg2OSE+UgQBEEYGUQpCIIg\nCAFEKQiCIAgBRCkIgiAIAUQpCIIgCAFEKQiCIAgBRCkIYwKl1HKlVKdS6ntJnDtLKXVjOuSyxr9E\nKfVrpdRJpdS16bqOIMSDKAVhrPB/gRqt9cIkzq0AEq59Y5Ufj4c9mIzTTYleQxBSjSgFYdSjlPo2\n8E7gF0qpFUqpSVZTkg5rhX61ddwspdQOpdTz1qPKGuIrwEetap8rlFI3K6Xud4z/P0qpS63nh5RS\n91hZ1FVKqQ8ppdqVUr9SSv1CKVX8/9u7f1ef4jiO489XfqQkk9HmR0m6A4MsJiYWMnLrTiYDuxLK\nZpD8Bza7YjBIKZGuQRYx3HsHGSTS5W34nO9x3NwIN773+3xMnz59zzmfs3zffc6nXu+l66uqV1U1\ny3imoWqVGdeYC+mXVdXpJIeBg1X1Nskl4G5VzXTdqB4muQMs0HYTn5JsA24C+2jpnmer6ihAklMs\n/we+EXhQVee6QL57tLyrN0lOAJeBmZV8X+lPWBQ0KYZhYYeAI0lGDZvW0xJh54BrSaaAz8D233jO\nInCrG+8EdtPyrkLbmf/XzVoki4Im1bGqejGcSHIemK+qPUnWAB+WuXaR7z+9bhiMP9a3QLEAs1V1\n4G8tWlppniloEt2mJXgC0O0MADbTdgsAJ2ktGQHeAZsG178EptJspbUu7W83GD8HtozOJpKsTbLr\nJ2sbt/RfrTIWBU2K4RnARWDdqDsecKGbvw5Md4fEO4D33fxT4EuSx0nOVNV9WmF4BlwFHv3oOV1v\n6+PAlSRPaBHM+5cuLMneJK+7397o1iT9E0ZnS5J67hQkST2LgiSpZ1GQJPUsCpKknkVBktSzKEiS\nehYFSVLPoiBJ6n0FvBNBPOMBlEsAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ - "def datashow(dataSet, k, centroids, clusterAssment): # 二维空间显示聚类结果\n", + "def datashow(dataSet, k, centroids, clusterAssment, fnFig=None): # 二维空间显示聚类结果\n", " from matplotlib import pyplot as plt\n", " num, dim = np.shape(dataSet) # 样本数num ,维数dim\n", "\n", @@ -467,11 +469,12 @@ " plt.ylabel('feature 2')\n", "\n", " plt.title('k-means cluster result') # 标题\n", + " if fnFig != None: plt.savefig(fnFig)\n", " plt.show()\n", " \n", " \n", "# 画出实际图像\n", - "def trgartshow(dataSet, k, labels):\n", + "def trgartshow(dataSet, k, labels, fnFig=None):\n", " from matplotlib import pyplot as plt\n", "\n", " num, dim = np.shape(dataSet)\n", @@ -488,12 +491,13 @@ " plt.title('true result') # 标题\n", "\n", " # 显示图形\n", + " if fnFig != None: plt.savefig(fnFig)\n", " plt.show()\n", " # label=labels.iat[i,0]\n", " \n", "# 绘图显示\n", - "datashow(X, k, mycentroids, clusterAssment)\n", - "trgartshow(X, 3, y)" + "datashow(X, k, mycentroids, clusterAssment, \"k-means_predict.pdf\")\n", + "trgartshow(X, 3, y, \"k-means_groundtruth.pdf\")" ] }, { @@ -730,31 +734,27 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAJOCAYAAAB1IEnpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABbw0lEQVR4nO3de5ycdXn//9c7myDZDRCQdGMCyeIpiKBgV0VBJaJFNCrF1mKD1XhY0VoPP8UCsQUPKbbw9dAq2i0YVLaoRYo2HtBqolIV3RAUEVMt5EBOBDQQskEguX5/fO5JJrOnOdw7p30/H4957Mznvmc+133vzDXX3Pfnvm9FBGZmZmZWuymNDsDMzMysXbiwMjMzM8uJCyszMzOznLiwMjMzM8uJCyszMzOznLiwMjMzM8uJCyszsyYlaZ2kFzVBHPMkPSipI3u8StKbsvuvl3RTYyNsXpKmS/ovSfdL+o+s7cOS7pW0tXTdjvE6z5O0tj5RWy1cWE1StSZsJ1Oz5ifpMZKukrRe0k5Jt0o6s9LXiYgNETEjIvZMRJzVkHSJpGtK2vYVfE3kz4Bu4LER8eeS5gHvAY6LiNnlrtuI+GFELMgjoFryv6QTJa2WNJT9PbGM5zxJ0kPF/y9JF2UFZeG2W9JeSUdm018t6UdZP6uqibVRXFiZmbWvqcBG4AXAYcD7gS9L6mlkUJPMfOB/I+LR7PE84L6IuKeBMVVF0kHAV4FrgMOBzwFfzdrH8ingZ8UNEfEPWUE5IyJmAP8IrIqIe7NZfgd8HPhIjotQFy6sJrnClidJl0v6vaS7in/RZtPvzH7t3iVpsaSnAJ8BnpP90tiRzfsySWskPSBpo6RLil6nR1JIep2kDdlm8KVF0zuyXzD/l/W1WtLR2bRjJX1H0u8krZX06qLnvVTSr7LnbJL03olfa2b1J+kp2WfwNeU+JyJ2RcQlEbEuIvZGxArgLuCPR+njWZIGs8/wNkkfzdoLn9+pY8Q3Wg6ZI+lr2ef3t5LeXDTtakkfLnp8mqS7S577FUnbs9d9R9b+EuAi4C+yHPRzScuA5wGfzNo+mc07av4YYRmOkLRc0uZsWW4omvbmLP7fZcszp2jaiH1I+gDw90VxvgX4DjAne3x16bodLYZy10027RJJX5b0+Sw33i6pN5v2BVJx919ZDO8bbX2M4DRSsf7xiPhDRPwzIOCFY6zTc4AdwHfHmEfAX5EKNQAi4r8j4svA5griaw4R4dskvAHrgBcBrwceAd4MdABvJb2RBXQBDwALsuc8Dnhqdv/1wE0lr3kacAKpYH8asA04K5vWAwTwb8B04OnAH4CnZNPPB24DFmR9Px14bBbDRmAJ6QN9EnAvaTM6wBbgedn9w4FnNHrd+uZbXreiz+kzgA3AoqJpK0hfWCPdVozyet3AQ8Cxo0z/MfDa7P4M4OTsfuHzOzV7vAp4U3Z/1BySTf8BcAVwMHAisB14YTbtauDDRf2fBtyd3Z8CrCYVJgcBjwfuBM7Ipl8CXFMS/764ssdj5o8Rlv/rwJeyXDINeEHW/sLsec8AHgP8C/CDcvoojbN4GUdZt6PFUOm6eQh4afY/uRT4Sen7qmTZd4xxuyCb593AN0uetwJ4zyjr81Dgf4GjRvp/Fc33fOBBYMYI095E2pLV8M9juTdvsTKA9RHxb5H28X+OVEB1Z9P2AsdLmh4RWyLi9tFeJCJWRcRtkX4Z/wK4lrQLotgHImJ3RPwc+DmpgIL04Xl/RKyN5OcRcR+wCFgXEcsj4tGIWAN8Bfjz7HmPAMdJOjQifh8Rt9S+OsyayvOArwF/FWmLEwARsSgiZo5yW1T6IpKmAQPA5yLi16P09QjwRElHRsSDEfGTMmMcMYdkW51PAf42Ih6KiFuBK0lbJ8bzTGBWRHwwIh6OiDtJP8zOKTMmGD9/7CPpccCZwHlZLnkkIr6fTV4MfDYibomIPwAXkrbY91TSx3jGiaFYOevmpoj4RvY/+QL7c+2IxngvzYyIwu64GcD9JU+9HzhklJf9EHBVRNw9yvSC1wHXRcSD48zXElxYGcDWwp2IGMruzoiIXcBfAOcBWyR9XdKxo72IpGdLWpltmr4/e96Ro/UFDJE+qABHA/83wsvOB54taUfhRkpys7PpryL9Klsv6fuSnlPG8pq1kvOAH0XEqmpfQNIU0pfrw8Dbx5j1jcCTgV9L+pmkYQXaKEbMIcAc4HcRsbNo3vXA3DJecz5pl1nxZ/8i9v/oK8d4+aPY0Vmsvx9h2pwsbgCyAuC+bDkq6WM8Y8VQrJx1U5prDx5rV26ZHiRthSp2KLCzdEalQe0vAj421gtK6iQVoZ8ba75W4sLKxhQRN0bEi0m/QH9N+lUEadN1qX8n/bI+OiIOI43DUpldbQSeMEr790t+Pc2IiLdm8f0sIl4J/BFwA/DlMvszaxXnAfMkHfAFJembOvCoquLbN4vmE3AV6Uv3VRHxyGgdRcRvIuI1pM/TPwLXSeqqIfbNwBGSirdozAM2Zfd3AZ1F04qLkY3AXSWf/UMi4qWFcEdahJLHY+aPEeY9QtLMUZZjfuFBtk4emy1HJX2MZ6wYSucba92MZ9i6G+O99KCki7LZbgeelr2nCp6WtZc6jbSbc4OkrcB7gVdJKt2r8Kekgeqryoy96bmwslFJ6pb0yiyJ/IH0a2VvNnkbcJQOPBrkENKvrYckPQv4ywq6uxL4kNJhuZL0NEmPJe2/f7Kk10qalt2eqTSQ9yClwfSHZV8WDxTFZ9YudgIvAZ4vad8RUhFxZhQdVVVyKz6lwqeBpwAvj4jdpS+eDZw+Lbt/rqRZEbGXNLYGavhMRcRG4EfApZIOlvQ00laxwmH3twIvzQZszwbeVfT0nwI7Jf2t0rmgOiQdL+mZ2fRtQE+2NY6itscXPR41f4wQ6xbgm8AVkg7P5n1+NvlaYInSqQYeA/wDcHNErKukjzLW11gxFBtv3YyndD0xxntpRkT8QzbbKmAP8A6lU3kUtn5+b4Q++kk/lk/Mbp8hjR87o2S+1wGfj4gDir1smQ4mjVubkr1/ppW5fA3lwsrGMgX4/0i/1n5HGi9V+BX2PdKvlK2SCofHvg34oKSdpEGVlWw9+mg2/7dJBdJVwPRsF8KfkMYObCZt3v5H0gBSgNcC6yQ9QPplv7jyxTRrbhGxA3gxcKakD5X7PEnzgbeQvti2Fm2BWJxNP5pUuN2WPeUlwO2SHgQ+AZwzUjFWodeQtlxsBv4TuDgi/jub9gXSWMt1pM/+lwpPysYGLcpiv4s0IPxK0mkjAP4j+3tf0VaQTwB/pnQ03T+XkT9KvZY0zuzXwD1khV4W79+Rxk5tIRUM52TTKu1jPCPGUKyMdTOeS4H3Z7sRyz6SOiIeBs4ijZHbAbyBdIDSw7Dv3FTfzOYdioithRvph/lDEbG98HqS5pIODPj8CN29FthN+mHwvOz+v40wX9NRSZFoZmaThKRzSUf6XtjoWMzahQsrMzMzs5yMuytQ0mcl3SPpl0VtRyidDO032d/DJzZMM7PqOIeZWT2VM8bqatJ+92IXAN+NiCeRzqZ6Qc5xmZnl5Wqcw8ysTsraFah0ErQVEXF89ngtcFpEbFE6odmqyOnikGZmeXMOM7N6qfZkYd3ZYaGQjoAY9YRtkvqAPoCurq4/PvbYUc8vaWZtZvXq1fdGxKxGxzGCsnKY85fZ5FZNDqv1LKxEREgadbNXRPSTzmdBb29vDA4O1tqlmbUISevHn6uxxsphzl9mk1s1Oaza81htyzafF65tdE+Vr2Nm1gjOYWY2IaotrL5GOlsq2d+v5hOOmVldOIeZ2YQo53QL1wI/BhZIulvSG4GPAC+W9BvSRRY/MtZrmJk1inOYmdXTuGOssgtyjuT0nGMxM8udc5iZ1ZOvFWhmZmaWExdWZmZmZjlxYWVmZmaWExdWZmZmZjlxYWVmZmaWExdWZmZmZjlxYWVmZmaWExdWZmZmZjlxYWVmZmaWExdWZmZmZjlxYWVmZmaWExdWZmZmZjlxYWVmZmaWExdWZmZmZjlxYWVmZmaWExdWZmZmZjlxYWVmZmaWExdWZmZmZjlxYWVmZmaWExdWZmZmZjlxYWVmZmaWExdWZmZmZjlxYWVmZmaWk6m1PFnSu4E3AQHcBiyJiIfyCMzaww1rNnHZjWvZvGM3c2ZO5/wzFnDWSXMbHZYZ4Bxmo5t9+Wy27do2rL27q5ut793agIisVVS9xUrSXOAdQG9EHA90AOfkFZi1vhvWbOLC629j047dBLBpx24uvP42blizqdGhmTmH2ZhGKqrGajcrqHVX4FRguqSpQCewufaQrF1cduNadj+y54C23Y/s4bIb1zYoIrNhnMPMLFdVF1YRsQm4HNgAbAHuj4hvl84nqU/SoKTB7du3Vx+ptZzNO3ZX1G5WT+XkMOcvM6tULbsCDwdeCRwDzAG6JJ1bOl9E9EdEb0T0zpo1q/pIreXMmTm9onazeionhzl/mVmlatkV+CLgrojYHhGPANcDz80nLGsH55+xgOnTOg5omz6tg/PPWNCgiMwO4BxmZrmrpbDaAJwsqVOSgNOBO/IJy9rBWSfN5dKzT2DuzOkImDtzOpeefYKPCrRm4Rxmo+ru6q6o3ayg6tMtRMTNkq4DbgEeBdYA/XkFZu3hrJPmupCypuQcZmPxKRWsWjWdxyoiLgYuzikWM7O6cg4zs7z5zOtmZmZmOXFhZWZmZpYTF1ZmZmZmOXFhZWZmZpYTF1ZmZmZmOXFhZWZmZpYTF1ZmZmZmOanpPFZm47lhzSYuu3Etm3fsZs7M6Zx/xoLcTxhajz7MbHKZfflstu3aNqy9u6s7t5OH1qMPqz8XVjZhbliziQuvv43dj+wBYNOO3Vx4/W0AuRU+9ejDzCafkQqesdqbtQ+rP+8KtAlz2Y1r9xU8Bbsf2cNlN65tqT7MzMzK5cLKJszmHbsram/WPszMzMrlwsomzJyZ0ytqb9Y+zMzMyuXCyibM+WcsYPq0jgPapk/r4PwzFrRUH2ZmZuVyYWUT5qyT5nLp2Scwd+Z0BMydOZ1Lzz4h10Hl9ejDzCaf7q7uitqbtQ+rP0VE3Trr7e2NwcHBuvVnZo0laXVE9DY6jjw4f5lNPtXkMG+xMjMzM8uJCyszMzOznLiwMjMzM8uJCyszMzOznLiwMjMzM8uJCyszMzOznLiwMjMzM8uJCyszMzOznEyt5cmSZgJXAscDAbwhIn6cQ1zWJm5Ys4nLblzL5h27mTNzOuefsSD3s6LXow9rT85hNprZl89m265tw9q7u7rZ+t6tLdOH1V9NhRXwCeBbEfFnkg4COnOIydrEDWs2ceH1t7H7kT0AbNqxmwuvvw0gt8KnHn1YW3MOsxGNVPCM1d6sfVj9Vb0rUNJhwPOBqwAi4uGI2JFTXNYGLrtx7b6Cp2D3I3u47Ma1LdWHtSfnMDObCLWMsToG2A4sl7RG0pWSukpnktQnaVDS4Pbt22vozlrN5h27K2pv1j6sbY2bw5y/zKxStRRWU4FnAJ+OiJOAXcAFpTNFRH9E9EZE76xZs2rozlrNnJnTK2pv1j6sbY2bw5y/zKxStRRWdwN3R8TN2ePrSEnKDIDzz1jA9GkdB7RNn9bB+WcsaKk+rG05h5lZ7qourCJiK7BRUuEb7HTgV7lEZW3hrJPmcunZJzB35nQEzJ05nUvPPiHXQeX16MPak3OYjaW7q7ui9mbtw+pPEVH9k6UTSYcqHwTcCSyJiN+PNn9vb28MDg5W3Z+ZtRZJqyOit9FxjKaSHOb8ZTb5VJPDajrdQkTcCjRt0jQzG4tzmJnlzWdeNzMzM8uJCyszMzOznLiwMjMzM8uJCyszMzOznLiwMjMzM8uJCyszMzOznLiwMjMzM8uJCyszMzOznLiwMjMzM8uJCyszMzOznLiwMjMzM8uJCyszMzOznLiwMjMzM8uJCyszMzOznLiwMjMzM8uJCyszMzOznLiwMjMzM8uJCyszMzOznLiwMjMzM8uJCyszMzOznLiwMjMzM8uJCyszMzOznLiwMjMzM8tJzYWVpA5JayStyCMgM7N6cf4ys7zlscXqncAdObyOmVm9OX+ZWa5qKqwkHQW8DLgyn3DMzOrD+cvMJkKtW6w+DrwP2DvaDJL6JA1KGty+fXuN3ZmZ5ebjOH+ZWc6qLqwkLQLuiYjVY80XEf0R0RsRvbNmzaq2OzOz3Dh/mdlEqWWL1SnAKyStA74IvFDSNblEZWY2sZy/zGxCVF1YRcSFEXFURPQA5wDfi4hzc4vMzGyCOH+Z2UTxeazMzMzMcjI1jxeJiFXAqjxey8ysnpy/zCxP3mJlZmZmlhMXVmZmZmY5cWFlZmZmlhMXVmZmZmY5cWFlZmZmlhMXVmZmZmY5cWFlZmZmlpNczmM1mdywZhOX3biWzTt2M2fmdM4/YwFnnTS30WGZlc3v4clp9uWz2bZr27D27q5utr53awMiMqvcwAAsXQobNsC8ebBsGSxe3OioDuTCqgI3rNnEhdffxu5H9gCwacduLrz+NgB/MVlL8Ht48hqpqBqr3azZDAxAXx8MDaXH69enx9BcxZV3BVbgshvX7vtCKtj9yB4uu3FtgyIyq4zfw2bWqpYu3V9UFQwNpfZm4sKqApt37K6o3azZ+D1sZq1qw4bK2hvFhVUF5sycXlG7WbPxe9jMWtW8eZW1N4oLqwqcf8YCpk/rOKBt+rQOzj9jQYMiMquM38Nm1qqWLYPOzgPbOjtTezNxYVWBs06ay6Vnn8DcmdMRMHfmdC49+wQP+rWW4ffw5NXd1V1Ru1mzWbwY+vth/nyQ0t/+/uYauA6giKhbZ729vTE4OFi3/syssSStjojeRseRB+cvs8mnmhzmLVZmZmZmOXFhZWZmZpYTF1ZmZmZmOXFhZWZmZpYTF1ZmZmZmOXFhZWZmZpYTF1ZmZmZmOXFhZWZmZpaTqdU+UdLRwOeBbiCA/oj4RF6BVeqGNZu47Ma1bN6xmzkzp3P+GQta9mzS7bQsVhn/7+unmXLY7Mtns23XtmHt3V3dbH3v1gZEVJ12WQ6rzsAALF2aLoo8b1661EyznRW9HqourIBHgfdExC2SDgFWS/pORPwqp9jKdsOaTVx4/W3sfmQPAJt27ObC628DaLkvpXZaFquM//d11zQ5bKRiZKz2ZtUuy2GVGxiAvj4YGkqP169Pj2HyFVdV7wqMiC0RcUt2fydwB9CQ7H/ZjWv3fRkV7H5kD5fduLYR4dSknZbFKuP/fX01Uw4za3VLl+4vqgqGhlL7ZJPLGCtJPcBJwM0jTOuTNChpcPv27Xl0N8zmHbsram9m7bQsVhn/7xtntBxWj/xl1g42bKisvZ3VXFhJmgF8BXhXRDxQOj0i+iOiNyJ6Z82aVWt3I5ozc3pF7c2snZbFKuP/fWOMlcPqkb/M2sG8eZW1t7OaCitJ00gJaSAirs8npMqdf8YCpk/rOKBt+rQOzj9jQYMiql47LYtVxv/7+muWHGbW6pYtg87OA9s6O1P7ZFN1YSVJwFXAHRHx0fxCqtxZJ83l0rNPYO7M6QiYO3M6l559QksO+G2nZbHK+H9fX82Uw7q7uitqb1btshxWucWLob8f5s8HKf3t7598A9cBFBHVPVE6FfghcBuwN2u+KCK+Mdpzent7Y3BwsKr+zKz1SFodEb2NjmMkleYw5y+zyaeaHFb16RYi4iZA1T7fzKyRnMPMbCL4zOtmZmZmOXFhZWZmZpYTF1ZmZmZmOXFhZWZmZpYTF1ZmZmZmOXFhZWZmZpYTF1ZmZmZmOan6PFbN5oY1m7jsxrVs3rGbOTOnc/4ZC3zGasvN+2+4jWtv3sieCDokXvPso/nwWSc0Oqyq+LPSfGZfPpttu7YNa+/u6mbre7c2ICJrN297WzoT+p490NEBfX1wxRWNjqpyAwOwdGm6uPO8eemSOc12dve2KKxuWLOJC6+/jd2P7AFg047dXHj9bQD+wrCavf+G27jmJ/sv0b4nYt/jViuu/FlpTiMVVWO1m1XibW+DT396/+M9e/Y/bqXiamAgFYRDQ+nx+vXpMTRXcdUWuwIvu3Htvi+Kgt2P7OGyG9c2KCJrJ9fevLGi9mbmz4rZ5NPfX1l7s1q6dH9RVTA0lNqbSVsUVpt37K6o3awSe0a5nuZo7c3MnxWzyWfPnsram9WGDZW1N0pbFFZzZk6vqN2sEh0a+XJyo7U3M39WzCafjo7K2pvVvHmVtTdKWxRW55+xgOnTDnyHTJ/WwflnLGhQRNZOXvPsoytqb2b+rJhNPoVxSOW2N6tly6Cz88C2zs7U3kzaorA666S5XHr2CcydOR0Bc2dO59KzT/BgXMvFh886gXNPnrdvC1WHxLknz2u5gevgz0qz6u7qrqjdrBJXXAFvfev+LVQdHelxKw1chzRAvb8f5s8HKf3t72+ugesAijqOE+nt7Y3BwcG69WdmjSVpdUT0NjqOPDh/mU0+1eSwtthiZWZmZtYMXFiZmZmZ5cSFlZmZmVlOXFiZmZmZ5cSFlZmZmVlOXFiZmZmZ5cSFlZmZmVlOXFiZmZmZ5aSmwkrSSyStlfRbSRfkFZSZWT04h5lZ3qourCR1AJ8CzgSOA14j6bi8AjMzm0jOYWY2EWrZYvUs4LcRcWdEPAx8EXhlPmGZmU045zAzy93UGp47F9hY9Phu4NmlM0nqAwrX0P6DpF/W0GczORK4t9FB5KBdlgO8LM1oQaMDGMO4Ocz5qyW0y7K0y3JAey1LxTmslsKqLBHRD/QDSBpslwuytsuytMtygJelGUlq6asWO381v3ZZlnZZDmi/Zan0ObXsCtwEHF30+KiszcysFTiHmVnuaimsfgY8SdIxkg4CzgG+lk9YZmYTzjnMzHJX9a7AiHhU0tuBG4EO4LMRcfs4T+uvtr8m1C7L0i7LAV6WZtS0y1FFDmvaZamCl6X5tMtywCRfFkXERARiZmZmNun4zOtmZmZmOXFhZWZmZpaTuhRW7XLZCElHS1op6VeSbpf0zkbHVCtJHZLWSFrR6FhqIWmmpOsk/VrSHZKe0+iYqiHp3dl765eSrpV0cKNjKpekz0q6p/hcT5KOkPQdSb/J/h7eyBir1Q45zPmrebVL/gLnMKhDYdVml414FHhPRBwHnAz8dQsvS8E7gTsaHUQOPgF8KyKOBZ5OCy6TpLnAO4DeiDieNKD6nMZGVZGrgZeUtF0AfDcingR8N3vcUtoohzl/Na+Wz1/gHFZQjy1WbXPZiIjYEhG3ZPd3kt78cxsbVfUkHQW8DLiy0bHUQtJhwPOBqwAi4uGI2NHQoKo3FZguaSrQCWxucDxli4gfAL8raX4l8Lns/ueAs+oZU07aIoc5fzWnNstf4BxWl8JqpMtGtOyHuUBSD3AScHODQ6nFx4H3AXsbHEetjgG2A8uz3QJXSupqdFCViohNwOXABmALcH9EfLuxUdWsOyK2ZPe3At2NDKZKbZfDnL+aSlvkL3AOK/Dg9SpImgF8BXhXRDzQ6HiqIWkRcE9ErG50LDmYCjwD+HREnATsojV3OR1O+nV0DDAH6JJ0bmOjyk+kc7v4/C4N5vzVdNoif4FzWEE9Cqu2umyEpGmkpDQQEdc3Op4anAK8QtI60q6NF0q6prEhVe1u4O6IKPz6vo6UqFrNi4C7ImJ7RDwCXA88t8Ex1WqbpMcBZH/vaXA81WibHOb81ZTaJX+BcxhQn8KqbS4bIUmk/eB3RMRHGx1PLSLiwog4KiJ6SP+T70VES/6yiIitwEZJhauQnw78qoEhVWsDcLKkzuy9djotOoi1yNeA12X3Xwd8tYGxVKstcpjzV3Nqo/wFzmFADZe0KVeVl75pVqcArwVuk3Rr1nZRRHyjcSFZ5m+AgeyL705gSYPjqVhE3CzpOuAW0hFca2ihS0NIuhY4DThS0t3AxcBHgC9LeiOwHnh14yKsThvlMOev5tXy+Qucw/a9ji9pY2ZmZpaPth68LmmdpBc1QRzzJD2YnQ8HSaskvSm7/3pJNzU2wuYlabqk/5J0v6T/yNo+LOleSVtL1+0Yr/M8SWvrE7VZPpoohx3w+SmOS9IlLTy+acJJ6pb0A0k7Jf0/Jcsl/V7ST8vNTZIWS2r1I+wmhbYurPIg6RpJWyQ9IOl/CwVRJSJiQ0TMiIg9ExFjNUZKhsUFXxP5M9LhrY+NiD+XNA94D3BcRMwud91GxA8jYsFY85Srli87SSdKWi1pKPt74hjzPlhy2yPpX7JpJyudBfh3krZL+o/CAMts+vlKZz7eKekuSedXE6+1D0lPkvRQNUVQnp+fvEi6WtKHS9qaohAt0QfcCxwaEe8BTgVeDBwVEc8qd91GxEBE/EkeAUkKSU+s8rmnK50hfkjpTP7zx5n/nVkO2qV0VvknjzDPZ0eLqZb3baO4sBrfpUBPRBwKvAL4sKQ/bnBMk8l84H8j4tHs8TzgvohouaPLsvETXwWuAQ4nnWzuq1n7MFnBOCMiZgCzgd3Af2STDyeNXeghraOdwPLi7oC/yuZ7CfB2Sa10BmTL36dIA/GtvuYDv4r9427mA+siYlcDY6qKpCNJR/r9HXAEMAh8aYz53wS8kXQi1xnAIlKRWTzPqcATxui29d63EdG2N2Ad8KLs/lOAu4DX1PB6C0gnPXv1KNOfRXqjPQBsAz6atfeQzn0xNXu8CnhTdv/1wE2kk6r9PovxzKLXnEM6KuF3wG+BNxdNuxr4cNHj00iH7RY/9yukk8/dBbwja38J8DDwCPAg8HNgGbAHeChr+2Q277HAd7L+14627Nm8R5C+3Ddny3JD0bQ3Z/H/LlueOUXTRuwD+EBJnG8hFRd7s8dXj7BuR4yh3HWTTbsE+DLweVLBcjvpEg0AX8j6353F8L4K3j9/QjpMX0VtG4CXlPHc15EGtWqU6c8Ado7x/H8G/qXRn0nfKruRUw4jHTn35ey9fc0Y872UdETazuy9+t6svfTzUxzXqJ+XorhXATuyaa8omraKLBdmj18P3FT0eLTc0JflhYezz+F/jfbZJF2+50dZ/z8HThtj+Y8mFQ7bgfvYnwenAO8nDV6+J1vWw4qeN2IfpBxVHOdbSDl2T/b4AyOs29FiKGvdFPX7KeDr2f/kZuAJ2bQfkHLmriyGv6jgfdQH/KjocVe2vo8dYd4ppBPrnj7G600lDXB/WhbTE6t53zbbreEBTOjCZR9+0pfOBmBR0bQV2YdgpNuKkte5AhjK/vG3ADNG6e/HwGuz+zOAk7P7PYxdWD1CKjw6gLeSioLCgQU/yPo/GDgx+7C9MJt2NaMUVtmbejXw98BBwONJX8xnZNOHvVEZnuS6sg/GkuwDcBLp18Zxoyz/10m/Xg4HpgEvyNpfmD3vGcBjgH8BflBOH6VxMjwJla7b0WKodN08RPqS6SBttfxJ6fuqZNl3jHG7IJvn3cA3S563gnT9tvHey98DLhlj+ruKYyyZJlLyOq/Rn0nfKruRQw4DDgX+l3T+rQM+TyP0twV4Xnb/cOAZ2f3Sz92+z8BYn5fsM/hb4KLss/ZC0hf9gmz6KkYprBg/N1xNUf4rjSt7PJdUnLyU9Ll/cfZ41gjL3kEqij6W9X0wcGo27Q3ZcjyelNuvB75QTh+lcTK8QNq3bseJodJ1cx/px/5UYAD4YlGfBxQxpD0BO8a4/WU23ydIJzItXm+/BF41wvqcl/XzzizWu0iF5JSiec4HPjFKTGW/b5vtNhl2BT6PtIXkryJi3xXQI2JRRMwc5bao+AUi4m3AIdlrXQ/8YZS+HgGeKOnIiHgwIn5SZozrI+LfIo0T+hzwOKBb0tGkQ6T/NiIeiohbSdfF+qsyXvOZpA/2ByNde+pO4N+o7IKYi0ibrJdHxKMRsYa0lefPS2fMxvecSfry/n1EPBIR388mLyYdon5LRPwBuBB4jtJlNcruYzzjxFCsnHVzU0R8I/uffIF0YdRRjfFemhkRH8lmmwHcX/LU+0nvrbGWaz7wAvZfr6p0+tNIReJo46guISX85WP1Y02r1hz2IeCqiLi7jL4eAY6TdGj2GbqlzBhH+7ycTHrffyT7rH2PVBC+pozXzCM3nAt8I4ttb0R8h7RX4aUjzPss0pbs8yNiV5ZzCwcWLSbtgbgzIh4k5bBzlK6HV0kf4xkrhmLlrJv/jIifRhpGMUD6YT6iSGNVx8ph/57NWkkOOyr7+yfACcBC0v/9jQDZ99tbSLlrJJW8b5vKZCisziNtulxVy4tExJ7sDX4UaavSSN4IPBn4taSfKV12oRxbi/oZyu7OIH3AfhfpgqkF6ynvOmXzgTmSdhRupF+NlVyrbT7w7JLXWEwa71Pq6CzW348wbU4WNwBZYrovW45K+hjPWDEUK2fdbC26PwQcnCXRWjxI+hVW7FDSL/ixvJb0xXVX6YRssOc3gXdGxA9HmP52UiH+sqyotdZTdQ7LDo54EWkLSDleRSoI1kv6vqTnlPm80T4vc4CNEVF8Pb9KclituWE+8Oclr3Eq6cdrqaNJP3IfHWHaATksuz+VlDMq6WM8Y8VQrJx1U/o/mVFFPKUqyWG7s7//FBE7ImId8K/sLzg/DnwwIkoLtWret01lwk8Q2gTOA/5W0sci4t2FRknfJP0SHMkPI+LMUaZNZZSBdhHxG+A1kqYAZwPXSXps9aGzGThC0iFFxdU89l9OYxfp6uEFxR+qjaRLCzxplNeOMto2At+PiBeXEevGLNaZMfzK7JtJiQAApQuMPpa0HJX0UUsMpfONtW7GM2zdSXpwjPn/ISL+gTS+5D2SFBGF13gaaSzEWP6KdJK60j7nA/8NfCgivjDC9DeQrjn2/Fb81Wf71JLDTiPtLt8gCdKXa4ek4yJi2GVTIuJnwCuVLn3zdtL4lqNL56vAZuBoSVOKiqt5pF08MH4OGys3lJvDvhARby4j1o3APElTRyhsDshhpGV4lDSWtpI+aomhdL688ibZ0dZjne39LRExQMphryt6Xhfp+3CkE+auJY0tK/6fFN8/HThV0j8Vtf1Y0juBP6KC922zmQxbrHaSBms/X9K+L6eIODOKjroquZ0JIOmPJJ0jaYakDklnkDZlfrfwOtkhoqdl98+VNCtLIDuyWaq+8npEbCQNiLxU0sHZLp83ko4qA7gVeKmkIyTNJo2zKfgpsFPS3yqdC6pD0vGSnplN3wb0ZEUgRW2PL3q8AniypNdKmpbdninpKSPEuoW05eQKSYdn8z4/m3wtsETpVAOPAf4BuDn7BVN2H2Wsr7FiKDbeuhlP6XpijPfSjKyogjSeZA/wDkmPybYmQRo/NSJJzyX9uv+Pkva52fM+GRGfGeF5i0nr+cWRdnVa66o6h5GOHH0CaTfQicBnSOMQzwCQ1JPlsB5JBymdK+mwSNd5e4Aa8lfmZtLWkvdln8fTgJeTru8HKYedrXQJlCeS7SbKjJcbhn0OR2i7Bni5pDOyz/nBkk6TdBTD/ZQ0xuwjkrqyeU/Jpl0LvFvpskYzSJ+tL2XFTyV9jGesGIrVmjcPWE+x/7Q1o90Gsln/Ezhe0qskHUzajfeLiPh1aQfZ3pcvkf73h2Troy+LHdLenaez/70J6b3xn4zzvm12k6GwItt68WLgTEkfquSppN1+d5OOMLucdEX4r8G+fcQ7gduy+V8C3J5tvfgEcE5E7B72qpV5Daly30x6w10cEf+dTfsCaaDjOuDbFB32GmmswyLSm/Iu0sDGK4HDslkKX9T3SSqMo/gE8GdKJ67752wr2Z+Qxh5tJm1a/kfSAPSRvJY0RuPXpCNn3pXF8t+kw3O/QkoaT8hekyr6GM+IMRQrY92M51Lg/Uqb4N9bbmAR8TBwFmkL1A7SgNizsnYkXZRthSj2OuD6kt3BAG8iJcZLVHSuq6LpHyZtFfxZ0fRhBZi1hmpzWEQMRcTWwo20K+ehiNiezXI0abdWYSv4a4F1kh4gbSlbXGPcD5O+LM8kfc6uII0VK3wRf4y0VWMbaQzhQNFzx8sNV5HGg+2QdEPWdsBnM/tx+krSrv7tpC095zPCd1+WF14OPJF0oMDdwF9kkz9Lyrc/IOWMh0iXoaGSPspYX2PFUDxfrXnzEuBz2Xoq+zJT2fvmVaSjyH8PPJuisamSPlOSZ95Oes9tJh3c9e+kdUlE3FPy3gS4NyJ2l/G+bWq+pE0NJJ0LPDUiLmx0LGZmlZL0fmB7RPxro2MxaxcurMzMzMxyMu6mSqVTzd8j6ZdFbUcoXU7jN9nfwyc2TDOz6jiHmVk9lbMP+GrS2KFiFwDfzY6q+m722MysGV2Nc5iZ1UlZuwKVTuS4IiKOzx6vJZ2yf4vSSRlXRZNdoNPMrMA5zMzqpdrzWHVnh7ZDOhph1JNOSuojHWJJV1fXHx977LFVdmlmrWb16tX3RsSsRscxgrJymPOX2eRWTQ6r+QShERGSRt3sFRH9pHNS0NvbG4ODg7V2aWYtQtL68edqrLFymPOX2eRWTQ6r9jxW27LN54Xrs91T5euYmTWCc5iZTYhqC6uvsf+09q8DvppPOGZmdeEcZmYTopzTLVxLOmPqAkl3S3oj6bplL5b0G9KFEoddx8zMrBk4h5lZPY07xioiXjPKpNNzjsXMLHfOYWZWT5PiWoFmZmZm9eDCyszMzCwnLqzMzMzMcuLCyszMzCwnLqzMzMzMcuLCyszMzCwnLqzMzMzMcuLCyszMzCwnLqzMzMzMcuLCyszMzCwnLqzMzMzMcuLCyszMzCwnLqzMzMzMcuLCyszMzCwnLqzMzMzMcuLCyszMzCwnLqzMzMzMcuLCyszMzCwnLqzMzMzMcuLCyszMzCwnLqzMzMzMcuLCyszMzCwnLqxs4q1cCT096a+ZmVkbm1rLkyW9G3gTEMBtwJKIeCiPwKxNrFwJixbB0FD6u2IFLFzY6KjMAOcwG93sy2ezbde2Ye3dXd1sfe/WBkRkraLqLVaS5gLvAHoj4nigAzgnr8CsDRQXVbC/uPKWK2sCzmE2lpGKqrHazQpq3RU4FZguaSrQCWyuPSRrC6VFVYGLK2suzmFmlquqC6uI2ARcDmwAtgD3R8S3S+eT1CdpUNLg9u3bq4/UWsuSJcOLqoKhoTTdrIHKyWHOX2ZWqVp2BR4OvBI4BpgDdEk6t3S+iOiPiN6I6J01a1b1kVprWb4cOjtHntbZmaabNVA5Ocz5y8wqVcuuwBcBd0XE9oh4BLgeeG4+YVnLW7gwDVQvLa46Oz2A3ZqFc5iZ5a6WwmoDcLKkTkkCTgfuyCcsawulxZWLKmsuzmE2qu6u7orazQqqPt1CRNws6TrgFuBRYA3Qn1dg1iYKxdWSJWn3n4sqaxLOYTYWn1LBqlXTeawi4mLg4pxisXa1cCGsW9foKMyGcQ4zs7z5zOtmZmZmOXFhZWZmZpYTF1ZmZmZmOXFhZWZmZpYTF1ZmZmZmOXFhZWZmZpYTF1Y28VauhJ6eib3wcj36MDMzG0dN57EyG9fKlbBoUbrw8qJFE3Pm9Xr0YWaTyuzLZ7Nt17Zh7d1d3bmdPLQefVj9eYuVTZziggf2Fz55blWqRx9mNumMVPCM1d6sfVj9ubCyiVFa8BTkWfjUow8zM7MKuLCyibFkyfCCp2BoKE1vhT7MzMwq4MLKJsby5dDZOfK0zs40vRX6MDMzq4ALK5sYCxemQeSlhU9nZ36Dy+vRh5mZWQVcWNnEKS18JqLgqUcfZjbpdHd1V9TerH1Y/fl0CzaxCoXPkiVp19xEFDz16MPMJpV6nO7Ap1RoTy6sbOItXAjr1rV+H2ZmZuPwrkAzMzOznLiwMjMzM8uJCyszMzOznLiwMjMzM8uJCyszMzOznLiwMjMzM8uJCyubeCtXQk/PxF4UuR59mJmZjaOm81hJmglcCRwPBPCGiPhxDnFZu1i5EhYtShdFXrRoYs6KXo8+rC05h9loZl8+m227tg1r7+7qzu3EnvXow+qv1i1WnwC+FRHHAk8H7qg9JGsbxQUP7C988tyqVI8+rJ05h9mIRip4xmpv1j6s/qourCQdBjwfuAogIh6OiB05xWWtrrTgKciz8KlHH9a2nMPMbCLUssXqGGA7sFzSGklXSuoqnUlSn6RBSYPbt2+voTtrKUuWDC94CoaG0vRW6MPa2bg5zPnLzCpVS2E1FXgG8OmIOAnYBVxQOlNE9EdEb0T0zpo1q4burKUsXw6dnSNP6+xM01uhD2tn4+Yw5y8zq1QthdXdwN0RcXP2+DpSkjJLg8dXrBhe+HR25je4vB59WDtzDjOz3FVdWEXEVmCjpAVZ0+nAr3KJytpDaeEzEQVPPfqwtuQcZmPp7uquqL1Z+7D6q+l0C8DfAAOSDgLuBDyoxQ5UKHyWLEm75iai4KlHH9aunMNsRPU43YFPqdCeaiqsIuJWoDefUKxtLVwI69a1fh/WdpzDzCxvPvO6mZmZWU5cWJmZmZnlxIWVmZmZWU5cWJmZmZnlxIWVmZmZWU5cWJmZmZnlxIWVmZmZWU5cWJmZmZnlxIWVmZmZWU5cWJmZmZnlxIWVmZmZWU5cWJmZmZnlxIWVmZmZWU5cWJmZmZnlxIWVmZmZWU5cWJmZmZnlxIWVmZmZWU5cWJmZmZnlxIWVmZmZWU5cWJmZmZnlxIWVmZmZWU5cWJmZmZnlxIWVmZmZWU5qLqwkdUhaI2lFHgGZmdWL85eZ5S2PLVbvBO7I4XXMzOrN+cvMclVTYSXpKOBlwJX5hGNmVh/OX2Y2EWrdYvVx4H3A3tFmkNQnaVDS4Pbt22vszswsNx/H+cvMclZ1YSVpEXBPRKwea76I6I+I3ojonTVrVrXdmZnlxvnLzCZKLVusTgFeIWkd8EXghZKuySUqM7OJ5fxlZhOi6sIqIi6MiKMiogc4B/heRJybW2RmZhPE+cvMJorPY2VmZmaWk6l5vEhErAJW5fFaZmb15PxlZnnyFiszMzOznLiwMjMzM8uJCyszMzOznLiwMjMzM8uJCyszMzOznLiwMjMzM8uJCyszs8lk5Uro6Ul/zSx3LqwqMPvy2egDGnabffnsRodmVraBgfS9OmVK+jsw0OiIrG5WroRFi2D9+vTXxZW1mFbIXy6sKrBt17aK2s2azcAA9PWl79WI9LevrzmTk+WsUFQNDaXHQ0MurqyltEr+cmFlNoksXbr/e7VgaCi1WxsrLaoKXFxZC2mV/OXCymwS2bChsnZrE0uWDP9GKhgaStPNmlyr5C8XVmaTyLx5lbVbm1i+HDo7R57W2ZmmmzW5VslfLqzMJpFly4Z/v3Z2pnZrYwsXwooVI//zV6xI082aXKvkLxdWFeju6q6o3azZLF4M/f0wfz5I6W9/f2q3NldaXLmoshbTKvlLEVG3znp7e2NwcLBu/ZlZY0laHRG9jY4jD22Tv1auTGOqli93UWU2jmpy2NSJCsbMzJrQwoWwbl2jozBrW94VaGZmZpYTF1ZmZmZmOXFhZWZmZpYTF1ZmZmZmOXFhZWZmZpYTF1ZmZmZmOXFhZWbWLFauhJ6e1r8ocrssh1kVqi6sJB0taaWkX0m6XdI78wysErMvn40+oGG32ZfPblRIVWunZbHKDQyk76MpU9LfgYFGR9S+mimHAakIWbQI1q9Pf1u1KGmX5bCKOX8ltWyxehR4T0QcB5wM/LWk4/IJqzLbdm2rqL2ZtdOyWGUGBqCvL30fRaS/fX2TNznVQdPksH3FyNBQejw01JpFSbssh1XM+Wu/qguriNgSEbdk93cCdwBz8wrMbLJZunT/91HB0FBqt/w1TQ4rLUYKWq0oaZflsKo4f+2XyxgrST3AScDNI0zrkzQoaXD79u15dGfWljZsqKzd8jNaDqtL/lqyZPg3UsHQUJreCtplOawqzl/71VxYSZoBfAV4V0Q8UDo9IvojojciemfNmlVrd2Zta968ytotH2PlsLrkr+XLobNz5GmdnWl6K2iX5bCqOH/tV1NhJWkaKSENRMT1+YRkNjktWzb8e6mzM7XbxGiKHLZwIaxYMfI/f8WKNL0VtMtyWFWcv/ar5ahAAVcBd0TER/MLqXLdXd0VtTezdloWq8zixdDfD/Png5T+9vendstfM+WwYUVJqxYj7bIcVjHnr/0UEdU9UToV+CFwG7A3a74oIr4x2nN6e3tjcHCwqv7MrPVIWh0RvY2OYySV5rC65K+VK9NYpOXLW7sYaZflsEmvmhw2tdrOIuImQNU+38yskZoyhy1cCOvWNTqK2rXLcphVwWdeNzMzM8uJCyszMzOznLiwMjMzM8uJCyszMzOznLiwMjMzM8uJCyszMzOznLiwMjNrFitXQk+PL1hs1sLaorCaffls9AENu82+fHajQ7M28ba3wdSp6YzCU6emx61qYCB9d0+Zkv4ODDQ6IgNSMbVoEaxfn/66uLKcTP/+99GqVcNu07///UaHVrFWyF9tUVht27WtonazSrztbfDpT8OePenxnj3pcSsWVwMD0NeXvrsj0t++vuZMTpNKoagaGkqPh4ZcXFlunjB9ekXtzapV8ldbFFZmE6m/v7L2ZrZ06f7v7oKhodRuDVJaVBW4uLKcXPOUp4zY/u+jtDerVslfLqzMxlHYUlVuezPbsKGydquDJUuGf1sUDA2l6WY1OPGQQ3hq4cLYmad2dvK0Qw5pUETVaZX85cLKbBwdHZW1N7N58yprtzpYvhxKvvT26exM081qVLrVqtW2VkHr5C8XVmbj6OurrL2ZLVs2/Du8szO1W4MsXAgrVoz8j1mxIk03q1HxVqtW3FoFrZO/2qKw6u7qrqjdrBJXXAFvfev+LVQdHenxFVc0Nq5qLF6cxobNn5+OcJw/Pz1evLjRkU1ypcWViyqbANc85Skc1tHRkluroHXylyKibp319vbG4OBg3fozs8aStDoiehsdRx7qkr9WrkxjqpYvd1Fl1gSqyWFTJyoYMzOr0MKFsG5do6Mwsxq0xa5AMzMzs2bgwsrMzMwsJy6szMzMzHLiwsrMzMwsJy6szMzMzHLiwsrMzMwsJy6szMzMzHJSU2El6SWS1kr6raQL8grKzKwenMPMLG9VF1aSOoBPAWcCxwGvkXRcXoGZmU0k5zAzmwi1bLF6FvDbiLgzIh4Gvgi8Mp+wzMwmnHOYmeWulkvazAU2Fj2+G3h26UyS+oC+7OEfJP2yhj6byZHAvY0OIgftshzgZWlGCxodwBjGzWHOXy2hXZalXZYD2mtZKs5hE36twIjoB/oBJA22ywVZ22VZ2mU5wMvSjCS19FXXnb+aX7ssS7ssB7TfslT6nFp2BW4Cji56fFTWZmbWCpzDzCx3tRRWPwOeJOkYSQcB5wBfyycsM7MJ5xxmZrmreldgRDwq6e3AjUAH8NmIuH2cp/VX218TapdlaZflAC9LM2ra5agihzXtslTBy9J82mU5YJIviyJiIgIxMzMzm3R85nUzMzOznLiwMjMzM8tJXQqrdrlshKSjJa2U9CtJt0t6Z6NjqpWkDklrJK1odCy1kDRT0nWSfi3pDknPaXRM1ZD07uy99UtJ10o6uNExlUvSZyXdU3yuJ0lHSPqOpN9kfw9vZIzVaocc5vzVvNolf4FzGNShsGqzy0Y8CrwnIo4DTgb+uoWXpeCdwB2NDiIHnwC+FRHHAk+nBZdJ0lzgHUBvRBxPGlB9TmOjqsjVwEtK2i4AvhsRTwK+mz1uKW2Uw5y/mlfL5y9wDiuoxxartrlsRERsiYhbsvs7SW/+uY2NqnqSjgJeBlzZ6FhqIekw4PnAVQAR8XBE7GhoUNWbCkyXNBXoBDY3OJ6yRcQPgN+VNL8S+Fx2/3PAWfWMKSdtkcOcv5pTm+UvcA6rS2E10mUjWvbDXCCpBzgJuLnBodTi48D7gL0NjqNWxwDbgeXZboErJXU1OqhKRcQm4HJgA7AFuD8ivt3YqGrWHRFbsvtbge5GBlOltsthzl9NpS3yFziHFXjwehUkzQC+ArwrIh5odDzVkLQIuCciVjc6lhxMBZ4BfDoiTgJ20Zq7nA4n/To6BpgDdEk6t7FR5SfSuV18fpcGc/5qOm2Rv8A5rKAehVVbXTZC0jRSUhqIiOsbHU8NTgFeIWkdadfGCyVd09iQqnY3cHdEFH59X0dKVK3mRcBdEbE9Ih4Brgee2+CYarVN0uMAsr/3NDiearRNDnP+akrtkr/AOQyoT2HVNpeNkCTSfvA7IuKjjY6nFhFxYUQcFRE9pP/J9yKiJX9ZRMRWYKOkwlXITwd+1cCQqrUBOFlSZ/ZeO50WHcRa5GvA67L7rwO+2sBYqtUWOcz5qzm1Uf4C5zCghkvalKvKS980q1OA1wK3Sbo1a7soIr7RuJAs8zfAQPbFdyewpMHxVCwibpZ0HXAL6QiuNbTQpSEkXQucBhwp6W7gYuAjwJclvRFYD7y6cRFWp41ymPNX82r5/AXOYftex5e0MTMzM8tHWw9el7RO0ouaII7nSVpb9HhfXJIuaeGxARNOUrekH0jaKen/KVku6feSflq6bsd4ncWSWv3oFJtkmiWHAUh6UNLjs/tXS/pwdv+07Ne9jaA0Z2Vtb5W0LVunjy1et2O8zrxsvo76RG7VauvCKg+SVkl6KHtDP1jOl3ipiPhhRCwYf876KU6MRW1Nk8SL9AH3AodGxHuAU4EXA0dFxLPKXbcRMRARf5JHQJJC0hOrfO7pSmdXHlI6C/b8MeZdJ2l30Xvv20XTXi9pT9G0ByWdVs5zbXKR1CPpG9kX+1ZJn1Q6x1BFImJGRNw5ETFWI/sM3FTSNiyvNYEDclZ2AMFHgT/J1ul95azbiNiQzben1oCy77U3Vfncnix3DWW5bNTvDEn/JGmjpAckrZd0Ucn0fqUrGuyV9PqSaWPmuGbmwqo8b8/e0DOarUCaBOYDv4r9+6znA+siYlcDY6qKpCNJR8n8HXAEMAh8aZynvbzovVdaGP64aNqMiFhVwXNt8riCdCTT44ATgRcAb2tkQJNMac7qBg4GWnGcHsC1pLFTjwWWAtdJmjXKvFcBx0bEoaSjAxdLOrto+s9J78VbRnn+eDmuKU2awkrSUyTdJek1E9jHS5Wuw7VT0iZJ783ax9tUfpCkz2fPu11Sb0ncqyTtyKa9omjaAb86Sn/BSTpW6dpGv8t+Fbw6a+8DFgPvy34F/JekLwDzgP/K2t6XzXuypB9l/f98rF8MStciu17Sdkn3Sfpk1j5F0vuzXyz3ZMt6WNHzRuxD0tWkozAKcb6FdJbl52SPP1C6bseIoax1U+hX0qckfT37n9ws6QnZtB9ks/08i+Evxvi/ljobuD0i/iMiHgIuAZ4u6dgKXsMmqRpy2DHAlyPioewItG8BTx2ljydK+r6k+yXdK+lLRdPG3FIr6T3Z53uLpCVF7Ydln/ntWQ54v6Qp2bQDhkIobQ0JZVvUsudelb3mJkkfVro+4FOAz7A/F+wYKa9lrzFH0ley/u+S9I4xlmG60pCD9dk6uEnS9GzaK7IcvCPLvU8pet6IfSgNeC7OWdcChb0eOyR9r3TdjhZDuesmm/b67HmXK22pvEvSmdm0ZcDzgE9mMX1ytPUxwvp5MulUEBdHxO6I+ApwG/CqkeaPiLUlP4L3Ak8smv6piPgu8FC5MbSEiGjbG7COdF6NZ5AOA11UNG0FsGOU24qi+VaRzop7L/A/wGlj9LcFeF52/3DgGdn900jnKTkgruz+JaQ31UtJRxxdCvwkmzYN+C1wEXAQ8EJgJ7CgKLY3Fb3u64GbsvtdpLNFLyEd/XlStgzHZdOvBj480voqejwXuC+LbQppc/Z9wKwRlr2D9OvjY1nfBwOnZtPekC3H44EZpK02Xyinj9I4i5exdN2OE0Ol6+Y+0qVMpgIDwBeL+gzgiUWP5zH6e2kH8JfZfJ8gnQSweL39EnjVGO/fbaT337eBp5esh11Z3P9L2go2tZzn+tY6N/LJYW8BPk+6vMjc7D33p6P0dy1pK8SU4s9PNm3f+774c5l9Bh8FPkjKWS8FhoDDs+mfJx2ifgjQk71f35hNuwS4pqiPnqyfqdnj/wT+lfSZ/SPgp8BbsmmvpygXlMaVPZ4CrAb+npRDH0866u6MUZb/U6S8OpeUT54LPAZ4cvZ5e3G2jO8j5bSDxuujNM7SZRxh3Y4WQ6Xr5hHgzdlrvJV0aZnCAWurKPruyNp+wejvpyuyef6UdLqO4ud9EviXMd7DFwAPZrHfSdolWjrPTcDrS9pezxg5rplvDQ9gQhcuJaUPkE7AdlqVr/FsUkJ4DGnryU7gCaPMu4GUxA4taT+NsQur/y6adhywO7v/PNIp9KcUTb8WuCS7f8CHgwOLh78AflgSx7+SfmlAeYXV35IVQEVtNwKvG2HZn0P6Eh/2xidduPJtRY8XZB/6qeP1URonYxdWY8VQ6bq5smjaS4FfFz0+oLCq4L10FfCRkrb/oSShFE07BZhO+kK8MHsvzMymPZ60JWIKcALpvDcXlvNc31rnRj457CmkL/5Hs/fu1WRfsCPM+3nS4fEjffmNVVjt5sBC4R7ShZ47gIfJfrRk094CrMruX8IohRVpl9kfgOlF018DrMzuH5ALSuPKHj8b2FAyz4XA8hGWb0q2HE8fYdrfkbb6Fc+7KVv2MfsojZMxCqtxYqh03fy2aFpn9tzZ2eNVlBRWZb6XXkv2w7+obRlw9TjPE+kH7AeAQ0aYPlJhNWaOa+bbZNgVeB7wo6hy32xE3BwROyPiDxHxOdIX4UtHmf1V2bT12eb055TZzdai+0PAwdnm3jnAxogovhbWesq7Ttl84NnZZusdknaQNpPPLjOmwmv8eclrnEoaq1HqaGB9RDw6wrQ5WdzFy1BIDpX0MZ6xYihWzrop/Z/MqCKeUg8Ch5a0HUoq1oeJiP+JtLl9KCIuJf1yfF427c6IuCsi9kbEbaStBX9WznOt5VSdw7Jdbt8ibSXuAo4kbU3/x1Ge8j7Sl+BPs91ebyizq/tKPneFz8yRpC08pZ//cnPYNGBL0ef0X0lbZ8o1H5hT8lm/iJGv93YkaSvd/40w7YAcluXkjdlyVNLHeMaKoVg562ZfDouIoexurXmsohxW1H9ExBpS0fiBcjoaL8c1s8lSWM2T9LHiRknf1IFHGxTfvjnG6wUp8QyfEPGziHgl6c19A/DlGmPfDBxdGI+Qmcf+y2nsIv0SKSguDDYC34+ImUW3GRHx1qLlGLYIJY83krYmFb9GV0R8ZITnbiSt55GONtpMSgTFy/AoaVdVJX2MZ6wYSucba91URPsPgx7ttjib9Xbg6UXP6wKeQPmDWEd9740zrZzp1rxqyWFHkD5vn8x+HN4HLGeUH4cRsTUi3hwRc0hblq5QlUfAZu4lbZ0u/fyXm8P+ABxZ9Dk9NCIK48PKzWF3lXzWD4mIkZb/XtKwjCeMMO2AHCZJpB9ymyrsYzxjxVC6XGOtm/EMW3dZIT3a++kz2Wy3A4+XdEjRU59O+TlsKuMv21gxt0QOmwyF1U7gJcDzJe37so6IM+PAow2Kb4VBfjMlnSHpYElTsy/I55N+ARYPtOyRdJDSuZIOi3SNpAeo/arrN5N++b1P0jSlQd0vJ10bC+BW4Gylywc8EXhj0XNXAE+W9NrsudMkPVP7B1xuI21qLVbadg3w8mwddGTr4TRJR40Q609JY8w+Iqkrm/eUbNq1wLuVLgkyA/gH4EvZL9xK+hjPWDEUG2/djOeA9RT7D4Me7TaQzfqfwPGSXiXpYNKYjF9ExK9LO8iKtVOy99XBks4n/Zr9n2z6mZK6s/vHknZVfLWc51rLqTqHRcS9wF3AW7McNpM0pOEXhddROjXH67P7f1702fs96cus6jwW6dQAXwaWSTpE6fQi/x/pcw8phz0/e88eRtqFVnjuFtL4wP8n6VClg2CeIOkF2SzbgKOUzlZOUVtxDvspsFPS3yoNAO+QdLykZ44Q617gs8BHlQajd0h6jqTHZMvwMqXTpUwD3kMqbH5USR9lrK+xYiieb7x1M55h+T8injrG++m8bJ7/Jf3PLs5yy58CTyNdf/IAWUxvkXS4kmcBf00aGlKY56AsFwqYlr1m4cCGUXNc04sG74ucyBsHjmU6gjSw+UMVPH8W6TphO0m7Un4CvLho+vOyPqaRBi1+i5SMHsieVxg4fRpjj7Eaa/DmU4HvA/eT9jH/adG8R5I+XDtJX5qXcOC+/AXA10njju4DvgecmE17EukDsgO4IWt7JWmc2A7gvVnbs7P+f5e9zteBeaOsr3mkLXX3kX55/XPWPoVURGzMXuMasoGt4/VBBWOsxomh9HljrZvSPkv7OI9UwO0AXl3he/JFwK9Jm8RXAT1F0z4DfKbo//4L0i/6+0jJqLdo3stJyXEXaUDoB4Fp5TzXt9a5UWMOy553YvZe+332mfgy0J1NO4iUP47NHv8TaSvMg6TdUX1FrzPWGKu7x4j78Owzv52UA/6eA8eNfir7LP2WNNi6OP8dBnyaNMbsftJh/ucUxf51Ut64N2sbKa/NIf2425qtg59QNJa0JO7pwMezdXA/8AOycUykgdu/ytq/Dzy16Hmj9kHlg9dHjKH0eeOsmwP6HKGP55AGhP+eLEdW8H7qIb2fdpOOcCwel7uYdOQzpLz/rez/82DW30UUje/LXidKbqdl00bNcc1+8yVtaiDp/cD2iPjXRsdiZlYpSacCfx0RE3YaGrPJxoWVmZmZWU7GHWMl6bNKJ337ZVHbEUonV/xN9vfwiQ3TzKw6zmFmVk/lDF6/mjRwstgFwHcj4kmk8RsX5ByXmVlersY5zMzqpKxdgZJ6SGfyPT57vJY0wGyLpMeRTvbma+iZWVNyDjOzeqn4CueZ7kiHe0I6CmLUE6EpXb+pD6Crq+uPjz3Wl0UzmyxWr159b0SMdoHWRiorhzl/mU1u1eSwagurfSIiJI262Ssi+kmXSKC3tzcGBwdr7dLMWoSk9ePP1Vhj5TDnL7PJrZocVu0JQrdlm8/J/t5T5euYmTWCc5iZTYhqC6uvkc7eS/a3Nc6GamaWOIeZ2YQo53QL1wI/BhZIulvSG4GPAC+W9BvSmaSrua6bmdmEcw4zs3oad4zVGGfkPT3nWMzMcuccZmb1NBkuwmxmZmZWFy6szMzMzHLiwsrMzMwsJy6szMzMzHLiwsrMzMwsJy6szMzMzHLiwsrMzMwsJy6szMzMzHLiwsrMzMwsJy6szMzMzHLiwsrMzMwsJy6szMzMzHLiwsrMzMwsJy6szMzMzHLiwsrMzMwsJy6szMzMzHLiwsrMzMwsJy6szMzMzHLiwsrMzMwsJy6szMzMzHLiwsrMzMwsJy6szMzMzHLiwsrMzGw0K1dCT0/6a1aGmgorSe+WdLukX0q6VtLBeQVm7WFgIOWkKVPS34GBRkdktp9zmI1p5UpYtAjWr09/XVxZGaourCTNBd4B9EbE8UAHcE5egVnrGxiAvr6UkyLS374+F1fWHJzDbEyFompoKD0eGnJxZWWpdVfgVGC6pKlAJ7C59pCsXSxduj8nFQwNpXazJuEcZsOVFlUFLq6sDFUXVhGxCbgc2ABsAe6PiG+XziepT9KgpMHt27dXH6m1nA0bKms3q6dycpjz1yS1ZMnwoqpgaChNNxtFLbsCDwdeCRwDzAG6JJ1bOl9E9EdEb0T0zpo1q/pIreXMm1dZu1k9lZPDnL8mqeXLobNz5GmdnWm62Shq2RX4IuCuiNgeEY8A1wPPzScsawfLlg3PTZ2dqd2sCTiH2cgWLoQVK0ZOYCtWpOlmo6ilsNoAnCypU5KA04E78gnL2sHixdDfD/Png5T+9vendrMm4BxmoystrlxUWZlqGWN1M3AdcAtwW/Za/TnFZW1i8WJYtw727k1/XVRZs3AOs3EViqv5811UWdmm1vLkiLgYuDinWMzM6so5zMa1cGH6VWhWJp953czMzCwnLqzMzMzMcuLCyszMzCwnLqzMzMzMcuLCyszMzCwnLqzMzMzMcuLCyszMbDQrV0JPz8ReeLkefVjduLCyCTUwkPLFlCnp78BAa/ZhZpPQypWwaBGsX5/+TkThU48+rK5cWNmEGRiAvr6ULyLS376+fAufevRhZpNQoeAZGkqPh4byL3zq0YfVnQsrmzBLl+7PFwVDQ6m9lfows0mmtOApyLPwqUcf1hAurGzCbNhQWXuz9mFmk8ySJcMLnoKhoTS9FfqwhnBhZRNm3rzK2pu1DzObZJYvh87Okad1dqbprdCHNYQLK5swy5YNzxudnam9lfows0lm4UJYsWLk5LJiRZreCn1YQ7iwsgmzeDH098P8+SClv/39qb2V+jCzSai08JmIgqcefVjdKSLq1llvb28MDg7WrT8zayxJqyOit9Fx5MH5a5JauTKNd1q+fOIKnnr0YVWpJodNnahgzMzMWt7ChbBuXev3YXXjXYFmZmZmOXFhZWZmZpYTF1ZmZmZmOXFhZWZmZpYTF1ZmZmZmOXFhZWZmZpYTF1ZmZmZmOampsJI0U9J1kn4t6Q5Jz8krMGsPAwPQ0wNTpqS/AwOt2Ye1J+cwG8+WLVt4wQtewNatW1u6D6ufWrdYfQL4VkQcCzwduKP2kKxdDAxAXx+sXw8R6W9fX76FTz36sLbmHGZj+tCHPsRNN93EBz/4wZbuw+qn6kvaSDoMuBV4fJT5Ir4kxOTS05MKnVLz5+d3kuF69GHVa+ZL2lSaw5y/Jpfp06fz0EMPDWs/+OCD2b17d8v0YbWpJofVssXqGGA7sFzSGklXSuoaIag+SYOSBrdv315Dd9ZqNmyorL1Z+7C2NW4Oc/6avO68807+8i//ks7sAsmdnZ0sXryYu+66q6X6sPqrpbCaCjwD+HREnATsAi4onSki+iOiNyJ6Z82aVUN31mrmzausvVn7sLY1bg5z/pq8Hve4x3HooYfy0EMPcfDBB/PQQw9x6KGHMnv27Jbqw+qvlsLqbuDuiLg5e3wdKUmZAbBsGWQ/xPbp7EztrdSHtS3nMBvTtm3bOO+88/jJT37CeeedNyGDy+vRh9XX1GqfGBFbJW2UtCAi1gKnA7/KLzRrdYsXp79Ll6Zdc/PmpYKn0N4qfVh7cg6z8Vx//fX77n/qU59q2T6svqourDJ/AwxIOgi4E1hSe0jWThYvnvgipx59WNtyDjOzXNVUWEXErUBTHvFjZjYe5zAzy5vPvG5mZmaWExdWZmZmZjlxYWVmZmaWExdWZmZmZjlxYWVmZmaWExdWZmZmZjlxYWVmZmaWExdWZmZmZjlxYWVmZmaWExdWZmZmZjlxYWVmZmaWExdWZmZmZjlxYWVmZmaWExdWZmZmZjlxYWVmZmaWExdWZmZmZjlxYWVmZmaWExdWZmZmZjlxYWVmZmaWExdWZmZmZjlxYWVmZmaWExdWZmZmZjlxYWVmZmaWk5oLK0kdktZIWpFHQGZm9eL8ZWZ5y2OL1TuBO3J4HTOzenP+MrNc1VRYSToKeBlwZT7hmJnVh/OXmU2EWrdYfRx4H7B3tBkk9UkalDS4ffv2GrszM8vNx3H+MrOcVV1YSVoE3BMRq8eaLyL6I6I3InpnzZpVbXdmZrlx/jKziVLLFqtTgFdIWgd8EXihpGtyicrMbGI5f5nZhKi6sIqICyPiqIjoAc4BvhcR5+YWmZnZBHH+MrOJ4vNYmZmZmeVkah4vEhGrgFV5vJaZWT05f5lZnrzFyszMzCwnLqzMzMzMcuLCyszMzCwnLqzMzMzMcuLCyszMzCwnLqzMzMzMcuLCymwyWrkSenrSXzMzy00u57GaLGZfPpttu7YNa+/u6mbre7c2ICKzKqxcCYsWwdBQ+rtiBSxc2OiobII5f1k7GBiApUthwwaYNw+WLYPFixsd1YG8xaoCIyWlsdrNmk5xUQX7iytvuWp7zl/W6gYGoK8P1q+HiPS3ry+1NxMXVmaTRWlRVeDiysxawNKlI6evpUsbE89oXFiZTRZLlgzPSgVDQ2m6mVmT2rChsvZGcWFlNlksXw6dnSNP6+xM083MmtS8eZW1N4oLK7PJYuHCNFC9tLjq7PQAdjNresuWjZy+li1rTDyjcWFVge6u7orazZpOaXHlomrScP6yVrd4MfT3w/z5IKW//f3Nd1SgT7dQAR+SbG2hUFwtWZJ2/7momhScv6wdLF7cfIVUKRdWZpPRwoWwbl2jozAzazveFWhmZmaWExdWZmZmZjlxYWVmZmaWExdWZmZmZjlxYWVmZmaWExdWZmZmZjlxYWXWbFauhJ4eXxTZzKwFVX0eK0lHA58HuoEA+iPiE3kFVomTfvYzbt21a1j7iV1drHnmMxsQUfVmXz6bbbu2DWvv7ur2Cf4mg5UrYdGidFHkRYt8VvQJ1Ew5DCBiDxs3fowNGz7CvHkXcvTR70LqaFQ4NbvkknSzyaGdvodrVcsWq0eB90TEccDJwF9LOi6fsCrznEMP5SDpgLaDJJ572GGNCKcmIxVVY7VbGykuqmB/ceUtVxOlaXLY0NBvGBzsZd26S3j00ftYt+5iVq9+JkNDv2lEOLn4wAcaHYHVUzt9D9eq6sIqIrZExC3Z/Z3AHcDcvAKrxN/19DCl5B/aIfF38+c3IhyzypUWVQUuriZMM+WwNWtOYdeuX7B3b/rFv3fvLh588OesWXNKI8Ixq5i/h/fLZYyVpB7gJODmEab1SRqUNLh9+/Y8uhvmcY95DEu6u/dVywdJLJk9m9mPecyE9GeWuyVLhhdVBUNDabpNmNFyWD3yF0BX11OBvSWte+nqOn7C+pwIl1ySLo5b+H4t3Pcuwfbn7+H9ai6sJM0AvgK8KyIeKJ0eEf0R0RsRvbNmzaq1u1EVV8uTtUq2FrZ8OXR2jjytszNNtwkxVg6rV/6aPfuNdHTMOKCto2MGs2e/YcL6nAiXXAIR6Qb777uwmhz8PZzUVFhJmkZKSAMRcX0+IVWnUC1PgUlbJVsLW7gwDVQvLa46Oz2AfQI1Sw478siXIx14LJE0lSOPfHmDIjKrnL+Hk1qOChRwFXBHRHw0v5Cq93c9Pdw+NNTSVXJ3V/eoRwVamysUV4WxVi6qJlQz5bCpUw/j1FN/38gQcnfxxY2OwBqhHb6Ha6UobLOt9InSqcAPgdvYPzjgooj4xmjP6e3tjcHBwar6M5s0Vq5MY6qWL2/5okrS6ojobXQcI6k0hzl/mU0+1eSwqrdYRcRNgMad0cwqs3AhrFvX6CjannOYmU0En3ndzMzMLCcurMzMzMxy4sLKzMzMLCcurMzMzMxy4sLKzMzMLCcurMzMzMxy4sLKbDJauRJ6enxxZzOznFV9HqtmctLPfsatu3YNaz+xq4s1z3xmAyKydrTz1p3cetqtnPiDEznkaYc0OpzqrVy5/+zuixb57O5NImIPGzd+jA0bPsK8eRdy9NHvQupodFjWRlo9h7XKd31bbLF6zqGH7ruidsFBEs897LAGRWTt6I5z72DP/Xu44y/vaHQo1SsuqmB/ceUtVw01NPQbBgd7WbfuEh599D7WrbuY1aufydDQbxodmrWRVs9hrfJd3xaFVfEVtQsm85W1LX87b93J0O2pGBm6fYidv9jZ4IiqUFpUFbi4arg1a05h165fsHdv+jW+d+8uHnzw56xZc0qDI7N20Q45rFW+69uisCpcUbtQyR4kTeora1v+7jj3wF94LfmLb8mS4UVVwdBQmm4N0dX1VPZfrrBgL11dxzciHGtD7ZDDWuW7vi0KKziwkm3GCtZaV/EvvYKW/MW3fDl0do48rbMzTbeGmD37jXR0zDigraNjBrNnv6FBEVk7aZscRmt817dNYVWoZKdAU1aw1rpKf+nta2+1X3wLF6aB6qXFVWenB7A32JFHvhzpwGOJpKkceeTLGxSRtZO2yWG0xnd9WxwVWPB3PT3cPjTUlBWsta7d/7e7ovamViiuCmOtXFQ1halTD+PUU3/f6DCsTbVVDqP5v+vbqrB63GMew/dPOqnRYVibecHuFzQ6hHwViqslS9LuPxdVZm2t3XJYs3/Xt1VhZWZlWrgQ1q1rdBRmZm2nbcZYmZmZmTWaCyszMzOznLiwMjMzM8uJCyszMzOznLiwMjMzM8uJCyszMzOznLiwMjMzM8tJTYWVpJdIWivpt5IuyCsoM7N6cA4zs7xVXVhJ6gA+BZwJHAe8RtJxeQVmZjaRnMPMbCLUssXqWcBvI+LOiHgY+CLwynzCMjObcM5hZpa7Wi5pMxfYWPT4buDZpTNJ6gP6sod/kPTLGvpsJkcC9zY6iBy0y3KAl6UZLWh0AGMYN4c5f7WEdlmWdlkOaK9lqTiHTfi1AiOiH+gHkDQYEb0T3Wc9tMuytMtygJelGUkabHQMtXD+an7tsiztshzQfstS6XNq2RW4CTi66PFRWZuZWStwDjOz3NVSWP0MeJKkYyQdBJwDfC2fsMzMJpxzmJnlrupdgRHxqKS3AzcCHcBnI+L2cZ7WX21/TahdlqVdlgO8LM2oaZejihzWtMtSBS9L82mX5YBJviyKiIkIxMzMzGzS8ZnXzczMzHLiwsrMzMwsJ3UprNrlshGSjpa0UtKvJN0u6Z2NjqlWkjokrZG0otGx1ELSTEnXSfq1pDskPafRMVVD0ruz99YvJV0r6eBGx1QuSZ+VdE/xuZ4kHSHpO5J+k/09vJExVqsdcpjzV/Nql/wFzmFQh8KqzS4b8Sjwnog4DjgZ+OsWXpaCdwJ3NDqIHHwC+FZEHAs8nRZcJklzgXcAvRFxPGlA9TmNjaoiVwMvKWm7APhuRDwJ+G72uKW0UQ5z/mpeLZ+/wDmsoB5brNrmshERsSUibsnu7yS9+ec2NqrqSToKeBlwZaNjqYWkw4DnA1cBRMTDEbGjoUFVbyowXdJUoBPY3OB4yhYRPwB+V9L8SuBz2f3PAWfVM6actEUOc/5qTm2Wv8A5rC6F1UiXjWjZD3OBpB7gJODmBodSi48D7wP2NjiOWh0DbAeWZ7sFrpTU1eigKhURm4DLgQ3AFuD+iPh2Y6OqWXdEbMnubwW6GxlMldouhzl/NZW2yF/gHFbgwetVkDQD+Arwroh4oNHxVEPSIuCeiFjd6FhyMBV4BvDpiDgJ2EVr7nI6nPTr6BhgDtAl6dzGRpWfSOd28fldGsz5q+m0Rf4C57CCehRWbXXZCEnTSElpICKub3Q8NTgFeIWkdaRdGy+UdE1jQ6ra3cDdEVH49X0dKVG1mhcBd0XE9oh4BLgeeG6DY6rVNkmPA8j+3tPgeKrRNjnM+asptUv+AucwoD6FVdtcNkKSSPvB74iIjzY6nlpExIURcVRE9JD+J9+LiJb8ZRERW4GNkgpXIT8d+FUDQ6rWBuBkSZ3Ze+10WnQQa5GvAa/L7r8O+GoDY6lWW+Qw56/m1Eb5C5zDgBouaVOuKi9906xOAV4L3Cbp1qztooj4RuNCsszfAAPZF9+dwJIGx1OxiLhZ0nXALaQjuNbQQpeGkHQtcBpwpKS7gYuBjwBflvRGYD3w6sZFWJ02ymHOX82r5fMXOIftex1f0sbMzMwsHx68bmZmZpYTF1ZmZmZmOXFhZWZmZpYTF1ZmZmZmOXFhZWZmZpYTF1ZmZmZmOXFhZWZmZpaT/x/mBeDIFpp89gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAJZCAYAAACN2rCOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XucXXV97//XOyTREAiJGqIzQCbGXwRpA+WkFLWQCZBC\nsV7OsYoBCtHUqChQtYhCp5M4glJtFVHOOakDAYoUpfwE6jUWJnhDDCIgF9OGmSTOSBjIDYZUAvM5\nf6y1k52duezZa8/sy7yfj8d+zN5rrb2+n7Vm7c/6rLsiAjMzMzMrzYRKB2BmZmZWy1xMmZmZmWXg\nYsrMzMwsAxdTZmZmZhm4mDIzMzPLwMWUmZmZWQYupszMqoikTkknV0Ech0vaKUnp57slvS99f56k\nH1U2wuol6eWS7pS0XdItabfPSOqV1JPO22dz83aI8fyppMfGJmrLwsXUOJI1STuBmlU/SZMlfU1S\nl6Qdkn4p6fSRjiciNkfEtBj8ZoRjfpNCSa2SbijotqfIqyJ/CcwEZkTEmZIOBz4GHBkRDem8PXiI\neQtARPw4Io4qR0BZ8r+kYyWtk9Qn6ReSjiniOzPS4vGevG5/mhaRO9PXs5L6Jf3PtP/Rkr6Xfu+l\nUmKtFBdTNhKiAgnUzEZkIrAJODEiDgFagG9IOqKyYY0rs4H1ecXSbODpiHimgjGVRNIk4FvADcD0\n9O/tkiYO89UrgUfyO6TF4cFpkT4N+AvgWeB76SC7gVuAaiuOh+ViahzK7WGS9HlJWyVtyN9ylbQ0\n7bYz/btE0pHA/wbemG5NbE2HPSPd8t0haaOk1rzxzE63Os5N+z0l6dK8/hMkXSrpv9Lv/0JSY9rv\nSEk/kPSMpMckvSvve2dIeiSNb7Okj43FfDMba5KOkvSEpDOL/U5EPB8Rn46IzennbwOdwP8YpI0/\nTn97OyT9TtIX0u653+9g6wkNkUNeI+n29Pe7XtJf5/W7TtKn8z4vlLS54Lu3pvlig6QL0u6nAZcC\nZ6a//QckfQY4EfhK2u3L6bCD5o8BJmKGpGsldafD35bX7/2S/lPS05K+Jek1ef0GbEPSCuDvgfek\nMS0HfgA0pJ+vLZy3g8VQ7LxJ+7VKukXS9Wk7D0s6Lu13A3AEcGfa728Hmx8DaAYOiIgvR8TuiLia\nZMN60L1ckt4EHA1cN8y4lwK3RsQugIhYHxHXAY+OIL7qEBF+jZMXSUI9GTgPeIGk+hfwQaA7HeZA\nYAfwuvTzLOCo9P15wD0F4zwJODp9/wfA74C3pZ9nA/3A/wUmA/OB/wZen/a/GHgwr60/BGakMWwC\nzk3jOwboJdlFDtADvCl9fwhwbKXnrV9+leuV9zs9DtgI/HlevzuBbcDWAf7eMcj4ZgHPA/MG6f9T\n4Oz0/YHA8en72cBLwIT0893A+9L3g+aQtP89wNXApPT3+xTQnPa7Dvh03rALgU3pewHrgMuAA4Am\n4L+AxWn/VuCGgvj3xJU3DYX546lc/hhg+r8N3AxMS9s8Me1+cpp3jkmn48vA2mLaKIwzfxoHmbeD\nxTDSefM8cFo67BXAzwqWq0UF056/DBUuT59Ih/kb4NsF37sD+Ogg83MCcD/wRwywzij4P+3MTWtB\nv7nAS5X+LY7k5T1T41dXRFwbyZJ7PfAaSYem/V4C/lDSyyNiS0QMegJkRNwTEY+k738N/CtJAtgz\nCLAiIl6IiIdIiqfc8fZlwGUR8V/p9x+OiG0ku347I+KGSDwI/BuQ27p8ATha0sERsSMifpV9dphV\nlZOA24FzIuK7uY4R8daImBERrxjg79sKR6LkUMy/AKsjYv0gbb0AvE7SKyPZq3VfkTEOmEMkHQa8\nEbgkkj0ZDwJfIyk8hnM88KqIuDwiXoqIrvS77ykyJhg4f9zG3vyxh6RXkxQfH4iInWmbufNCzwLa\nI+LBiNgNfAo4Qcnh0qLbGE66t2uwGPIVM29+HBHfT/8nN5JswO7TXP6HgmWocHn6h3Swg0g2sPPt\nBA4eZJIuJCniHhhm0t8J9A4yrTXHxdT49WTuTaS7WIGDIuJ54EzgQ8DvlFyR8vrBRiLpeEl3pbud\ntwMfAF5VMNiWvPfPk/w4AQ4HnhhgtLNJktbW9LWNJLHNSvu/E3gLsFHJyacnFDPBZjXkA8BPsqxo\nJImkkPo9cMEQgy4DXg88Lunnkt5SZBMD5hCgAdia5pKcjUBjEeM8Amgs+O1/Cjh0mO/lGyx/vHqA\nYQ9PY905QL+GNG4AIqKPZI9N4xBtzBpgPMM5bIgY8hUzb57Me/888PIhDtMW6zmSPWb5DiE512kf\naWF4IfB3uU5DjPdckvOv6sJwJ5DZOBQRa4A1kl4GXA6sItnbNNDJ518n2f19WkTslvRF4JVFNrWZ\nZHdu4fHxzUBHRJw2SHz3A++QdADJSuIbJInGrF58ELhE0j9FxJ5zAiV9h+QcoYF+iz+KiPxCqJ1k\nw+aMiBj0yqiI2EBSCCDpncCtkl6RIfYe4BWSpqYFCCS/z+70fR/JIZ6c1+S93ww8ERGDbcANNN2F\n3YbMHwMM+wpJ0wYoZnpIiiYAJE0lyW3dI2wjSwyFww01b4az37yT9OwA3XMXGl0REZ8jOYm88LzU\n+SSHcQsdT1K0PpoW81OAKZJ6gMZ0jxnp3stmYHmJ01J1vGfK9pHupn+bpANJrqx4juS8J0j2MB2m\n5OqOnIOAbWkhdTxpUs4f5RDNfQ1ok/S6tO0/lDQD+HdgnqRzJE2UNEnSgvSEz0mSzkoTz0skW0c1\ndQmtWRGeBU4HTpL02VzHiDgj8q6GKnjtKaQk/R/gSJLzF18oHHl68vNJ6fuzJeX2Ju8gWZHmfvND\n3gdpIBHxW5LzsD4r6WWS5pPs/boxHeRXwBnpSdevBi7K+/p9wLOSPqHkXk0HKLlcfkHafwvQlK6o\nyev22rzPg+aPAWJ9EvgucI2k6enwJ6a9bwbeK2l+umF5BXBvRGwaoo2RFDoqIoZ8w82bQdtIPcm+\n84lBlqVct8+lg3UAL0m6QMltNy4kWT7uGqC975Ccy3Usyekcfw/8EjgmV0ilziXZ89q5X8DJvH5Z\n8lYvkzR5iOmrGi6mxpehbmuQ6zeBZCukG3ia5NyND6X97iLZSnlS0lNptw+TFEQ7SHbt3jJMm/mf\n/4lkr9IP0u9/DZgSEc8Bf0ZyLkBP+vocyUnsAH8FdKaHFZezfwFnVssCIN1LsRg4XdLKYr+cntOz\nnGSFtkV77+uzJO1/OMk5Lw+nXzkdeETSTuCLwJkR8fv8WAZ4P2jcqSXAHJLf7r8BLRFxd9rvRuAh\noIvkkvh/3TOCiH6S85GOJTlh+ingn9l7mOmbJAXCM5LWpd2uAt6l5Cq4LxWRPwr9FfAi8DhJYXZR\nGst/kNxW4jaSfDgnHSdDtPGyYeZRvvz5NWAM+ww8/LwZro3PAS3pIcKir4BOzxd7B8nJ5NtICqG3\nR8SLAOnG7cO5YSPiqdyLpDjfHRG9BaM9B1hd2Jak2cAukmUz0vePFxtrJWnfYnGAAaR2kn/gloiY\nn3abQbLSnE3yg3h3RBSeoGZmVnHOYfuSdDbwhoi4rNKxmNWLYvZMXUdypUG+TwI/TI/d3kVyEpyZ\nWTVyDssTETe5kDIrr2H3TMGeXW935m3VPQ4sjIgt6THvjojY73i0mVk1cA4zs9FU6jlTh0bEFthz\n8txILls1M6s05zAzK5tynYDu57WZWS1zDjOzkpV6n6ktkmbl7SJ/arABJTlJmY1DETHiy+rHUFE5\nzPnLbHwaaf4qds+U2Pd+FXeQPKAQksslbx8mqLp4tba2VjwGT4enpRZeVajkHFbpeenlq36npV6m\no96mpRTDFlOSvk5yA7Z5kjZJei/J/SoWS/oNcEr62cys6jiHmdloG/YwX0QMdkPEU8sci5lZ2TmH\nmdlo8x3QR6C5ubnSIZRFvUwHeFrMilVPy1e9TEu9TAfU17SUoqj7TGVqQIrRbsPMqoskorpPQC+K\n85fZ+FNK/vKeKTMzM7MMXEyZmZmZZeBiyszMzCwDF1NmZmZmGbiYMjMzM8vAxZSZmZlZBi6mzMzM\nzDJwMWVmZmaWgYspMzMzswxcTJmZmZll4GLKzMzMLAMXU2ZmZmYZuJgyMzMzy8DFlJmZmVkGLqbM\nzMzMMnAxZWZmZpaBiykzMzOzDFxMmZmZmWXgYsrMzMwsAxdTZmZmZhm4mDIzMzPLwMWUmZmZWQaZ\niilJH5X0a0kPSbpJ0uRyBWZmNtqcw8ysHEoupiQ1ABcAx0XEfGAi8J5yBWZmNpqcw8ysXCZm/P4B\nwFRJ/cCBQE/2kKwe9Pb20tXVRVNTEzNnzqx0OGaDcQ6zPZZfspz1W9bv133erHmsunJVBSKyWlFy\nMRURPZL+EdgEPA/8ICJ+WLbIrGbdfPMtLFt2PpMnN/HCC120t1/DkiVnVjoss304h1mh9VvWs3bO\n2v17dI59LFZbshzmmw68HZgNNAAHSTqrXIFZbert7WXZsvPZtetuduy4n1277mbZsvPp7e2tdGhm\n+3AOM7NyyXKY71TgiYjYCiDpNuBNwNcLB1yxYsWe983NzTQ3N2do1qpZV1cXkyc3sWvX/LTLfCZN\nmk1XV5cP99Wxjo4OOjo6Kh3GSBWVw5y/zOpbOfKXIqK0L0rHA+3AHwO/B64DfhERXy0YLkptw2pP\nb28vs2cfya5ddwPzgYeYMmURGzc+7mJqHJFERKjScQylmBzm/DW+NC9tHvAw38LOhXSs7hj7gKwi\nSslfJR/mi4j7gFuBB4AHAQE+Q2+cmzlzJu3t1zBlyiKmTTuOKVMW0d5+jQspqzrOYWZWLiXvmSq6\nAW/ZjUu+mm98q4U9U8Vw/hpffDWfQWn5y8WUmZWdiykzq1VjepjPzMzMzFxMmZmZmWXiYsrMzMws\nAxdTZmZmZhm4mDIzMzPLwMWUmZmZWQYupszMzMwycDFlZmZmlkGWBx2bDWos7oDuu6ybWTmNxR3Q\nfZf1+uRiysru5ptvYdmy85k8uYkXXuiivf0aliw5s+baMLPxZf2W9QM+6JjO2mrDxp4P81lZ9fb2\nsmzZ+ezadTc7dtzPrl13s2zZ+fT29tZUG2ZmZsVyMWVl1dXVxeTJTcD8tMt8Jk2aTVdXV021YWZm\nViwXU1ZWTU3JYTd4KO3yELt3b6Spqamm2jAzMyuWiykrq5kzZ9Lefg1Tpixi2rTjmDJlEe3t15T1\nBPGxaMPMzKxYPgHdym7JkjM59dSTR/VKu7Fow8zGl3mz5g14Ivi8WfNqqg0be4qI0W1AitFuw8yq\niyQiQpWOIyvnL7Pxp5T85cN8ZmZmZhm4mDIzMzPLwMWUmZmZWQYupszMzMwycDFlZmZmloGLKTMz\nM7MMXEyZmZmZZZCpmJJ0iKRvSnpM0iOS/qRcgZmZjTbnMDMrh6x3QL8K+E5EvEvSRODAMsRkdaC3\nt3fU704+Fm1Y3XMOsz2WX7Kc9VvW79d93qx5rLpyVc20YWOv5GJK0jTgxIhYChARLwI7yxSX1bCb\nb76FZcvOZ/Lk5IHE7e3XsGTJmTXXhtU35zArtH7LetbOWbt/jwEe/1LNbdjYy3KYbw7wtKTrJP1S\n0ipJU8oVmNWm3t5eli07n1277mbHjvvZtetuli07n97e3ppqw8YF5zAzK4ssh/kmAscBH46IdZK+\nBHwSaC0ccMWKFXveNzc309zcnKFZq2ZdXV1MntzErl3z0y7zmTRpNl1dXWU7FDcWbdjIdHR00NHR\nUekwRqqoHOb8ZVbfypG/Sn7QsaRZwM8i4rXp5z8FLomItxYM5weFjiO9vb3Mnn0ku3bdDcwHHmLK\nlEVs3Ph42QqdsWjDsqmFBx0Xk8Ocv8aX5qXNAx6CW9i5kI7VHTXThmUzpg86jogtwGZJ89JOpwCP\nljo+qw8zZ86kvf0apkxZxLRpxzFlyiLa268pa5EzFm1Y/XMOM7NyyXo134XATZImAU8A780ektW6\nJUvO5NRTTx7VK+3Gog0bF5zDbI95s+YNeCL4vFnz9u9YxW3Y2Cv5MF/RDXg3udm4UwuH+Yrh/GU2\n/ozpYT4zMzMzczFlZmZmlomLKTMzM7MMXEyZmZmZZeBiyszMzCwDF1NmZmZmGbiYMjMzM8vAxZSZ\nmZlZBi6mzMzMzDJwMWVmZmaWgYspMzMzswxcTJmZmZll4GLKzMzMLAMXU2ZmZmYZuJgyMzMzy8DF\nlJmZmVkGLqbMzMzMMnAxZWZmZpaBiykzMzOzDFxMmZmZmWXgYsrMzMwsAxdTZmZmZhm4mDIzMzPL\nwMWUmZmZWQaZiylJEyT9UtId5QjIzGysOH+ZWTmUY8/URcCjZRiPmdlYc/4ys8wyFVOSDgPOAL5W\nnnDMzMaG85eZlUvWPVNfBC4GogyxmJmNJecvMyuLiaV+UdJbgC0R8StJzYAGG3bFihV73jc3N9Pc\n3Fxqs2ZWhTo6Oujo6Kh0GEVz/jKznHLkL0WUtlEm6QrgHOBFYApwMHBbRJxbMFyU2oaZ1SZJRMSg\nBUqlOX+Z2WBKyV8lF1MFDS8EPh4Rbxugn5OR2ThT7cVUPucvM8tXSv7yfabMzMzMMijLnqkhG/CW\nndm4U0t7pobi/GU2/njPlJmZmdkYczFlZmZmloGLKTMzM7MMXEyZmZmZZeBiyszMzCwDF1NmZmZm\nGbiYMjMzM8vAxZSZmZlZBi6mzMzMzDKYWOkAakVvby9dXV00NTUxc+bMSodjNmJehsef5ZcsZ/2W\n9ft1nzdrHquuXFWBiMxK09m5kZaW1XR399PYOIG2tqXMmTO70mHt4WKqCDfffAvLlp3P5MlNvPBC\nF+3t17BkyZmVDsusaF6Gx6f1W9azds7a/Xt0jn0sZqXq7NzI4sVXs2HDSmAq0Me997ayZs0FVVNQ\n+TDfMHp7e1m27Hx27bqbHTvuZ9euu1m27Hx6e3srHZpZUbwMm1kta2lZnVdIAUxlw4aVtLSsrmBU\n+3IxNYyuri4mT24C5qdd5jNp0my6uroqF5TZCHgZNrNa1t3dz95CKmcqPT39lQhnQC6mhtHUlBwW\ngYfSLg+xe/dGmpqaKheU2Qh4GTazWtbYOAHoK+jaR0ND9ZQw1RNJlZo5cybt7dcwZcoipk07jilT\nFtHefo1P4LWa4WXYzGpZW9tS5s5tZW9B1cfcua20tS2tWEyFFBGj24AUo93GWPCVUFbrxnIZlkRE\naFQbGQO1nr98NZ/Vi9zVfD09/TQ0jO7VfKXkLxdTZlZ2LqbMrFaVkr98mM/MzMwsAxdTZmZmZhm4\nmDIzMzPLwMWUmZmZWQYupszMzMwycDFlZmZmlkHJxZSkwyTdJekRSQ9LurCcgZmZjSbnMDMrl5Lv\nMyXp1cCrI+JXkg4C7gfeHhGPFwzn+7SYjTO1cJ+pYnKY85fZ+FNK/ppYamMR8STwZPr+OUmPAY3A\n40N+sczq6c7k9TQtNjL+34+9Suewerk7eb1Mh5Umd2fy7u5+GhtH987k1azkYiqfpCbgWODn5Rhf\nsW6++RaWLTufyZOTB7m2t1/DkiVnjmUIZVNP02Ij4/995VUih63fsp61c9bu36NzrCIoj3qZDhu5\nzs6NLF58NRs2rASmAn3ce28ra9ZcMO4KqswnoKe7x28FLoqI57KHVJze3l6WLTufXbvuZseO+9m1\n626WLTuf3t7esQqhbOppWmxk/L+vvErlMLNa19KyOq+QApjKhg0raWlZXcGoKiPTnilJE0mS0I0R\ncftgw61YsWLP++bmZpqbm7M0C0BXVxeTJzexa9f8tMt8Jk2aTVdXV80dJqmnabGRqZf/fUdHBx0d\nHZUOY8SKyWGjkb/M6kF3dz97C6mcqfT09FcinJKVI39lPcx3LfBoRFw11ED5yahcmpqSQyLwEDAf\neIjduzfS1NRU9rZGWz1Ni41MvfzvC4uMlStXVi6YkRk2h41G/jKrB42NE4A+9i2o+mhoqK27LpUj\nf2W5NcKbgbOBkyU9IOmXkk4vdXwjNXPmTNrbr2HKlEVMm3YcU6Ysor39mprams+pp2mxkfH/vnIq\nncPMal1b21Lmzm0lKagA+pg7t5W2tqUVi6lSSr41QtENjPKlxfV0FVQ9TYuNTL3972vh1gjFGM38\nVS9XwdXLdFhpclfz9fT009BQH1fzlZK/ar6YMrPq42LKzGpVKfmrtg5smpmZmVUZF1NmZmZmGbiY\nMjMzM8vAxZSZmZlZBi6mzMzMzDJwMWVmZmaWgYspMzMzswxcTJmZmZll4GLKzMzMLIOsDzquuHp7\nDIdVl8cee4z77ruP448/nqOOOqrS4WTi30p18WNYbLTdc89POO+8f2LbtqnMmNHH9dd/jJNOenOl\nwypJ7rE13d39NDZW32NrarqYuvnmW1i27HwmT27ihRe6aG+/hiVLzqx0WFYnLrjgb/jKV1YBhwOb\n+chH3s/VV19V6bBK4t9K9Vm/ZT1r56zdv0fn2Mdi9eeee37CKaf8My++eAMwlR07+jjllA/zH/9B\nzRVUnZ0bWbz4ajZsWAlMBfq4995W1qy5oGoKqpp9Nl9vby+zZx/Jrl13A/OBh5gyZREbNz7urW7L\n7LHHHuMNb/gfwL3kli84gUcfvb/m9lBV4rfiZ/MNr3lp84DF1MLOhXSs7hiVNm38mDPnnXR1JYXU\nXn00NZ1LZ+e/VSqskpxzzkpuuulvKZyWs8/+Av/yL61lb29cPZuvq6uLyZObSFYOAPOZNGk2XV1d\nlQvK6sZ9991Hskdq7/IFh6Xda4t/K2bjz7ZtU9m3+ACYyvbthd2qX3d3PwNNS09PfyXCGVDNFlNN\nTcnhimSPAcBD7N69kaampsoFZXXj+OOPBzaTv3zBb9PutcW/FbPxZ8aMPqCvoGsf06cXdqt+jY0T\nGGhaGhqqp4SpnkhGaObMmbS3X8OUKYuYNu04pkxZRHv7NT7EZ2Vx1FFH8ZGPvB84AZgHnMBHPvL+\nmjvEB/6tmI1H11//MSZO/DB7i5A+Jk78MNdf/7FKhlWStralzJ3bSv60zJ3bSlvb0orFVKhmz5nK\n8RVKNpp8NV9pfM7U8Hw1n4223NV827dPZfr0+riar6enn4aG0b2ar5T8VfPFlJlVHxdTZlarxtUJ\n6GZmZmbVwMWUmZmZWQYupszMzMwycDFlZmZmloGLKTMzM7MMXEyZmZmZZZCpmJJ0uqTHJa2XdEm5\ngjIzGwvOYWZWDiUXU5ImAF8BTgOOBpZIOrJcgVWjjo6OSodQFvUyHeBpsdKNtxxWT8tXvUxLvUwH\n1Ne0lCLLnqnjgf+MiI0RsRv4V+Dt5QmrOtXLwlIv0wGeFstkXOWwelq+6mVa6mU6oL6mpRRZiqlG\nkifB5vw27WZmVgucw8ysLHwCupmZmVkGJT+bT9IJwIqIOD39/EkgIuLKguH8YCuzcajan81XTA5z\n/jIbn8bsQceSDgB+A5wC/A64D1gSEY+VNEIzszHkHGZm5TKx1C9GxEuSPgL8gORwYbuTkJnVCucw\nMyuXkvdMmZmZmdkonoBeLzfDk3SYpLskPSLpYUkXVjqmrCRNkPRLSXdUOpYsJB0i6ZuSHkv/P39S\n6ZhKIemjkn4t6SFJN0maXOmYiiWpXdIWSQ/ldZsh6QeSfiPp+5IOqWSMpXIOq07OX9XHOWyUiqk6\nuxnei8DHIuJo4I3Ah2t4WnIuAh6tdBBlcBXwnYg4CjgGqLlDNJIagAuA4yJiPsmh9/dUNqoRuY7k\nd57vk8API+L1wF3Ap8Y8qoycw6qa81cVcQ5LjNaeqbq5GV5EPBkRv0rfP0eywNfsvWgkHQacAXyt\n0rFkIWkacGJEXAcQES9GxM4Kh1WqA4CpkiYCBwI9FY6naBHxY2BbQee3A9en768H3jGmQZWHc1gV\ncv6qWuM+h41WMVWXN8OT1AQcC/y8spFk8kXgYqDWT5abAzwt6bp0l/8qSVMqHdRIRUQP8I/AJqAb\n2B4RP6xsVJkdGhFbIFmRA4dWOJ5SOIdVJ+evKuMclvBNO4sk6SDgVuCidOuu5kh6C7Al3UpV+qpV\nE4HjgK9GxHHA8yS7ZmuKpOkkW0GzgQbgIElnVTaqsqv1FV9dqPUc5vxVnZzDEqNVTHUDR+R9Pizt\nVpPSXZe3AjdGxO2VjieDNwNvk/QEcDOwSNINFY6pVL8FNkfEuvTzrSTJqdacCjwREVsj4iXgNuBN\nFY4pqy2SZgFIejXwVIXjKYVzWPVx/qpOzmGMXjH1C+B1kmanZ/W/B6jlKy+uBR6NiKsqHUgWEXFp\nRBwREa8l+Z/cFRHnVjquUqS7YDdLmpd2OoXaPCl1E3CCpJdLEsl01NqJqIV7Ce4AlqbvzwNqceXt\nHFZlnL+qlnMYGW7aOZR6uhmepDcDZwMPS3qAZHffpRHxvcpGZsCFwE2SJgFPAO+tcDwjFhH3SboV\neADYnf5dVdmoiifp60Az8EpJm4BW4HPANyW9D9gIvLtyEZbGOczGQM3nL3AO2zMe37TTzMzMrHQ+\nAd3MzMwsAxdTZmZmZhm4mDIzMzPLwMWUmZmZWQYupszMzMwyqLtiSlKnpJOrII7DJe1M77uBpLvT\nyyyRdJ6kH1U2wuqV3q/kTknbJd2SdvuMpF5JPem8fTY3b4cYz59KqsnL2W38cg6rfc5h40/dFVPl\nIOlGSb9LfwiPS1o20nFExOaImBaD33tizO9JIam18I7B+QmyivwlMBOYERFnSjoc+BhwZEQ0pPP2\n4CHmLZA8wDJ9IntmWVZwko6VtE5Sn6RfSDpmiGF/na7Acq/dkm5P+/1/kr4l6SlJT0v6bt5N/5B0\nbtrODkmbJF0pyb/xcSxdZnaVcqdw57BMxm0OS4c/VdL9kp5Lc9FfDjDMuZL6B/vfSfqPtH9N5LCa\nCLICPgvMiYjpwNuAz0j6owrHNJ7MBtbnJZrZwNMR8UwFYypJekO+bwE3ANPTv7crebzHfiLiD9IV\n2LSImEbysN1vpL2nk9yJdx4wi+Qu3fl35p0CXAS8EvgTkjsR/23ZJ8pqyVeA+yodxDg0bnOYpDcA\nNwGfAqYBxwD3FwwzPe3/60HGcRbJTcVr50aYEVFXL6ATODl9fxTJnWXPzDC+1wM9wF8O0v+PSVZq\nO4DfAV9Z/J0FAAAgAElEQVRIu88G+oEJ6ee7gfel788DfgR8HtgKbABOzxvna0hWks8A64G/zut3\nHfDpvM8LSZ7xlP/dW0meJbQBuCDtfhrw+/S1k+QutZ8BXiR5yOZO4MvpsEeS3Pn5GZLHArxriPkz\ng+RRFd3p8Lfl9Xs/8J/A0yQ/xtfk9RuwDWBFGuMLaUzL0/heTD9fO8C8HTCGYudN2q8VuAW4Pm3n\nYeC4tN8NwEtAX9rvb0ew/CzOjyHtthH4syK+uzBdrqYMMe/7SbZ+B+r/UeD2Sv8m/RrZizLlMJJH\nrvwr8PfADUMM5xzmHDbUcjSiHEZSSK0cZpz/G/hg/jKV128a8DhwfBrzhEr/JouaT5UOoOwTlCYi\nkodGbgT+PK/fncC29Mdf+PeOgvF8NV3w+oF1wIGDtPdT4Oz0/YHA8en72fkLAvsnoheA95E8D+iD\nQHfeOO8BrgYmkVT1TwHNab+BEtGm9L3SWC8DDgCagP8CFqf9WylIqoULczoNm4Bz0/Hl2j9ykOn/\nNslDR6elbZ6Ydj8Z6E2/Pwn4MrC2mDYK48yfxkHm7WAxjHTePE+SsAVcAfysYLlaVDDt+ctQ4fL0\niXSYvwG+XfC9O4CPFrEstwPXDtH/HfnLzQD9/3/gikr/Jv0a2Ysy5LD0t/AboGGg331Be85hzmFl\ny2EkRd6ngYdIisMbyNvgIymS7hvof5d2+wrJo3b2mUfV/hqVZ/NVgZOAZcBZEbHnJMmIeGuxI4iI\nD6fP5nojyXN7fj/IoC+QPBD1lZHswi12l3pXRFwLIOl64BpJhwKT0zZPj4jdwIOSvkbyo+0YZpzH\nA6+KiMtzbaTffQ+wpsi4/gLojIjceQkPSroNeBfQlj+gkqdpnwa8IiJ2pp1z8/sskueZPZgO+ylg\nq6QjgBOKbWM4kl4zRAz5ipk3P46I76fjvZHkkNk+zeV/iIgZRYR4EMkWf76dwMFDfUnSFJLzLv5i\nkP6HkSSdjw7S/33A/yD5HVjtyZrDPg38c0T0DHOOMziHOYcNbaQ57DDgHJI9Wr8jKaauBs5Jz3/6\nKnD+QF+UtAB4E3ABcEQRsVWNei2mPkCyBZHpapNIyuSfSvor4EMkK69Cy0h+PI9LeoJki+vbRYz+\nybx2dqUJ7yDgVcDWiHg+b9iNJCvG4RwBNEramn4WyXlx9xTx3ZzZJE8Azx/HAcCNAwx7eBrrzgH6\nNZB3nDwi+tJxNg7RxohPkiX54Q4WQ75i5s2Tee+fB14uaUJE9JcQV85zJFub+Q4Bnh3me+8Enhlo\nGZY0E/g+8JWI+MYA/d8BXA6cEhFbC/tbTSg5h0k6FjgVOLbIrziHOYcNZaQ5bBfJHvUNAJKuYG+x\n92HgwYj4ReGX0isbvwpcFBGhIrYCqkm9FlMfBC6R9E8R8bFcR0nfAU5k4JPafhQRbxlkfBOBuQP1\nSBeYs9LxvxO4VdIrMsTeA7xC0tSI6Eu7HUGyuxSSQ48H5g3/mrz3m4EnIuL1g4x7oOku7LYZ6IiI\n04qIdXMa67QBEkEPScIBQNJUkhOju0fYRpYYCocbat4MZ795J+nZAbor7XZFRHwOeITkKp5880m2\n1IZyLgMk5vTEze8D30rHX9j/dOD/AmdExKPDtGHVK0sOW0jy29uUrpAOAg6Q9IaIWFD4Jecw57DC\nzmTLYQ8NEcPJwEmScuvaVwDHphsALcAC4JZ0uT0gjeW3kt4VET8ZYrwVV69X8z0LnE7yT/tsrmNE\nnBHJ5ajTBni9BZKtfklnSpoqaYKk00h2o/4wN570cs2T0vdnS3pV2msHyUKY2woYcWUdEb8lOYfh\ns5JeJmk+yZZjbqvqV8AZkmaku6jzd+PeBzwr6RNK7nNygKSj012nAFuApoKKfwvw2rzP/w7Mk3SO\npImSJklaIOnIAWJ9Evguye796enwJ6a9bwbeK2m+pJeRHL+/NyI2DdHGSJKEiogh33DzZtA2Uk+y\n73xikGUp1y1X6HQAL0m6QNJkSReSLB93DdpocghvEcmJpPndDyY54fXHEXHZAN87GfgX4J0RcX9h\nf6spJecwkmJ6LsmeqWOA/0Pym9uz4ncO2xOrc1j5c9h1JPNtjqQDgUtIzvWD5Fy7o0iWy2NIzgFb\nCVwWETtICuvccntG+p3jgJ8PMY1VoR6LqQBIK/zFwOmSVo7w+x8i2QrYCvwDyW7Hb0NyIzv2XikB\nScJ7RNJO4IskV938Pm9cDPB+0LhTS4A5JFtG/wa0RMTdab8bSSr/LuB7JFfrJCNIduX+BcnC2Ely\nQuQ/s3cX7TdJflzPSFqXdrsKeJekZyR9KSKeA/6MpIDsSV+fIzkPYiB/RXKVyuMkSe2iNJb/INnS\nuI1kS25OOk6GaONlw8yjfPnza8AY9hl4+HkzXBufA1okbZVUuJU2+AiSc0beQZJEtpHscXp7RLwI\nySXAkh4u+No5wE8iorOg+/8kOVTyXiU3/HtWyb2oDkv7/106Pd/J61fM4RqrLplyWET8d0Q8lXuR\nHKb57/R8KOew/TmHDTWCEeawiLiOZK/6z9M4d7F3nu4sWDZ/D+yMiGfT/vn9etP4n8q1Vc0UMfTv\nQ1I7yT9wS0TMT7vNILkEczbJD+LdaVVZ9ySdDbxhoD0DZlZ9nMP25RxmVn7FFFN/SrJlc0NeIrqS\n5OTYf5B0Ccllj58c9WjNzEbIOczMRtuwxRSApNnAnXmJ6HFgYURsSY95d0TEfsejzcyqgXOYmY2m\nUs+ZOjQitsCek+cOLV9IZmajzjnMzMqmXCegD797y8ysejmHmVnJSr3P1BZJs/J2kT812ICSnKTM\nxqGIqOab7hWVw5y/zMankeavYvdMiX3vV3EHsDR9fx77Prl+oKDq4tXa2lrxGDwdnpZaeFWhknNY\npeell6/6nZZ6mY56m5ZSDFtMSfo6yQ3Y5knaJOm9JPerWCzpN8Ap6Wczs6rjHGZmo23Yw3wRcdYg\nvU4tcyxmZmXnHGZmo60e74A+apqbmysdQlnUy3SAp8WsWPW0fNXLtNTLdEB9TUspirrPVKYGpBjt\nNsysukgiqvsE9KI4f5mNP6XkL++ZMjMzM8vAxZSZmZlZBi6mzMzMzDJwMWVmZmaWgYspMzMzswxc\nTJmZmZll4GLKzMzMLAMXU2ZmZmYZuJgyMzMzy8DFlJmZmVkGLqbMzMzMMnAxZWZmZpaBiykzMzOz\nDFxMmZmZmWXgYsrMzMwsAxdTZmZmZhm4mDIzMzPLwMWUmZmZWQYupszMzMwycDFlZmZmloGLKTMz\nM7MMXEyZmZmZZZCpmJL0UUm/lvSQpJskTS5XYGZmo805zMzKoeRiSlIDcAFwXETMByYC7ylXYGZm\no8k5zMzKZWLG7x8ATJXUDxwI9GQPyWpdZ+dGWlpW093dT2PjBNraljJnzuxKh2U2EOcw22P5JctZ\nv2X9ft3nzZrHqitXVSAiqxUlF1MR0SPpH4FNwPPADyLih2WLzGpSZ+dGFi++mg0bVgJTgT7uvbeV\nNWsucEFlVcU5zAqt37KetXPW7t+jc+xjsdqS5TDfdODtwGygAThI0lnlCsxqU0vL6rxCCmAqGzas\npKVldQWjMtufc5iZlUuWw3ynAk9ExFYASbcBbwK+XjjgihUr9rxvbm6mubk5Q7NWzbq7+9lbSOVM\npaenvxLh2Bjp6Oigo6Oj0mGMVFE5zPnLrL6VI39lKaY2ASdIejnwe+AU4BcDDZifjKy+NTZOAPrY\nt6Dqo6HBd+GoZ4VFxsqVKysXTPGKymHOX2b1rRz5q+Q1XETcB9wKPAA8CAjwGXrjXFvbUubObSUp\nqAD6mDu3lba2pRWLyWwgzmFmVi6KiNFtQIrRbsOqS+5qvp6efhoafDXfeCSJiFCl48jK+Wt88dV8\nBqXlLxdTZlZ2LqbMrFaVkr98IouZmZlZBi6mzMzMzDJwMWVmZmaWgYspMzMzswxcTJmZmZll4GLK\nzMzMLAMXU2ZmZmYZuJgyMzMzyyDLs/nMBpS7A3p3dz+NjaNzB/SxaMPMxpexuAO677Jen1xMWVl1\ndm5k8eKr2bBhJcnDjvu4995W1qy5oGzFzli0YWbjz/ot61k7Z+3+PTprqw0bez7MZ2XV0rI6r8gB\nmMqGDStpaVldU22YmZkVy8WUlVV3dz97i5ycqfT09NdUG2ZmZsVyMWVl1dg4Aegr6NpHQ0P5FrWx\naMPMzKxYXvtYWbW1LWXu3Fb2Fjt9zJ3bSlvb0ppqw8zMrFg+Ad3Kas6c2axZcwEtLV+gp6efhoYJ\ntLWV98TwsWjDzMafebPmDXgi+LxZ82qqDRt7iojRbUCK0W7DzKqLJCJClY4jK+cvs/GnlPzlw3xm\nZmZmGbiYMjMzM8vAxZSZmZlZBi6mzMzMzDJwMWVmZmaWgYspMzMzswxcTJmZmZllkKmYknSIpG9K\nekzSI5L+pFyBmZmNNucwMyuHrHdAvwr4TkS8S9JE4MAyxGQ1rrNzIy0tq+nu7qexcQJtbUvLfnfy\nsWjDxgXnMNtj+SXLWb9l/X7d582ax6orV9VMGzb2Si6mJE0DToyIpQAR8SKws0xxWY3q7NzI4sVX\ns2HDSmAq0Me997ayZk35HvcyFm1Y/XMOs0Lrt6xn7Zy1+/cY4PEv1dyGjb0sh/nmAE9Luk7SLyWt\nkjSlXIFZbWppWZ1X5ABMZcOGlbS0rK6pNmxccA4zs7LIcphvInAc8OGIWCfpS8AngdbCAVesWLHn\nfXNzM83NzRmatWrW3d3P3iInZyo9Pf011YaNTEdHBx0dHZUOY6SKymHOX2b1rRz5K0sx9Vtgc0Ss\nSz/fClwy0ID5ycjqW2PjBKCPfYudPhoaynfh6Fi0YSNTWGSsXLmycsEUr6gc5vxlVt/Kkb9KXvtE\nxBZgs6R5aadTgEdLHZ/Vh7a2pcyd20pS7AD0MXduK21tS2uqDat/zmFmVi5Zr+a7ELhJ0iTgCeC9\n2UOyWjZnzmzWrLmAlpYv0NPTT0PDBNraynti+Fi0YeOGc5jtMW/WvAFPBJ83a97+Hau4DRt7iojR\nbUCK0W7DzKqLJCJClY4jK+cvs/GnlPzlk0zMzMzMMnAxZWZmZpaBiykzMzOzDFxMmZmZmWXgYsrM\nzMwsAxdTZmZmZhm4mDIzMzPLwMWUmZmZWQYupszMzMwycDFlZmZmloGLKTMzM7MMXEyZmZmZZeBi\nyszMzCwDF1NmZmZmGbiYMjMzM8vAxZSZmZlZBi6mzMzMzDJwMWVmZmaWgYspMzMzswxcTJmZmZll\n4GLKzMzMLAMXU2ZmZmYZuJgyMzMzy8DFlJmZmVkGmYspSRMk/VLSHeUIyMxsrDh/mVk5lGPP1EXA\no2UYj5nZWHP+MrPMMhVTkg4DzgC+Vp5wzMzGhvOXmZVL1j1TXwQuBqIMsZiZjSXnLzMri4mlflHS\nW4AtEfErSc2ABht2xYoVe943NzfT3NxcarNmVoU6Ojro6OiodBhFc/4ys5xy5C9FlLZRJukK4Bzg\nRWAKcDBwW0ScWzBclNqGmdUmSUTEoAVKpTl/mdlgSslfJRdTBQ0vBD4eEW8boJ+Tkdk4U+3FVD7n\nLzPLV0r+8n2mzMzMzDIoy56pIRvwlp3ZuFNLe6aG4vxlNv54z5SZmZnZGHMxZWZmZpaBiykzMzOz\nDFxMmZmZmWXgYsrMzMwsAxdTZmZmZhm4mDIzMzPLwMWUmZmZWQYupoq0fft2Pv7ud7N9+/ZKh2Jm\nZjbuVPN6eGKlA6gF27dv59LFi7l43Tou7ezkijVrmD59eqXDMivK8kuWs37L+v26z5s1j1VXrqpA\nRDaWOjs30tKymu7ufhobJ9DWtpQ5c2ZXOiyzEan29bAfJzOM3D/w8nXrmAFsAy5bsKDq/pFmg2le\n2szaOWv3676wcyEdqztGpU0/TqY6dHZuZPHiq9mwYSUwFehj7txW1qy5wAWV1YyxXg/7cTJlVvgP\nBJgBXL5uHZcuXlyVuxrNzHJaWlbnFVIAU9mwYSUtLasrGJVZ8WplPexiaghty5dzcd4/MGcGcPG6\ndbQtX16JsMzMitLd3c/eQipnKj09/ZUIx2zEamU97GJqCC2rVvH5BQvYVtB9G/D5BQtoWeXzTcys\nejU2TgD6Crr20dDg1G+1oVbWw/5FDWH69OlcsWYNl+X9I33OlJnVira2pcyd28regio5Z6qtbWnF\nYjIbiVpZD/sE9CLkX0Xw+Sr7B5oNpxJX8/kE9OqRu5qvp6efhgZfzWe1aSzXw6XkLxdTRdq+fTtt\ny5fTsmqVCymzYbiYMrNyG6v1sIspM6sKLqbMrFb51ghmZmZmY8zFlJmZmVkGLqbMzMzMMnAxZWZm\nZpaBiykzMzOzDEoupiQdJukuSY9IeljSheUMzMxsNDmHmVm5ZNkz9SLwsYg4Gngj8GFJR5YnrOJt\n376dj7/73VXzsMMs6mlazGpAVeQws1rndRdMLPWLEfEk8GT6/jlJjwGNwONlim1Y+XdEvbSzs6bv\nTF5P02LFq8TdyS1RDTksd3fy7u5+Ghtr9+7k9TIdNnJed6UiIvMLaAK6gIMG6BejYdu2bfGhBQti\nK0RAbIX40IIFsW3btlFpbzTV07TYyCw8b2Gwgv1eC89bWOnQMkl/92XJL2PxGiyHjVb+ioh44omu\nmDv34wHPRfLTfy7mzv14PPFE16i1ORrqZTps5Op13VVK/sp8Arqkg4BbgYsi4rms4ytGrhK+fN06\nZqTdZgCXr1vHpYsX19SuxnqaFrNaVIkcBtDSspoNG1YCU9MuU9mwYSUtLavHKoSyqJfpsJHxumtf\nJR/mA5A0kSQJ3RgRtw823IoVK/a8b25uprm5OUuztC1fzsV5/8CcGcDF69bRtnw5//iNb2RqY6zU\n07TY+NXR0UFHR0elwxixYnJYufNXTnd3P3sLkJyp9PT0l2X8Y6VepsNGpp7WXWXJXyPdlRX77gK/\nAfinYYYp+y64wl2LUcO7GOtpWmzkfJiv4of3hsxho5G/cs4+e0XeobHYc4js7LNXjFqbo6FepsNG\npp7XXaXkryy3RngzcDZwsqQHJP1S0unZSrviTJ8+nSvWrOGyBQvYlnbbBly2YEHNnfxWT9NiVksq\nmcMA2tqWMnduK9CXdulj7txW2tqWjlUIZVEv02Ej43XXvpQUYaPYwCg+dT3/KoLP1/g/sJ6mxYpX\nr1fzlfLU9Wo0mvkL9l4F19PTT0ND7V4FVy/TYSNXj+uuUvJXTRdTkPwj25Yvp2XVqpr/B9bTtNj4\n5mLKbPyot3XXuCymzKz6uJgys1pVSv7ys/nMzMzMMnAxZWZmZpaBiykzMzOzDFxMmZmZmWXgYsrM\nzMwsAxdTZmZmZhnUfDG1fft2Pv7ud4+7hyqamZmNJ9W8vs/0oONKy7/z6qWdnXVx51WrDkc2H8mT\n//3kft1f/fJX83jH4xWIqHT1epf1epC7c3h3dz+Njb5zuJXPH731rTzR30/+zZICeO2ECTxw552V\nCqtk1b6+r9liKjdjL0+fWn35unVcunhx1c1gq01P/veT7PjzHfv3+O7Yx5LV+i3rWTtn7f49Osc+\nFturs3MjixdfzYYNK4GpQB/33tvKmjUXuKCyzE5esIBfTZ4Mb3zj3o4/+xmn7t5duaBKVAvr+5o8\nzFc4Y4F9ZnA17gI0M8vX0rI6r5ACmMqGDStpaVldwaisXny+pYWp3/8+5O7gH8HU73+fK//u7yob\n2AjVyvq+JouptuXLuThvxubMAC5et4625csrEZaZWdG6u/vZW0jlTKWnp78S4VidmTBhAh9YtAju\nvTfpcO+9fOjkk5kwobZW+7Wyvq+tuZpqWbWKzy9YwLaC7tuAzy9YQMsqnwdiZtWtsXEC0FfQtY+G\nhppMy1aF8vdO1eJeKaid9X1N/mqnT5/OFWvWcFneDN4GXLZgQVUdQzUzG0xb21Lmzm1lb0HVx9y5\nrbS1La1YTFZf9uyd+tKXanKvFNTO+l6j/UT00Xzqev7Z/Z+vshlrtc1X82VTylPXq9Fo5i/YezVf\nT08/DQ2+ms/Kr7+/nze99a389M47a7KYyhnL9X0p+aumiylIZnDb8uW0rFrlQsqsSriYMrNyG6v1\n/bgspsys+riYMrNaVUr+qt19fmZmZmZVwMWUmZmZWQYupszMzMwycDFlZmZmloGLKTMzM7MMXEyZ\nmZmZZZCpmJJ0uqTHJa2XdEm5gjIzGwvOYWZWDiUXU5ImAF8BTgOOBpZIOrJcgVWjjo6OSodQFvUy\nHeBpsdKNtxxWT8tXvUxLvUwH1Ne0lCLLnqnjgf+MiI0RsRv4V+Dt5QmrOtXLwlIv0wGeFstkXOWw\nelq+6mVa6mU6oL6mpRRZiqlGYHPe59+m3czMaoFzmJmVhU9ANzMzM8ug5GfzSToBWBERp6efPwlE\nRFxZMJwfbGU2DlX7s/mKyWHOX2bj05g96FjSAcBvgFOA3wH3AUsi4rGSRmhmNoacw8ysXCaW+sWI\neEnSR4AfkBwubHcSMrNa4RxmZuVS8p4pMzMzMxvFE9Dr5WZ4kg6TdJekRyQ9LOnCSseUlaQJkn4p\n6Y5Kx5KFpEMkfVPSY+n/508qHVMpJH1U0q8lPSTpJkmTKx1TsSS1S9oi6aG8bjMk/UDSbyR9X9Ih\nlYyxVM5h1cn5q/o4h41SMVVnN8N7EfhYRBwNvBH4cA1PS85FwKOVDqIMrgK+ExFHAccANXeIRlID\ncAFwXETMJzn0/p7KRjUi15H8zvN9EvhhRLweuAv41JhHlZFzWFVz/qoizmGJ0dozVTc3w4uIJyPi\nV+n750gW+Jq9F42kw4AzgK9VOpYsJE0DToyI6wAi4sWI2FnhsEp1ADBV0kTgQKCnwvEULSJ+DGwr\n6Px24Pr0/fXAO8Y0qPJwDqtCzl9Va9znsNEqpuryZniSmoBjgZ9XNpJMvghcDNT6yXJzgKclXZfu\n8l8laUqlgxqpiOgB/hHYBHQD2yPih5WNKrNDI2ILJCty4NAKx1MK57Dq5PxVZZzDEr5pZ5EkHQTc\nClyUbt3VHElvAbakW6lKX7VqInAc8NWIOA54nmTXbE2RNJ1kK2g20AAcJOmsykZVdrW+4qsLtZ7D\nnL+qk3NYYrSKqW7giLzPh6XdalK66/JW4MaIuL3S8WTwZuBtkp4AbgYWSbqhwjGV6rfA5ohYl36+\nlSQ51ZpTgSciYmtEvATcBrypwjFltUXSLABJrwaeqnA8pXAOqz7OX9XJOYzRK6Z+AbxO0uz0rP73\nALV85cW1wKMRcVWlA8kiIi6NiCMi4rUk/5O7IuLcSsdVinQX7GZJ89JOp1CbJ6VuAk6Q9HJJIpmO\nWjsRtXAvwR3A0vT9eUAtrrydw6qM81fVcg4jw007h1JPN8OT9GbgbOBhSQ+Q7O67NCK+V9nIDLgQ\nuEnSJOAJ4L0VjmfEIuI+SbcCDwC707+rKhtV8SR9HWgGXilpE9AKfA74pqT3ARuBd1cuwtI4h9kY\nqPn8Bc5he8bjm3aamZmZlc4noJuZmZll4GLKzMzMLAMXU2ZmZmYZuJgyMzMzy8DFlJmZmVkGdVdM\nSeqUdHIVxHG4pJ3pfTeQdHd6mSWSzpP0o8pGWL3S+5XcKWm7pFvSbp+R1CupJ523z+bm7RDj+VNJ\nNXk5u41fzmG1zzls/Km7YqocJHVI2pUmkmdLWZgjYnNETIvB7z0x5vekkNRaeMfg/ARZRf4SmAnM\niIgzJR0OfAw4MiIa0nl78BDzFkgeYJk+kT2zLCs4ScdKWiepT9IvJB0zxLDXSfp93rK3Mz/hSupP\nu+f6rcrrd56kFwu+e1IpMVttS282+m1JW9OV99WSRpTvncMyGc857EpJmyTtSNsc8DE5ks5N89n7\n8rqdKenx9LtPpvnwoFJiHmsupgYWwPlpIjm4XAuzFW02sD4v0cwGno6IZyoYU0nSG/J9C7gBmJ7+\nvV3J4z0Gc2Xesle4Mgtgfl6/5QXf/WnBd+8p6wRZrbiG5BEYs0gebLwQOL+iEY0v4zmHtQNviIhD\nSB4rc46kdxSMczrwKeDXBd/9CXBS+t3XApOAz5RrWkZTXRdTko6S9ISkM0v5epFt/HFaqe+Q9DtJ\nX0i7z06r7sHmsSR9Pt1y3CDp9Lwer5F0u6RnJK2X9Nd5/a6T9Om8zwslbS747q2SnkrHe0Ha/TTg\nUuDMdI/FA5I+A5wIfCXt9uV02CMl/SBt/zFJ7xpi+mdIulZSdzr8bXn93i/pPyU9Lelbkl6T12/A\nNiStAP4eeE8a03KSu1A3pJ+vLZy3g8VQ7LxJ+7VKukXS9Wk7D0s6Lu13A8lz2u5M+/3tYPNjAM3A\nARHx5YjYHRFXkyxbpR7GEXX+u7W9MuSwJuCWdJl7CvgecPQgbTiHOYcNpZkR5LCIWJ/3IO0JQD/w\nuoLBPgtcBTxT8N3fpstr7rsvDfDd6hQRdfUCOkn+yceR3Ab+z/P63QlsA7YO8PeOvOHuBraQbNn9\nCFg4RHs/Bc5O3x8IHJ++n02yIEzIG+f70vfnAS8A7yNZKD8IdOeN8x7gapKq/Jg0jua033XAp/OG\nXQhsSt8LWAdcBhxAklD/C1ic9m8FbiiIf09cedOwCTg3HV+u/SMHmf5vkzx0dFra5olp95OB3vT7\nk4AvA2uLaaMwzvxpHGTeDhbDSOfN88Bp6bBXAD8rWK4WFUx7/jJUuDx9Ih3mb4BvF3zvDuCjg8zP\n64Cn09cvgP9V0L+f5CGpPSQPR52d1+884Nl0Xj4O/F1uHvlVOy/Kk8PeD6wGpgCNwMPA2wZpzznM\nOaxsOSztfwlJLupPY2zI63c8cN9A/7u025uB7el3nwVOqfRvspjXqDybrwqcBCwDzoqIPSdJRsRb\ni/z+J0geOvkCsISkmj8mIjoHGPYFkgeivjKSXbj3FdlGV0RcCyDpeuAaSYcCk4E3AqdHxG7gQUlf\nI/nRdgwzzuOBV0XE5bk20u++B1hTZFx/AXRGRO68hAfTraR3AW35Ayp5mvZpwCsiYmfaOTe/zyJ5\nniJfT4sAABzGSURBVNmD6bCfArZKOgI4odg2hpNuKQ4WQ75i5s2PI+L76XhvBC4qbC7/Q0TMKCLE\ng4AdBd12AgcPMvxVJOdW7CCZrlsk/S4ifpb2Pwm4lySZXw78e7ps9gNrgT+IiI2Sjga+QfKsrCuL\niNOqS9Yc9iPgAyTL2gTg+ogY7EHNzmHOYUMZaQ4jIq4ErlRybtU7ct9P98R9lSEOOUfET4Dp6Xx5\nP0nRWvXq9XDBB4Cf5CehkYiIX0REXyS7NG8gOY57xiCDLwNeDzwu6eeS3lJkM0/mtbcrfXsQ0ABs\njYjn84bdSLJ1OZwjgMZ0t/tWSdtIjksfWmRMkGwxnVAwjrOAVw8w7OFprDsH6NeQxg1ARPSRbO00\nDtHGrBHEmXPYEDHkK2bePJn3/nng5UMc4ijWcyRbm/kOIdni2k9E/CoitkVEf0R8F7gJ+F95/X8c\nES+m03sRydbpUWm/rojYmL5/BPj0/2vv/oPkrus8jz/fIeLJ+GPiboEmFGzMFQopkYVBFt1dB3SE\nIgvukbqcSljjcTXulYLLjxwSmJ1MNQTc4CLl6RVzcska0D0hbCnCiePhWLsroCOg4YeAYS5AZgnr\nbnrBWFjifO6Pb0/SGfJjpr893f3tfj6qptLznZ7+vL+Tnve8+vP99PdLthBWxVNzD4uIIDusdztZ\n6P5d4M0Rsb9QbQ+zhx3IrHpYtUoQfZmsFwF8EvhJSulHM/jefwLuAf52VtU2SbvOTP05cHlE/HVK\n6ZKpjRFxN9nx9X29g+LvU0r7ayKJ/ayhSiltJfslIiKWA7dHxJtz1D5B1vi6Kr+8kP0Sba/c3kXW\nIKe8ter2s8DTKaW37+ex97Xf07c9C4ymlM6YQa3PVmp94z4awQRZwwEgIrqA3yHbj9mMkaeG6fc7\n0M/mYF71s4uIl/axPSrb1qWUrgMeJZtpqnY82SGQmY67v/V7Me3fA91HxZKnh72ZLCR8sTIztDMi\nNpDNmFw+/ZvsYfaw6Zupbw+bT7aYHLJDp39cFdjfDJwQESeklC7ax/e+pup7W1q7zky9BJxJ9p92\n7dTGlNJZac+7nKZ/LAOIiDdFxAcj4rURcUhEnEfWvL499TiVhYN/XLl9XkT8buVL/0b2JJycuuts\nC08pPUe2huHaSg3Hk71y3FS5y8PAWZUFi29h72ncHwIvRcR/i+w8J4dExNKI6Kl8fQfwe5VXrlRt\nq36yfgs4JiJWRsT8iHhNRPRExDv2UevzwP8hm97vrtz/jypf/hrw8Yg4PiJeS3b8/v6U0jMHGGM2\nTSJmUEO1g/1s9jtGxfNM+6Xez3Npatt1lbuNAr+NiAsj4tCIuIjs+XHvPgeMWB4RXZH5IHAe8I3K\n146LiHdFxLzI3i7812Trpx6vfP3MymEWKv9fV5G9C0fFU3MPqxyqGwf+vPI87yZb4/TTqcexh+2u\n1R5Wxx5W6Vv9leccEfFustmo71bu8jGymfR3VT7GgCGydWBExEcjO40EEXE02Tv5vksBtGOYSgCV\nhN8HnBkRQ7P4/qm3Yr5Atvjwk8CHUko/h+xEdmTHi7dU7n8m8GhEvAjcAPynlNKvq2vZx+391l3x\nEWAx2SujzcBASul7la9tImuK/48s4O2eAq2sm/kTsrdCj1f24X+yZ4r2NrJfrn+JiLHKthuB/xjZ\nO0g+n7J3YXyQ7Dj8ROXjOrJ1EPtyPvAK2YLnHVQaY0rp/wIDwB1kr+QWVx6TA4zx2oP8jKpV/7z2\nWcNedz74z+ZgY1wHDEQ2vT79Vdr+HyCbGfhTsiayk2zdyIdSSq/A7uaxpepbPk0WkHaSrXX6L1WH\neo4A/jfZH7yfk80+/ElK6beVr78f+Glkrza/RXaY51pUNHl7GGSHhs8i62FPkq2LuhjsYftgDzvQ\nA8y+h/0H4OeV59NXgBtTSl+sPNaLKaUXpj6AXwMvppSmDhkeB/yg0sP+nuyF4vTTv7SkSOnAvx8R\ncTPZf+COlNLxlW0LyJr60WS/ECtSStMXqLWlyGaqjkspXdnsWiQdnD1sb/Ywqf5mEqb+kGwB2leq\nGtFngX9JKf1VRFxOdpbXfZ7lVJKayR4maa4dNEzB7mOXd1Y1op+RnXtpR+WY92hK6VXHoyWpFdjD\nJM2lWtdMHZ5S2gG7F8/N5m2rktRs9jBJdVOvBegHn96SpNZlD5NUs1rPM7UjIo6omiJ/YX93jAib\nlNSBUkqtfI6rGfUw+5fUmWbbv2Y6MxXsfb6KbwKrKrc/RuU8OAcoqi0+BgcHm16D++G+FOGjBdXc\nw5r9s/T51b770i770W77UouDhqmI+CrZCdiOiYhnIuLjZOer6IuIJ8jObXPdgR5DkprFHiZprh30\nMF9K6aP7+dIH6lyLJNWdPUzSXGvHM6DPmd7e3maXUBftsh/gvkgz1U7Pr3bZl3bZD2ivfanFjM4z\nlWuAiDTXY0hqLRFBau0F6DNi/5I6Ty39y5kpSZKkHAxTkiRJORimJEmScjBMSZIk5WCYkiRJysEw\nJUmSlINhSpIkKQfDlCRJUg6GKUmSpBwMU5IkSTkYpiRJknIwTEmSJOVgmJIkScrBMCVJkpSDYUqS\nJCkHw5QkSVIOhilJkqQcDFOSJEk5GKYkSZJyMExJkiTlYJiSJEnKwTAlSZKUQ64wFREXR8QjEfHT\niLg1Ig6tV2GSNNfsYZLqoeYwFRELgQuBE1NKxwPzgQ/XqzBJmkv2MO1PuVzm0hUrKJfLzS5FBZH3\nMN8hQFdEzAcOAybyl6SiGx/fxsqVQ5x22iArVw4xPr6t2SVJ+2MP017K5TJr+vr41G23saavz0Cl\nGYmUUu3fHHERcA3wK+A7KaXz93GflGcMFcv4+Db6+r7A1q1DQBewiyVLBhkZuZDFi49udnlqkIgg\npRTNruNgDtbD7F+dZSpIXTM2xgJgJ3BlTw/rRkbo7u5udnlqkFr6V57DfN3Ah4CjgYXA6yPio7U+\nntrDwMDGqiAF0MXWrUMMDGxsYlXSq9nDVG16kAJYAFwzNuYMlQ5qfo7v/QDwdErpXwEi4g7gPcBX\np99x7dq1u2/39vbS29ubY1i1su3bJ9kTpKZ0MTEx2Yxy1CCjo6OMjo42u4zZmlEPs391hlJ/P6ur\ngtSUBcDqsTFK/f187utfb0ZpmmP16F81H+aLiHcDNwMnA78GNgA/Sil9cdr9nCbvICtXDnHrrZex\nd6DaxXnnXc8ttww2qyw1WBEO882kh9m/Ose+ZqbAQ32dqKGH+VJKPwRuBx4CfgIEMFzr46k9lEqr\nWLJkENhV2ZKtmSqVVjWtJmlf7GGq1t3dzbqREa7s6WFnZZtBSjOVawH6jAbwlV3HGR/fxsDARiYm\nJlm4cB6l0ioXn3eYIsxMzYT9q/NMzVCtHhtjvUGqI9XSvwxTkurOMKUiK5fLlPr7GRgeNkh1IMOU\npJZgmJJUVA1dMyVJkiTDlCRJUi6GKUmSpBwMU5IkSTkYpiRJknIwTEmSJOVgmJIkqUq5XObSFSvm\n9OLGjRhDjWOYUt2Nj29j5cohTjttkJUrhxgf31bIMSR1nqkzoH/qtttY09c3J2GnEWOosTxpp+pq\nfHwbfX1fYOvWIbKLHWfX5hsZubBul5RpxBjKx5N2qoimX+x4Lq7N14gxlI8n7VTTDQxsrAo5AF1s\n3TrEwMDGQo0hqbNMDzkAC4BrxsbqNnvUiDHUHIYp1dX27ZPsCTlTupiYmCzUGJI6S6m/n9VVIWfK\nAmD12Bil/v5CjKHmMEyprhYtmgfsmrZ1FwsX1u+p1ogxJHWWgeFh1vf0sHPa9p3A+p4eBoaHCzGG\nmsO/PqqrUmkVS5YMsifsZOuZSqVVhRpDUmfp7u5m3cgIV1aFnXqvZ2rEGGoOF6Cr7sbHtzEwsJGJ\niUkWLpxHqbSq7gvDGzGGaucCdBXV1Lqm1WNjrJ+jkNOIMVS7WvqXYUpS3RmmVGTlcplSfz8Dw8Nz\nFnIaMYZqY5iS1BIMU5KKylMjSJIkNZhhSpIkKQfDlCRJUg6GKUmSpBwMU5IkSTkYpiRJknLIFaYi\n4k0RcVtEPB4Rj0bEKfUqTJLmmj1MUj3knZm6Ebg7pXQs8C7g8fwlqejGx7excuUQp502yMqVQ4yP\nbyvkGOoI9jC9ypYtD9Pfv4xHHvlJocdQ49R80s6IeCPwUEppyUHu50nvOsj4+Db6+r7A1q1DQBdT\n180bGbmwbpd7acQYyqcIJ+2cSQ+zf3WWV155hfXrP8M///PXOPPMCb797YUcfvhHueyya5k/f35h\nxlA+jT5p52LgFxGxISIejIjhiHhdjsdTGxgY2FgVcgC62Lp1iIGBjYUaQx3BHqa9XHLJh1m48EbO\nOWeCQw+Fc86Z4K1v/TyXXPLhQo2hxssTg+cDJwKfTCmNRcTngc8Ag9PvuHbt2t23e3t76e3tzTGs\nWtn27ZPsCTlTupiYmCzUGJqd0dFRRkdHm13GbM2oh9m/OsdRRx3DYYe9ste2ww57haOOenuhxtDs\n1KN/5TnMdwRwX0rpbZXP/xC4PKV09rT7OU3eQVauHOLWWy9j77Czi/POu55bbnlVzm7ZMZRPQQ7z\nHbSH2b86y3PPPceNN57MsmXP7972rW+9hYsvHmPRokWFGUP51NK/ap6ZSintiIhnI+KYlNKTwPuB\nx2p9PLWHUmkV998/+Kr1TKXShYUaQ+3PHqbpjjzySCJO5+/+bvvuba997aK6hpxGjKHGq3lmCiAi\n3gV8GXgN8DTw8ZTSv027j6/sOsz4+DYGBjYyMTHJwoXzKJVW1X1heCPGUO2KMDMFB+9h9i+p89TS\nv3KFqRkNYDOSOk5RwtTB2L+kztPod/NJkiR1PMOUJElSDoYpSZKkHAxTkiRJORimJEmScjBMSZIk\n5WCYkiRJysEwJUmSlINhSpIkKQfDlCRJUg6GKUmSpBwMU5IkSTkYpiRJknIwTEmSJOVgmJIkScrB\nMCVJkpSDYUqSJCkHw5QkSVIOhilJkqQcDFOSJEk5GKYkSZJyMExJkiTlYJiSJEnKwTAlSZKUQ+4w\nFRHzIuLBiPhmPQqSpEaxf0mqh3rMTH0aeKwOjyNJjWb/kpRbrjAVEUcCZwFfrk85ktQY9i9J9ZJ3\nZuoGYDWQ6lCLJDWS/UtSXcyv9RsjYhmwI6X0cET0ArG/+65du3b37d7eXnp7e2sdVlILGh0dZXR0\ntNllzJj9S9KUevSvSKm2F2URsQ5YCbwCvA54A3BHSunPpt0v1TqGpGKKCFJK+w0ozWb/krQ/tfSv\nmsPUtIHfB1yaUjpnH1+zGUkdptXDVDX7l6RqtfQvzzMlSZKUQ11mpg44gK/spI5TpJmpA7F/SZ3H\nmSlJkqQGM0xJkiTlYJiSJEnKwTAlSZKUg2FKkiQpB8OUJElSDoYpSZKkHAxTkiRJORimpA5RLpe5\ndMUKyuVys0uRpLYyv9kFtLr+y/t5cseTr9p+zBHHMPzZ4SZUJM1euVxmTV8fq8fGWDM+zrqREbq7\nu5tdlhpgfHwbAwMb2b59kkWL5lEqrWLx4qObXZY0ayklrrjiCq699loiWusCC4apg3hyx5N8f/H3\nX/2F8cbXItViKkhdMzbGAuCasTHW9PUZqDrA+Pg2+vq+wNatQ0AXsIv77x9kZORCA5UKZ/PmzXzp\nS1/i5JNPZvny5c0uZy8e5pPa2PQgBewVqDzk194GBjZWBSmALrZuHWJgYGMTq5Jm56abbmLp0qWs\nWbOGl156iSuuuIKlS5dy0003Nbu03QxTUhsr9fezuipITVkArB4bo9Tf34yy1CDbt0+yJ0hN6WJi\nYrIZ5Ug16e/vZ+3atbz88ssAvPzyywwNDdHfQv3LMCW1sYHhYdb39LBz2vadwPqeHgaGXffXzhYt\nmgfsmrZ1FwsX2vpVHBFBRFAulznuuOMol8u7t7UKf6OkNtbd3c26kRGurApUO4Ere3pcM9UBSqVV\nLFkyyJ5AtYslSwYplVY1rSapFk899RQbNmzgkUceYcOGDTz11FPNLmkvkVKa2wEi0lyPMZd8N5/a\nQfW7+dY3IEhFBCml1nnZWKOi9y/Y826+iYlJFi703XzSwdTSvwxTUocol8uU+vsZGB6e8xkpw5Sk\nojJMSWoJhilJRVVL/3LNlCRJUg6GKUmSpBwMU5IkSTkYpiRJknIwTEmSJOVQc5iKiCMj4t6IeDQi\ntkTERfUsTJLmkj1MUr3kmZl6BbgkpbQUOBX4ZES8oz5lSZ2lXC5z6YoVXni4sexhkupifq3fmFJ6\nHni+cvuXEfE4sAj4WZ1qm2kdrLtiHWuuXdNS1+mZDc+y3tmqz06+Znzcy7w0SLN72MVXX82DL7yw\nV99KKXHi4Ydzw1VXNaKEupk6y/r27ZMsWuRZ1juFf7v2qDlMVYuI3wNOAB6ox+PNxl2b72LLl7Zw\n98l3s2z5skYPXxdP7niS7y/+/qu/MN74WtRYU0HqmrExFgDXjI2xpq/PQNVgzehh7z3hBIafeIJf\nnXTS7m2HjY1x0bHHNqqEuhgf30Zf3xfYunUI6AJ2cf/9g4yMXGiganP+7doj9wL0iHg9cDvw6ZTS\nL/OXNHMpJe64/g4+8dIn2Lx+M56pWEUyPUgBewUqD/k1RrN62PJly3jno4/CVN9KiXc+9hjnnnVW\no0qoi4GBjVVBCqCLrVuHGBjY2MSqpMbKNTMVEfPJmtCmlNI39ne/tWvX7r7d29tLb29vnmF3u2vz\nXSzdspQgOG7Lcdx9R3Fnp9R5Sv39rK4KUlMWAKvHxij19/O5r3+9GaXN2ujoKKOjo80uY9Zm0sPm\nqn9FBJedey4fe/BBfnXSSRz24x+zevnywi1X2L59kj1BakoXExOTzShHmrV69K9c1+aLiK8Av0gp\nXXKA+8zJta1SSlxw6gWc/8D5BEEisemUTdx8382Fa0a9q3r3OVX6vvH3MbpxtPEFqSH2NTMFsBO4\nsqen0If6inJtvoP1sLm+Nl9KiVMvuIAHzj+fUzZt4r6bi9e/Vq4c4tZbL2PvQLWL8867nltuGWxW\nWWqAdv3b1dBr80XEe4HzgNMj4qGIeDAizqz18WarelYK2Gt2SiqC7u5u1o2McGVPDzsr29ohSBVF\ns3tYpQYuO/dc3nDTTYWclQIolVaxZMkgsKuyZRdLlgxSKq1qWk1So+V5N98/AofUsZZZefgfH+aF\nnhd4Jp6promX/+Hlwh3qO+aIY/a5YO+YI45pfDFqqKlANfVuvvUGqYZpdg+bsnzZMsZ+8pPCrZWa\nsnjx0YyMXMjAwPVMTEyycOE8SiUXn3cC/3btkesw34wGmONpcqkdlMtlSv39DAwPt0WQKsphvoOx\nf0mdp5b+ZZiSVHeGKUlF1dA1U5IkSTJMSZIk5WKYkiRJysEwJUmSlINhSpIkKQfDlCRJUg6GKalD\nlMtlLl2xwgsoS1Kd5brQcStIKbHuinWsuXZNIS/FoNb0+2efzdOTk1Q/oxLwtnnzeOjOO5tVVs2m\nrgO4emyMNePjnmW9BVx89dU8+MILe/WtlBInHn44N1x1VRMrUzuZnJzk7PeczZ0/uJN584o/fzI6\nCnW61nhdFT5M3bX5LrZ8aQt3n3x34S4jo9Z1ek8PDx96KJx66p6N993HB37zm+YVVaPpF1S+ZmyM\nNX19Bqome+8JJzD8xBP86qSTdm87bGyMi449tolVqd2UVpeY/8B8rr78av5y/V82u5zcWjVMFTqm\nppS44/o7+MRLn2Dz+s14pmLVy/qBAbruuQemnlMp0XXPPXy2YDMG04MUsFeg8pBf8yxftox3Pvro\nXs+xdz72WGGv0afWMzk5yfdu+h5/wV9w7/+4l8nJyWaX1LYKHabu2nwXS7csJQiO23Icd99xd7NL\nUpuYN28enzjtNLj//mzD/ffzX08/vXDT5KX+flZXBakpC4DVY2OU+vubUZbILllx2bnnctiDDwJw\n2I9/zOrly12uoLoprS5xxq4zCIIzdp3B1Zdf3eySajI6CmvXZh9DQ3tuj442s6q9FfbafCklLjj1\nAs5/4HyCIJHYdMombr7vZpuR6mJycpI3nn46uwYH6Roa4sV77y1cmNrXzBTATuDKnp45O9Tntflm\nJqXEqRdcwAPnn88pmzZx3832L9XH5OQkp7/xdAZ3De7+GznUNcS9Lxavj1WbClJzqaOuzVc9KwU4\nO6W62z079fnPF3JWCqC7u5t1IyNc2dPDzsq2uQ5Smrmp2ak33HSTs1Kqq+pZKaDws1OtrrAzU1df\nfDUvPPjqd8IcfuLhXHVDsda1qHVNTk7ynrPP5gd3FvudMNXv5lvfgCDlzNTMpZS4Yt06rl3jO5JV\nP2f//tlMPj3J9Lckz3vbPO58qHjvSJ7SiAXotfSvwoYpSbNTLpcp9fczMDw85zNShilJRWWYktQS\nDFOSiqqj1kxJkiS1AsOUJElSDoYpSZKkHAxTkiRJORimJEmScjBMSZIk5ZArTEXEmRHxs4h4MiIu\nr1dRktQI9jBJ9VBzmIqIecB/B84AlgIfiYh31KuwVjTaSldVzKFd9gPcF9Wu03pYOz2/2mVf2mU/\noL32pRZ5ZqbeDTyVUtqWUvoN8LfAh+pTVmtqlydLu+wHuC/KpaN6WDs9v9plX9plP6C99qUWecLU\nIuDZqs+fq2yTpCKwh0mqCxegS5Ik5VDztfki4g+AtSmlMyuffwZIKaXPTrufF7aSOlCrX5tvJj3M\n/iV1poZd6DgiDgGeAN4P/BPwQ+AjKaXHa3pASWoge5ikeplf6zemlH4bEZ8CvkN2uPBmm5CkorCH\nSaqXmmemJEmSNIcL0NvlZHgRcWRE3BsRj0bEloi4qNk15RUR8yLiwYj4ZrNrySMi3hQRt0XE45X/\nn1OaXVMtIuLiiHgkIn4aEbdGxKHNrmmmIuLmiNgRET+t2rYgIr4TEU9ExD0R8aZm1lgre1hrsn+1\nHnvYHIWpNjsZ3ivAJSmlpcCpwCcLvC9TPg081uwi6uBG4O6U0rHAu4DCHaKJiIXAhcCJKaXjyQ69\nf7i5Vc3KBrLf82qfAb6bUno7cC9wRcOryske1tLsXy3EHpaZq5mptjkZXkrp+ZTSw5XbvyR7whf2\nXDQRcSRwFvDlZteSR0S8EfijlNIGgJTSKymlF5tcVq0OAboiYj5wGDDR5HpmLKX0D8DOaZs/BPxN\n5fbfAH/a0KLqwx7WguxfLavje9hcham2PBleRPwecALwQHMryeUGYDVQ9MVyi4FfRMSGypT/cES8\nrtlFzVZKaQL4HPAMsB0op5S+29yqcjs8pbQDsj/kwOFNrqcW9rDWZP9qMfawjCftnKGIeD1wO/Dp\nyqu7womIZcCOyqvUqHwU1XzgROCLKaUTgV+RTc0WSkR0k70KOhpYCLw+Ij7a3Krqruh/+NpC0XuY\n/as12cMycxWmtgNHVX1+ZGVbIVWmLm8HNqWUvtHsenJ4L3BORDwNfA04LSK+0uSaavUc8GxKaazy\n+e1kzaloPgA8nVL615TSb4E7gPc0uaa8dkTEEQAR8RbghSbXUwt7WOuxf7UmexhzF6Z+BPz7iDi6\nsqr/w0CR33nxv4DHUko3NruQPFJKa1JKR6WU3kb2f3JvSunPml1XLSpTsM9GxDGVTe+nmItSnwH+\nICL+XUQE2X4UbSHq9FmCbwKrKrc/BhTxj7c9rMXYv1qWPYwcJ+08kHY6GV5EvBc4D9gSEQ+RTfet\nSSl9u7mVCbgIuDUiXgM8DXy8yfXMWkrphxFxO/AQ8JvKv8PNrWrmIuKrQC/wOxHxDDAIXAfcFhH/\nGdgGrGhehbWxh6kBCt+/wB62+3E8aackSVLtXIAuSZKUg2FKkiQpB8OUJElSDoYpSZKkHAxTkiRJ\nORimJEmScjBMSZIk5WCYkiRJyuH/AyMr8KzgYp8cAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAJNCAYAAAB0hdJBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABhwklEQVR4nO3dd1yd5f3G8c+XDQkzkAnZRI0xZkDcUeuuVq3WPZK4t9bWqq2trXZZa4dWrVYzbBy1Wqv+tLW11aB1BMiekB0yDyMEwob79wcnFtMMknB4zrjer9d5wXnOeeAKjlw89/3ctznnEBEREZHgEOV1ABERERH5L5UzERERkSCiciYiIiISRFTORERERIKIypmIiIhIEFE5ExEREQkiMV4H6CqZmZlu8ODBXscQERER2afi4uJy51zW7l4Lm3I2ePBgioqKvI4hIiIisk9mtnZPr2lYU0RERCSIqJyJiIiIBBGVMxEREZEgonImIiIiEkRUzkRERESCiMqZiIiISBBRORMREREJIipnIiIiIkFE5UxEREQkiKiciYiIiAQRlTMRERGRIKJyJiIiIhJEVM5EREREgojKmYiIiEgQUTkTERERCSIqZyIiIiJBROVMREREJIionImIiIgEEZUzERERkSCiciYiIiISRFTOxDNbtzdw8TOfsrWmwesoIiIiQUPlTDzz+L9KKVxTyePvl3odRUREJGjEeB1AIs8hD/yNxpa2L57P/HwdMz9fR3xMFMt/fJaHyURERLynK2fS7T76zsmcO6Y/0VEGgAFfPaIvH917srfBREREgoDKmXS73ikJJMfH0NrmMMABs1dXkhwf63U0ERERz6mciSfWVdQBcPNJw5iYm0l5bRO3vzyHlta2fZwpIiIS3lTOxBOnHd4HgIvzcnjh2qP40bmH8/7SrTzw10U45zxOJyIi4h3dECCeKCjxMTAjicGZPQCYdOxgttY08OQHK+mdHM/dpx/icUIRERFvqJxJt2tqaeOTlRVcMG7Al45/+/RD8NU08vi/V5CVksBVRw/yKKGIiIh3VM6k2xWtraSuqZWJuVlfOm5m/PTrR1BR28QP3lxEVs84zhzVz6OUIiIi3tCcM+l2BSXlxEQZxw7P/J/XYqKj+N3l4xiTk8Ydr8zjs1UVHiQUERHxjsqZdLuCEh/jB6XTM373F24T46KZOimfnPRErn+hiGWbt3dzQhEREe+onEm38tU0smTTdiaOyNrr+9J7xPHCtUeRFBfNpKmzKauq66aEIiIi3lI5k271UakPgBP3Uc4ABqQlMuOaCdQ1tXL11NlU7WgKdDwRERHPqZxJtyoo8dGrRxwj+6V06v2H9k3huavzKKuq55oZhdQ1tQQ4oYiIiLdUzqTbtLU5Piot54TcTKL8+2p2xlFDe/H4pWOYv34bt700V7sIiIhIWFM5k26zZNN2KnY07XO+2e6cOaofD503in8v28p331ioXQRERCRsaZ0z6TazStrnm52Qu//lDODKowexdXtD+yK1yfHcc8ahXRlPREQkKKicSbcpKPExsl8KWcnxB/w1vnnaCHy1jTz5wUqyesYz+bghXZhQRETEexrWlG5R29hC8dqqAxrS7MjMePi8UZx6WB9+9H9LeGfBpi5KKCIiEhxUzqRbfLqygpY2x8QR/7srwP6KiY7iicvGMm5gOt/80zw+WVneBQlFRESCg8qZdIuCEh9JcdHkDcrokq+XGBfN85PyGNQriRtfKGbJRu0iICIi4UHlTLpFQamPY4b2Ii6m6/6VS0uKY8Y1E+gRH8OkabNZX6ldBEREJPSpnEnAra3YwdqKuoOeb7Y7/dMSeeHaCTQ2tzJp6mwqahu7/HuIiIh0J5UzCbgC/xIagShnACP6JPP85Hw2bKvnmhlF2kVARERCWkDLmZmdaWbLzWyFmd23m9d/bWbz/I8SM9vW4bVJZlbqf0wKZE4JrFkl5eRkJDK4V1LAvkf+4AyeuGwsC8u2ccuLc2jWLgIiIhKiAlbOzCwaeBI4CxgJXGZmIzu+xzn3TefcGOfcGOAJ4C/+czOAB4GjgAnAg2aWHqisEjhNLW18urKciblZmHV+y6YDcfrhffnx+Ufw4XIf972uXQRERCQ0BfLK2QRghXNulXOuCXgFOG8v778MeNn/+RnAP51zlc65KuCfwJkBzCoBMmddFTuaWgM2pLmry48ayF2n5vL6nDIe+fvybvmeIiIiXSmQOwQMANZ3eF5G+5Ww/2Fmg4AhwL/3cu6AAGSUACso8RETZRw7rFe3fc87T8lla00jv5+1kt7J8VxzvHYREBGR0BEs2zddCrzmnGvdn5PM7AbgBoCBAwcGIpccpIJSH+MGppOcENtt33PnLgLlNY08/M4SspLj+dqR/bvt+4uIiByMQA5rbgByOjzP9h/bnUv575Bmp891zj3rnMtzzuVlZXXPsJl0XnltI4s2bO+SXQH2V3SU8fhlY8kflMHdr87jPyu0i4CIiISGQJazQiDXzIaYWRztBeytXd9kZocC6cCnHQ6/B5xuZun+GwFO9x+TEPJxaXsh6q75ZrtKiI3mD1fnMTSzJzf+sZhFG6o9ySEiIrI/AlbOnHMtwG20l6qlwKvOucVm9pCZndvhrZcCr7gOt9Y55yqBh2kveIXAQ/5jEkJmlfjI6BHHqP6pnmVITYpl+jX5pCTEMHlaIesqtIuAiIgENwuX5Qby8vJcUVGR1zHEr63NMeGn73PssEwev2ys13FYsbWGC5/+lPSkWF67+Vgye8Z7HUlERCKYmRU75/J295p2CJCAWLJpO+W1TZzo0ZDmrob3Tmbq5Dw2b2/gmumF7GjULgIiIhKcVM4kIApK27dsOsGDmwH2ZPygDH532TgWbajmppnFNLVoFwEREQk+KmcSEAUlPg7rl0Lv5ASvo3zJqSP78NOvH8FHpeXc+/oC2trCY1hfRETCh8qZdLkdjS0Ur63yZAmNzrh0wkC+ddoI3pi7gZ//fZnXcURERL4kWBahlTDy6coKmlsdJ+YGx3yz3bntK8Px1TbybMEqeifHc90JQ72OJCIiAqicSQAUlPpIjI1m/ODg3avezHjwa4fjq2nkx+8sJSs5nvPGaIcwERHxnoY1pcsVlPg4Zlgv4mOivY6yV9FRxq8vGcNRQzL49p/n85H/JgYREREvqZxJl1pXUceaijom5gbnfLNdJcRG8+zVeQzL6slNfyxmYZl2ERAREW+pnEmXmuW/+uTVlk0HIjUxlhnXTCAtKY4p02eztmKH15FERCSCqZxJlyoo8ZGdnsiQzB5eR9kvfVISmHHNBFrbHFc9PxtfTaPXkUREJEKpnEmXaW5t49OVFUwckYWZeR1nvw3v3ZPnJ+eztaaBKdNnU6tdBERExAMqZ9Jl5qytoraxhYlBvITGvowbmM5TV4xj6aYabvqjdhEQEZHup3ImXaag1Ed0lHHs8F5eRzkoXzm0Dz+74Ag+XlHOt/88X7sIiIhIt9I6Z9JlCkrKGTcwjZSEWK+jHLSL83Lw1TTy6HvLyUqO54GzDwvJoVoREQk9unImXaKitpFFG6tDekhzV7ecNIzJxw7m+Y9X84ePVnkdR0REIoSunEmX+HhFOc6F1hIa+2Jm/OCckfhqG/npu8vI7BnPBeOyvY4lIiJhTuVMusSsEh/pSbGMGpDqdZQuFRVl/OriI6msbeI7ry0go0ccJx3S2+tYIiISxjSsKQfNOcdHpeUcn5tFdFT4zcuKj4nmmavHk9snmVtenMP89du8jiQiImFM5UwO2tJNNfhqGkNmy6YDkZIQy4wp+WT0iGPK9EJWl2sXARERCQyVMzloBSG4ZdOB6J2SwAvXTADg6qmfs7WmweNEIiISjlTO5KAVlPg4tG8yfVISvI4ScEOzejJ1cj7lNU1MnlpITUOz15FERCTMqJzJQalraqFoTVXYXzXraExOGk9fOY6SLTXc+MdiGltavY4kIiJhROVMDspnqypoam0Lq/XNOuOkQ3rzyIWj+WRlBXe/ql0ERESk62gpDTkos5b7SIiNIm9wutdRut2F47Px1Tby878tI6tnPA9+baR2ERARkYOmciYHpaC0nKOH9iIhNtrrKJ64ceJQtm5vZOp/VtMnJYGbTxrmdSQREQlxKmdywNZX1rG6fAdXHzPI6yieMTMeOPswfLWNPPL3ZWQlx/ON8dpFQEREDpzKmRywWSWRsYTGvkRFGb+8aDSVOxq59/UF9OoRx8mHahcBERE5MLohQA5YQYmPAWmJDM3s4XUUz8XHRPP7K8dzaN/2XQTmrqvyOpKIiIQolTM5IM2tbXyysoKJI7I0Cd4vOSGW6VMmkJUczzXTC1npq/U6koiIhCCVMzkgc9dto7axhRNHhO+WTQciKzmeF66ZQJQZVz8/my3btYuAiIjsH5UzOSAFJT6io4xjh6uc7WpwZg+mTcmnqq6JSVNns127CIiIyH5QOZMDUlDqY2xOGikJsV5HCUqjs9P4/ZXjWbG1lhteKKKhWbsIiIhI56icyX6r3NHEwg3VEX+X5r5MHJHFLy86ks9WVXL3q/No1S4CIiLSCVpKQ/bbR6U+nNMSGp1x/tgB+Goa+cm7S8nsuZgfnXu4bqAQEZG9UjmT/VZQUk5aUixHDEj1OkpIuH7iULbWNPCHj9p3Ebj15OFeRxIRkSCmcib7xTnHR6U+jh+eSXSUrgB11v1nHYavppFH31tOVs94Ls7P8TqSiIgEKZUz2S/LNtewtaZRQ5r7KSrK+MU3jqRiRxP3v7GQXj3jOOWwPl7HEhGRIKQbAmS/FOzcsilX5Wx/xcVE8fSV4xnZL4VbX5pD8VrtIiAiIv9L5Uz2S0Gpj0P6JNM3NcHrKCGpZ3wM06bk0yclgWtnFLJia43XkUREJMionEmn1TW1ULi6ionaFeCgZPZs30UgJqp9F4HN1dpFQERE/kvlTDrt81WVNLW2ab5ZFxjUqwfTp0ygur6ZSVNnU12vXQRERKSdypl02qwSHwmxUeQPzvA6SlgYNSCVZ67KY1V5LddrFwEREfFTOZNOKyj1cdSQXiTERnsdJWwcn5vJYxePYfbqSu56RbsIiIiIypl0UllVHat8OzSkGQDnHtmf758zkr8v3swP3lyEcypoIiKRTOucSacUlJQDcKJuBgiIa48fwtaaBp6ZtYo+KQnccUqu15FERMQjKmfSKQUlPvqnJjAsq6fXUcLWvWccim97I7/6ZwlZyfFcNmGg15FERMQDKmeyT82tbfxnRTlnj+6nTbsDKCrKeOQbo6nY0cT33lhIZs94ThupXQRERCKN5pzJPs1bv42axhbNN+sGsdFRPHXFOI4YkMptL82haE2l15FERKSbqZzJPhWU+IgyOG6Y5pt1hx7xMUydnE//tESunVFEyRbtIiAiEklUzmSfCkp8jMlJIzUp1usoEaOXfxeBuJgoJk2dzabqeq8jiYhIN1E5k72q3NHEgg3VnDiit9dRIk5ORhLTp+RT09DSvotAnXYREBGJBCpnslcfryjHObSfpkcO75/Ks1ePZ015Hde9UKhdBEREIkBAy5mZnWlmy81shZndt4f3XGxmS8xssZm91OF4q5nN8z/eCmRO2bOCEh9pSbGMzk7zOkrEOnZYJr+65EiK1lZx+8tzaWlt8zqSiIgEUMCW0jCzaOBJ4DSgDCg0s7ecc0s6vCcXuB84zjlXZWYdx87qnXNjApVP9s05x0elPo4bnkl0lJbQ8NI5o/tTXtPID99ewvffXMxPvz5Ky5qIiISpQK5zNgFY4ZxbBWBmrwDnAUs6vOd64EnnXBWAc25rAPPIflq+pYYt2xs5MVdLaASDyccNYWtNI099uJLeyfF887QRXkcSEZEACOSw5gBgfYfnZf5jHY0ARpjZf8zsMzM7s8NrCWZW5D9+fgBzyh4UlPgAOEHzzYLGPWccwjfGZ/Pbf5Uy87O1XscREZEA8HqHgBggFzgJyAYKzOwI59w2YJBzboOZDQX+bWYLnXMrO55sZjcANwAMHKitbrpaQUk5I/r0pF9qotdRxM/M+NkFR1BR28gP3lxEZs94zhzV1+tYIiLShQJ55WwDkNPhebb/WEdlwFvOuWbn3GqghPayhnNug//jKuBDYOyu38A596xzLs85l5eVpaG3rlTf1MrsNZVM1JBm0ImNjuLJK8YxOjuNO16Zy+zV2kVARCScBLKcFQK5ZjbEzOKAS4Fd77r8K+1XzTCzTNqHOVeZWbqZxXc4fhxfnqsmAfbZ6gqaWtq0ZVOQSopr30UgOz2R62YUsnyzdhEQEQkXAStnzrkW4DbgPWAp8KpzbrGZPWRm5/rf9h5QYWZLgA+Ae5xzFcBhQJGZzfcf/3nHuzwl8ApKfMTHRDFhSIbXUWQPMnrE8cI1E0iIjWbS1Nls2KZdBEREwoE557zO0CXy8vJcUVGR1zHCximPfciA9CReuGaC11FkH5Zu2s7Fv/+UPqkJPH3FOL7310X87vKx9E5O8DqaiIjsgZkVO+fydveadgiQ/7FhWz0rfTuYmKu7NEPBYf1SePbqPNZV1HHZHz6jcE0lj79f6nUsERE5QF7frSlBaOcSGidqvlnImDxtNk2tbZTXNgEw8/N1zPx8HfExUSz/8VkepxMRkf2hK2fyPwpKfPRLTWB4755eR5FO+ug7J3PumP7E+HdyiIkyzhvTn4/uPdnjZCIisr9UzuRLWlrb+HhFORNzs7Q9UAjpnZJAcnwMrc4RZdDS5qhrbNG8MxGREKRyJl8yv2wbNQ0tWkIjBJXXNnLFUYN49cZjSI6PYVZJOVu2N3gdS0RE9pPKmXzJrJJyogyOH66bAULNM1fl8ePzR5E3OIPXbzmW6Cjjtpfm0Nza5nU0ERHZDypn8iUFJT6OzEkjNSnW6yhyEEb0SebnFx5B4Zoqfv63ZV7HERGR/aByJl/YVtfEgrJt2rIpTJw3ZgCTjhnE8x+v5p0Fm7yOIyIinaRyJl/4eEU5bQ7NNwsj3zt7JGMHpvGd1+azYqu2eBIRCQUqZ/KFghIfKQkxHJmd6nUU6SJxMVE8dcU4EmKjuWnmHHY0tngdSURE9kHlTABwzjGrxMfxuZnEROtfi3DSLzWRxy8byypfLfe+voBw2bJNRCRc6W9hAaBkSy1btjdqvlmYOm54Jt86/RD+b8Empn+yxus4IiKyFypnAvx3yybNNwtfN584jFMP68NP3llK0ZpKr+OIiMgeqJwJAAWlPob37kn/tESvo0iAREUZj118JAPSE7n1pTn4ahq9jiQiIruhcibUN7Xy+epKbXQeAVITY3n6ivFsq2vm9pfn0KIFakVEgo7KmfD56gqaWto0pBkhRvZP4SdfP4LPVlXyy3+UeB1HRER2oXImFJSUEx8TxVFDMryOIt3kG+Ozufyogfx+1kreW7zZ6zgiItKByplQUOpjwpAMEmKjvY4i3egH54xkdHYq3351PqvLd3gdR0RE/FTOItzGbfWs2Fqr+WYRKCE2mqeuGEd0tHHzzGLqmrRArYhIMFA5i3BaQiOyZacn8dtLx7J8Sw3fe2ORFqgVEQkCKmcRrqDUR9+UBHJ79/Q6injkxBFZ3HXKCN6Yu4GZn6/zOo6ISMRTOYtgLa1tfFxazsQRmZiZ13HEQ7d/ZTgnHZLFQ28vZt76bV7HERGJaCpnEWx+WTXbG1o0pClERRm/uWQMvZMTuGVmMZU7mryOJCISsVTOIlhBiY8og+OHZ3odRYJAWlIcv79yPOU7mrjzlbm0tmn+mYiIF1TOIlhBqY/R2WmkJcV5HUWCxBHZqTx07uF8VFrOb97XArUiIl5QOYtQ1XXNzF+/TUOa8j8uyc/hovHZPPHvFfx72Rav44iIRByVswj18Ypy2hycOEJDmvJlZsbD549iZL8U7nplHusq6ryOJCISUVTOIlRBiY/khBiOzE7zOooEoYTYaH5/5XgAbn6xmIbmVo8TiYhEDpWzCOSco6DUx/HDM4mJ1r8CsnsDeyXx60vGsHjjdn7w5iKv44iIRAz9zRyBVmytZVN1g+abyT6dclgfbjt5OK8WlfGnQi1QKyLSHVTOItAsbdkk++Gbp43g+OGZfP/NxSwsq/Y6johI2FM5i0AFpeUMy+rBgLREr6NICIiOMn576Rgye8Rx84vFbKvTArUiIoGkchZhGppb+XxVha6ayX7p1TOeJ68Yx5btDXzzT/No0wK1IiIBo3IWYWavrqSxpU3lTPbb2IHp/OCckXyw3MfvPljhdRwRkbClchZhCkp8xMVEcfSQXl5HkRB05dGD+PrYAfz6/ZIv5i6KiEjXUjmLMLNKfEwYnEFiXLTXUSQEmRk/+fooRvRO5s5X5lJWpQVqRUS6mspZBNm4rZ7SrbVM1K4AchCS4mL4/VXjaW113PriHBpbtECtiEhXUjmLIB+VagkN6RpDMnvw6EVHMr+smofeXuJ1HBGRsKJyFkEKSsrpkxLPIX2SvY4iYeDMUX258cShvPj5Ol4vLvM6johI2FA5ixCtbY6PV5QzMTcLM/M6joSJe04/hKOHZvDdNxayZON2r+OIiIQFlbMIMb9sG9X1zRrSlC4VEx3FE5eNIy0plptfLKa6vtnrSCIiIU/lLEIUlPgwg+OH62YA6VpZyfE8efk4NlTV861X52uBWhGRg6RyFiEKSnyMzk4jvUec11EkDOUNzuC7Xz2M95du4fcFK72OIyIS0lTOIkB1XTPz1m/jxFxdNZPAmXLcYM4Z3Y9fvrecT1aUex1HRCRkqZxFgP+sLKfNaQkNCSwz45ELRzM0qye3vzyXTdX1XkcSEQlJKmcRoKDER3JCDGNy0ryOImGuR3wMv79yPA3Nrdz64hyaWtq8jiQiEnJUzsKcc46CEh/HDcskJlr/uCXwhvfuyS++cSRz1m3jp+8u9TqOiEjI0d/WYW6lr5aN1Q0a0pRudfboflx7/BCmf7KGN+dt8DqOiEhIUTkLc7NK2idmaz9N6W73nXUo+YPTue/1hZRsqfE6johIyFA5C3MFJT6GZvUgOz3J6ygSYWKjo/jd5ePoER/DTX8spqZBC9SKiHSGylkYa2hu5fPVFUzM1ZCmeKNPSgK/u3wsayvr+M5rC3BOC9SKiOyLylkYK1xTSUNzGydqvpl46Oihvbj3zEP426LNPP/xaq/jiIgEvYCWMzM708yWm9kKM7tvD++52MyWmNliM3upw/FJZlbqf0wKZM5wVVDiIy46iqOGZngdRSLc9ScM5czD+/Kzvy3j81UVXscREQlqAStnZhYNPAmcBYwELjOzkbu8Jxe4HzjOOXc4cJf/eAbwIHAUMAF40MzSA5U1XBWUlJM/JJ2kuBivo0iEMzMevWg0AzOSuO3luWzd3uB1JBGRoBXIK2cTgBXOuVXOuSbgFeC8Xd5zPfCkc64KwDm31X/8DOCfzrlK/2v/BM4MYNaws7m6geVbajTfTIJGckIsv79yPLUNLdz60hyaW7VArYjI7gSynA0A1nd4XuY/1tEIYISZ/cfMPjOzM/fjXNmLglIfoC2bJLgc0jeZn11wBIVrqnjkb8u8jiMiEpS8Hu+KAXKBk4BsoMDMjujsyWZ2A3ADwMCBAwORL2QVlPjonRzPoX2TvY4i8iXnjx3AnHVVPPfxasYNSuerR/TzOpKISFAJ5JWzDUBOh+fZ/mMdlQFvOeeanXOrgRLay1pnzsU596xzLs85l5eVpStEO7W2OT5eUc4JuVmYmddxRP7HA2ePZExOGvf8eT4rttZ6HUdEJKgEspwVArlmNsTM4oBLgbd2ec9fab9qhpll0j7MuQp4DzjdzNL9NwKc7j8mnbBwQzXb6pq1K4AErbiYKJ66YhzxsdHcPLOYHY0tXkcSEQkaAStnzrkW4DbaS9VS4FXn3GIze8jMzvW/7T2gwsyWAB8A9zjnKpxzlcDDtBe8QuAh/zHphFnLfZjBCboZQIJY/7REnrhsLCt9tdz3l4VaoFZExM/C5X+IeXl5rqioyOsYQeHCpz+hubWNt2473usoIvv05AcrePS95fzwayOZfNwQr+OIiHQLMyt2zuXt7jXtEBBmquubmbd+m5bQkJBx84nDOPWw3vz4naUUr9UFchERlbMw88mKclrbnJbQkJARFWU8dvEY+qclcsuLcyivbfQ6koiIp1TOwkxBqY/k+BjGDkzzOopIp6UmxvL0lePYVtfM7S/NpUUL1IpIBFM5CyPOOQpKyjl2eC9io/WPVkLL4f1T+fH5o/h0VQWP/bPE6zgiIp7R3+BhZKVvBxu21WtIU0LWRXk5XDZhIE9/uJJ/LN7sdRwREU+onIWRghL/lk26GUBC2INfG8kRA1L51qvzWVO+w+s4IiLdTuUsjBSU+hia2YOcjCSvo4gcsITYaJ66YhzR0cZNM4upb2r1OpKISLdSOQsTDc2tfLaqQkOaEhZyMpL4zSVjWL6lhu+9oQVqRSSyqJyFiaI1VTQ0t2nLJgkbJx3SmztPyeUvczfw4ufrvI4jItJtVM7CREGpj7joKI4e2svrKCJd5o6v5HLiiCweensJ89Zv8zqOiEi3UDkLEwUlPvIGp5MUF+N1FJEuExVl/OaSMWQlx3PLzGIqdzR5HUlEJOBUzsLAlu0NLNtco/lmEpbSe8Tx9JXjKK9t4s5X5tLapvlnIhLeVM7CgJbQkHA3OjuNH513OB+VlvPb97VArYiEN5WzMFBQWk5WcjyH9Uv2OopIwFyan8M3xmfz+L9X8O9lW7yOIyISMCpnIa61zfFxqY8TcjMxM6/jiASMmfHj80dxWL8Uvvmn+ayvrPM6kohIQKichbhFG6qpqmvmRM03kwiQEBvN768cR5tz3DSzmIZmLVArIuFH5SzEFZT4MIPjh2t9M4kMg3r14NcXj2Hxxu08+OZir+OIiHQ5lbMQV1DqY1T/VHr1jPc6iki3OXVkH249eRh/KlrPnwq1QK2IhBeVsxC2vaGZOeu2aVcAiUh3n3YIxw3vxfffXMyiDdVexxER6TIqZyHskxUVtLY5LaEhESk6ynj80rH06hHHTTOL2VanBWpFJDyonIWwglIfPeNjGDco3esoIp7o1TOeJ68Yx5btDXzzT/No0wK1IhIGVM5ClHOOghIfxwzrRWy0/jFK5Bo3MJ3vnzOSD5b7ePKDFV7HERE5aPpbPUStKt9BWVW9tmwSAa46ehDnj+nPr94v+WLHDBGRUKVyFqJ2/gV0ouabiWBm/PSCIxjRO5k7X5nLhm31XkcSETlgKmchqqDEx+BeSQzsleR1FJGgkBQXw9NXjqO51XHLzGIaW7RArYiEpk6XMzNTCwgSjS2tfLaqUkOaIrsYmtWTX140mvll1Tz8f0u8jiMickD2Wc7M7FgzWwIs8z8/0syeCngy2aOiNVXUN7dqCQ2R3ThzVD9unDiUmZ+t4y9zyryOIyKy3zpz5ezXwBlABYBzbj4wMZChZO8KSnzERhvHDOvldRSRoHTPGYdw1JAMvvvGQpZu2u51HBGR/dKpYU3n3PpdDmkyh4dmlfjIG5RBj/gYr6OIBKWY6CieuHwsKQmx3DyzmOr6Zq8jiYh0WmfK2XozOxZwZhZrZt8GlgY4l+zB1u0NLNtco/lmIvvQOzmBJ68YR1lVPd/+83yc0wK1IhIaOlPObgJuBQYAG4Ax/ufigYLScgDtpynSCfmDM7j/q4fxzyVb+P2sVV7HERHplL2Oi5lZNPBb59wV3ZRH9qGgxEdmz3gO65vidRSRkHDNcYOZs66KR99bxpE5qRw7TL/YiEhw2+uVM+dcKzDIzOK6KY/sRVub4+MV5UzMzSQqyryOIxISzIxHLhzNkMwe3PHyXDZXN3gdSURkrzozrLkK+I+Zfd/M7t75CHQw+V+LNlZTuaNJ881E9lPP+BieuWo8dU2t3PJiMU0tbV5HEhHZo86Us5XA//nfm9zhId1s55ZNx+dqWEZkfw3vncwvvjGaOeu28dN3dU+TiASvfa7F4Jz7EYCZ9fQ/rw10KNm9gpJyRg1IIbNnvNdRRELSOaP7M2ftNqb+ZzXjBqVz7pH9vY4kIvI/OrNDwCgzmwssBhabWbGZHR74aNJRTUMzc9ZVaVcAkYN0/1cPJW9QOve9voDSLTVexxER+R+dGdZ8FrjbOTfIOTcI+Bbwh8DGkl19srKCljan+WYiByk2OoonrxhHUlw0N84spraxxetIIiJf0ply1sM598HOJ865D4EeAUsku1VQ4qNHXDTjBqZ7HUUk5PVJSeCJy8axtqKO77ymBWpFJLh06m5N/52ag/2PB2i/g1O6iXOOglIfxwzLJC6mUztuicg+HDOsF9854xDeXbiZ5z9e7XUcEZEvdOZv+muALOAvwOtApv+YdJM1FXWsr6znRO0KINKlbpg4lDMO78PP/raM2asrvY4jIgJ0opw556qcc3c458Y558Y75+5yzlV1Rzhpt3MJDc03E+laZsajFx3JwIwkbn1pDltrtECtiHivM3dr/tPM0jo8Tzez9wKaSr6koMTHoF5JDOqlqX4iXS0lIZanrxxHTUMzt700l+ZWLVArIt7qzLBmpnNu284n/qtmvQOWSL6kqaWNT1dVaAkNkQA6tG8KP79gNLNXV/Loe8u9jiMiEa4z5azNzAbufGJmgwDd2tRNitZWUtfUqiFNkQA7f+wArjp6EM8WrOJvCzd5HUdEItg+dwgAvgd8bGazAANOAG4IaCr5QkFJOTFRxjHDenkdRSTsPXDOYSzcUM09ry1gRN9khmX19DqSiESgztwQ8HdgHPAn4GVgvHNOc866SUGJj/GD0ukZ35keLSIHIz4mmqeuGEdcTBQ3zyymrkkL1IpI99tjOTOzQWaWCuCcKwd2AKcDV5tZXDfli2hbaxpYsmm7hjRFulH/tEQev3QspVtrueuVeVz8zCe6i1NEutXerpy9in8nADMbA/wZWAccCTwV8GTCRyXlAJyocibSrY7PzeRbp43gH0u2ULi6isffL/U6kohEkL2NlSU65zb6P78SmOqce8zMooB5AU8mFJT66NUjjpH9UryOIhJRDnngbzS2tC+p4YCZn69j5ufriI+JYvmPz/I2nIiEvb1dObMOn38F+BeAc06LAHWDtjbHR6XlnJCbSVSU7fsEEekyH33nZM4d05+EDtulnXJobz6692QPU4lIpNjblbN/m9mrwCYgHfg3gJn1A5q6IVtEW7xxO5U7mjTfTMQDvVMSSI6PobG1jbjoKJpa2/hsVQWGflESkcDb25Wzu2jfT3MNcLxzrtl/vC/ty2vsk5mdaWbLzWyFmd23m9cnm5nPzOb5H9d1eK21w/G3OvsHChcFpe1bNp2gxWdFPFFe28gVRw3ir7cex1mj+lLf3Mq1Mwp1B6eIBJw5F5j1ZM0sGigBTgPKgELgMufckg7vmQzkOedu2835tc65Ti8ylJeX54qKig46d7C4+JlP2dHYwjt3nOB1FBEB/rlkCzf+sYivHNqHZ64aT7SmG4jIQTCzYudc3u5e68wOAQdqArDCObfKOdcEvAKcF8DvFzZqGpqZs7ZKQ5oiQeS0kX148GuH8/7SLTz8f0sI1C+2IiKBLGcDgPUdnpf5j+3qQjNbYGavmVlOh+MJZlZkZp+Z2fkBzBl0Pl1ZQUub036aIkFm0rGDue74IUz/ZA3Pf7za6zgiEqb2Wc7M7M7OHDtAbwODnXOjgX8CMzq8Nsh/ue9y4DdmNmw3OW7wF7gin8/XRZG8V1Dqo0dcNOMHpXsdRUR28d2vHsZZo/ryk3eXag9OEQmIzlw5m7SbY5M7cd4GoOOVsGz/sS845yqcc43+p88B4zu8tsH/cRXwITB212/gnHvWOZfnnMvLygqfq0wFJeUcM6wXcTGBvLApIgciKsr49SVjGJOTxl1/mkfx2iqvI4lImNnb9k2XmdnbwBAze6vD4wOgshNfuxDINbMh/u2eLgW+dNelf1mOnc4FlvqPp5tZvP/zTOA4YAkRYE35DtZV1mm+mUgQS4iN5rmr8+ibmsD1LxSxpnyH15FEJIzsbZ2zT2hf4ywTeKzD8Rpgwb6+sHOuxcxuA94DomnfYWCxmT0EFDnn3gLuMLNzgRbaC99k/+mHAc+YWRvtBfLnHe/yDGc7l9DQfDOR4NarZzzTJudzwdOfMGV6Ia/ffCwZPbTtsIgcvIAtpdHdwmUpjetmFFKypZaC72glcpFQULSmksuf+5zRA1KZed1RJMRGex1JRELAQS2lYWYXmFmpmVWb2XYzqzGz7V0fU5pa2vh0ZQUTR2R6HUVEOilvcAa/vngMRWur+Naf59PWFh6/8IqId/Y2rLnTL4CvOeeWBjpMpCteW8WOplYNaYqEmLNH96Os6lB+9rdlZKcncv9Zh3kdSURCWGfK2RYVs+5RUOojJso4Zlgvr6OIyH66YeJQ1lfV8cysVeSkJ3Hl0YO8jiQiIaoz5azIzP4E/BXYuewFzrm/BCpUpCoo8TFuUDrJCbFeRxGR/WRm/PBrh7NxWwM/eHMR/dMS+MqhfbyOJSIhqDMLaaUAdcDpwNf8j3MCGSoS+WoaWbxxOydqCQ2RkBUTHcUTl41lZP8UbntpLgvLqr2OJCIhaJ9XzpxzU7ojSKT7eIWW0BAJBz3iY5g6KZ+vP/UJ18wo5I1bjiU7PcnrWCISQjpzt+YIM/uXmS3yPx9tZg8EPlpkKSgpp1ePOA7vn+J1FBE5SL1TEpg2JZ+G5lamTCukur7Z60giEkI6M6z5B+B+oBnAObeA9tX+pYu0tTk+KvVxfG4mUVHmdRwR6QIj+iTzzJXjWVOxg5tnFtPU0uZ1JBEJEZ0pZ0nOudm7HGsJRJhItWTTdsprmzSkKRJmjh2eyc8vGM0nKyu47y8LCJdFv0UksDpzt2a5mQ0DHICZfYP2bZ2ki+zcsukELT4rEnYuHJ9NWVU9v36/hJz0JL552givI4lIkOtMObsVeBY41Mw2AKuBKwOaKsLMWu7jsH4p9E5O8DqKiATAHacMZ31VHb/9VynZ6YlclJfjdSQRCWKduVtzFXCqmfUAopxzNYGPFTlqG1soXlvFtScM8TqKiASImfGzC45gc3UD9/9lIf1SEzk+V1fKRWT39jjnzMyu9H+828zuBm4Eru/wXLrApysraGlznKj5ZiJhLTY6iqeuHMewrJ7cPLOYZZu1RbGI7N7ebgjo4f+YvIeHdIGCEh+JsdGMH5zudRQRCbCUhFimTcknMS6aa6YVsmV7g9eRRCQI7XFY0zn3jP/jj7ovTuQpKPVxzLBexMdEex1FRLpB/7REpk7O55JnPmXKtEJevekYesZ3ZvqviESKzixCO8PM0jo8TzezqQFNFSHWVuxgbUWdtmwSiTCjBqTyuyvGsXxLDbe9NIeWVq2BJiL/1Zl1zkY757btfOKcqwLGBixRBCko8W/ZpHImEnFOPqQ3D583ig+X+/jBW4u1BpqIfKEz19KjzCzdX8ows4xOnif7MKuknJyMRAb30r57IpHo8qMGsr6qjqc/XElOehI3nzTM60giEgQ6U7IeAz41sz8DBnwD+ElAU0WAppY2Pl1ZzvljB2CmLZtEItU9px9CWVU9j/x9GQPSEzn3yP5eRxIRj3VmnbMXzKwI+Ir/0AXOuSWBjRX+5qyrYkdTq4Y0RSJcVJTxy4tGs6W6gW+/Op++KQlMGJLhdSwR8dDe1jlL8X/MADYDL/kfm/3H5CAUlPiIiTKOHdbL6ygi4rH4mGievXo82RmJXP9CESt9tV5HEhEP7e2GgJf8H4uBog6Pnc/lIBSU+hg3MJ3khFivo4hIEEhLimP65AnERBmTp82mvLbR60gi4pG9lbOf+z8e5pwb2uExxDk3tDvChavy2kYWbdjORG10LiIdDOyVxHOT8vDVNHLtjCLqm1q9jiQiHthbOfut/+Mn3REkknxcWg5oCQ0R+V9jB6bz20vHsqBsG3e+MpfWNi2xIRJp9lbOms3sWSDbzB7f9dFdAcNRQYmPjB5xjOqf6nUUEQlCZxzel++fPZJ/LNnCT95Z6nUcEelme7tb8xzgVOAM2ueZSRdoa3MUlJZz/PBMoqK0hIaI7N41xw9hfVUdU/+zmpyMRKYcN8TrSCLSTfZWzu5xzt1rZgOdczO6LVGYW7p5O+W1jRrSFJF9euDskWzcVs9D/7eE/mmJnHF4X68jiUg32Nuw5letfXXUS7srTCQoKPHPN8vVzQAisnfRUcZvLhnLkdlp3PnKXOat3+Z1JBHpBnsrZ38HqoDRZrbdzGo6fuymfGGnoMTHoX2T6Z2S4HUUEQkBiXHRPDcpj6zkeK6dXsi6ijqvI4lIgO2xnDnn7nHOpQHvOOdSnHPJHT92X8TwsaOxhaK1lZyoIU0R2Q+ZPeOZPmUCLW2OydNns62uyetIIhJAe7tyBoBz7jwzG2RmpwKYWaKZJQc+Wvj5bFUFza1O881EZL8Ny+rJH67Oo6yynhteKKahWWugiYSrfZYzM7seeA14xn8oG/hrADOFrYISH4mx0eQNTvc6ioiEoAlDMvjlxUcye00l97y2gDatgSYSlvZZzoBbgeOA7QDOuVKgdyBDhauC0nKOHppBfEy011FEJESde2R/vnPmIbw9fyO//Mdyr+OISAB0ppw1Oue+mOBgZjGAfl3bT+sr61hdvkNDmiJy0G4+cRiXTRjIUx+u5KXP13kdR0S62N7WOdtplpl9F0g0s9OAW4C3Axsr/Mwq8QHasklEDp6Z8fB5h7Opup7vv7mIfmkJnHyIBjREwkVnrpzdB/iAhcCNwLvAA4EMFY5mlfgYkJbI0MweXkcRkTAQEx3F7y4fx6F9k7ntxTks3ljtdSQR6SKduVuzDZgB/Aj4ITDdOadhzf3Q3NrGpysrmDgii/Z1fUVEDl7P+BimTs4nJTGWa6YXsnFbvdeRRKQLdOZuzZOAUuBJ4CmgxMwmBjZWeJmztoraxhZOHKFdAUSka/VJSWDalHzqGluZMq2Q7Q3NXkcSkYPUmWHNx4DTnXMnOucm0r4R+q8DGyu8FJT6iI4yjh2uciYiXe/Qvik8feV4VvpquWXmHJpb27yOJCIHoTPlLNY598X92s65EiA2cJHCT0FJOWNz0khJ0I9NRALj+NxMfnbBEXy8opz7/7IQzT4RCV2duVuzyMyeA2b6n18JFAUuUnipqG1k0cZq7j51hNdRRCTMXZSXw/qqeh7/VykDM5K445RcryOJyAHoTDm7mfaFaO/wPy8Ang5YojDz8YpynNMSGiLSPb55ai5lVXX86p8lZKcncsG4bK8jich+2mM5M7MsIMs5twT4lf+BmR0OpNC+vIbsw6wSH+lJsYwakOp1FBGJAGbGzy8YzebqBu59fQF9UxI031UkxOxtztkTwO7+i84AfhuYOOHFOcdHpeUcn5tFdJSW0BCR7hEXE8XTV45nSGYPbpxZTMmWGq8jich+2Fs5G+6cK9j1oHPuI2B04CKFj6WbavDVNDIxV7+1ikj3Sk2MZerkfBJio5kyrZCt2xu8jiQinbS3cpa8l9d022EnFJRqyyYR8U52ehJTJ+VTuaOJa2YUsqOxxetIItIJeytnK8zsq7seNLOzgFWBixQ+Ckp8HNo3mT4pCV5HEZEIdUR2Kr+7fCxLNm7n9pfn0qI10ESC3t7K2V3Ab8xsupnd7n/MoH2+2Z3dki6E1TW1ULSmSlfNRMRzpxzWhx+dN4p/L9vKD99erDXQRILcHu/WdM6VmtkRwOXAKP/hWcCNzjlNXtiHz1ZV0NTaxsRclTMR8d5VRw+irLKOZwpWMTAjiRsmDvM6kojswV7XOXPONQLTuilLWCkoKSchNoq8weleRxERAeDeMw+lbFs9P313GQPSkjh7dD+vI4nIbnRmEVo5AAUlPo4e2ouE2Givo4iIABAVZTx20ZFsqW7gm6/Oo09KPHmDM7yOJSK76MzemgfMzM40s+VmtsLM7tvN65PNzGdm8/yP6zq8NsnMSv2PSYHM2dXWV9axqnyHhjRFJOgkxEbzh6vzGJCWyPUvFLG6fIfXkURkF50qZ2aWaGaH7M8XNrNo4EngLGAkcJmZjdzNW//knBvjfzznPzcDeBA4CpgAPGhmITM+qCU0RCSYpfeIY/qUfMyMydNmU1Hb6HUkEelgn+XMzL4GzAP+7n8+xsze6sTXngCscM6tcs41Aa8A53Uy1xnAP51zlc65KuCfwJmdPNdzBSU+BqQlMiyrh9dRRER2a1CvHvzh6jw2Vzdw3QtFNDS3eh1JRPw6c+Xsh7QXrW0Azrl5wJBOnDcAWN/heZn/2K4uNLMFZvaameXs57lBp7m1jU9WVDBxRCZm2rJJRILX+EHp/OaSMcxbv41v/mkebW1aYkMkGHSmnDU756p3OdZV/wW/DQx2zo2m/erYjP052cxuMLMiMyvy+YJjH/Z567dR09ii+WYiEhLOOqIf3/vqYfxt0WZ++u5Sr+OICJ0rZ4vN7HIg2sxyzewJ4JNOnLcByOnwPNt/7AvOuQr/ch0AzwHjO3uu//xnnXN5zrm8rKzgKEMFJT6io4xjh2s/TREJDdceP4RJxwziuY9XM+OTNV7HEYl4nSlntwOHA43AS0A1ndshoBDINbMhZhYHXAp8aa6amXVcZOdcYOevbe8Bp5tZuv9GgNP9x4JeQYmPMTlppCZq+1ERCQ1mxg++djinHtaHH729mPeXbPE6kkhE60w5O9s59z3nXL7/8QDtRWqvnHMtwG20l6qlwKvOucVm9pCZ7Tz/DjNbbGbzgTuAyf5zK4GHaS94hcBD/mNBrXJHEws2VGtIU0RCTnSU8fhlYxg1IJXbX57LgrJtXkcSiVi2rz3WzGyOc27cvo55LS8vzxUVFXma4c15G7jzlXm8ccuxjB0YMit/iIh8wVfTyNef+g8NzW28ccux5GQkeR1JJCyZWbFzLm93r+3xypmZneWfXzbAzB7v8JgOtAQoa0grKCknLSmW0dlpXkcRETkgWcnxTJ+ST1NLK1OmF1Jd1+x1JJGIs7dhzY1AEdAAFHd4vEX7OmTSgXOOj0p9HDc8k+goLaEhIqFreO9knr06j7UVO7jhj0U0tmgNNJHutMdy5pyb75ybATzpnJvR4fEX4Oruixgalm2uYWtNIydqvpmIhIGjh/bi0W8cyeerK7n3tQXsawqMiHSdztwQcOlujk3u4hwhr6CkfZ21E0ZoCQ0RCQ/njx3At08fwV/nbeSxf5R4HUckYsTs6QUzuwy4HBiyy3ZNyUDQ3znZ3QpKfYzo05N+qYleRxER6TK3njycsqp6fvfBCnIyErkkf6DXkUTC3h7LGe0LzW4CMoHHOhyvARYEMlSoqWtqoXB1FZOOHeR1FBGRLmVmPHz+KDZWN/DdNxbRLzWRiSM0fUMkkPY252ytc+5D59wxwBog1jk3i/Y1y3R5qIPPV1XS1Nqm/2GJSFiKjY7iycvHktu7J7e8OIclG7d7HUkkrO1zzpmZXQ+8BjzjP5QN/DWAmULOrBIfCbFR5A/O8DqKiEhAJCfEMm1KPj3jY7hmeiGbquu9jiQStjpzQ8CtwHHAdgDnXCnQO5ChQk1BqY+jhvQiITba6ygiIgHTLzWRaVPyqW1sYcq0QmoatAaaSCB0ppw1Oueadj4xsxhA91T7lVXVscq3Q0OaIhIRDuuXwlNXjKN0ay23vDiH5tY2ryOJhJ3OlLNZZvZdINHMTgP+DLwd2Fiho6CkHIATtYSGiESIiSOy+OnXR/FRaTkPvLFIa6CJdLHOlLP7AB+wELgReBd4IJChQklBiY/+qQkMy+rpdRQRkW5zSf5Abjt5OH8qWs+TH6zwOo5IWNnbUhoAOOfagD/4H9JBS2sb/1lZztlH9MNMWzaJSGT51ukjKKuq45f/KCE7PYnzxw7wOpJIWNhnOTOz1exmjplzbmhAEoWQeeu3UdPQovlmIhKRzIxHvjGazdsb+M5rC+ibmsDRQ3t5HUsk5HVmWDMPyPc/TgAeB2YGMlSoKCjxEWVw3DDNNxORyBQfE80zV+YxsFcSN7xQxIqtNV5HEgl5+yxnzrmKDo8NzrnfAGcHPlrwm1VazpicNFKTYr2OIiLimdSkWKZNzicuJprJ0wrx1TR6HUkkpHVmEdpxHR55ZnYTnRgODXdVO5pYULZNQ5oiIkBORhJTJ+dRUdvEtTMKqWtq8TqSSMjqzLDmYx0ePwPGAxcHMlQo+HhFOc6hciYi4jc6O40nLhvLog3V3PHyXFrbtMSGyIHozLDmyR0epznnrnfOLe+OcMGsoMRHamIsR2aneR1FRCRonDqyDw9+7XDeX7qVh95erDXQRA5AZ+7WTAUeBCb6D80CHnLOVQcyWDBzzlFQ6uP44ZlER2kJDRGRjiYdO5j1lXU89/FqcjKSuO6EiL+5X2S/dGZYcypQQ/tQ5sW077E5LZChgl3Jllq2bG9konYFEBHZre9+9TDOGtWXn7y7lL8t3OR1HJGQ0plyNsw596BzbpX/8SMgon8NKijxAZpvJiKyJ1FRxq8vGcPYnDTu+tM8itdWeR1JJGR0ppzVm9nxO5+Y2XFAfeAiBb+CUh+5vXvSLzXR6ygiIkErITaaP1ydR9/UBK5/oYg15Tu8jiQSEjpTzm4CnjSzNWa2Fvid/1hEqm9q5fPVlbpqJiLSCb16xjN9ygScc0yZXkjljiavI4kEvc7crTnfOXckMBo4wjk31jk3P/DRgtNnqytoamlTORMR6aQhmT14blIeG7bVc8MLRTQ0t3odSSSodWYR2ngzuxy4DbjLzH5gZj8IfLTgVFDiIz4miqOGZHgdRUQkZIwflMGvLx5D0doqvvXqfNq0BprIHnVmpf83gWqgGIj4PTkKSnxMGJJBQmy011FERELK2aP7UVZ1KD/72zKy0xO5/6uHeR1JJCh1ppxlO+fODHiSELBhWz0rfTu4bMJAr6OIiISkGyYOZX1VHc8UrCI7I4mrjh7kdSSRoNOZGwI+MbMjAp4kBPzf/I0AjBqQ6nESEZHQZGb88GuH85VDe/Pgm4v497ItXkcSCTp7LGdmttDMFgDHA3PMbLmZLehwPOLM/Hwt8N+SJiIi+y8mOoonLhvLyP4p3PbSXBaWReyGMyK7ZXva98zM9nqt2Tm3NiCJDlBeXp4rKioKyNc+5IG/0djS9j/H42OiWP7jswLyPUVEwt3W7Q18/alPaGpt441bjiU7PcnrSCLdxsyKnXN5u3ttb8OaNft4RIyPvnMy5x7Zn7jo9h9XQmwU543pz0f3nuxxMhGR0NU7JYFpU/JpaG5lyrRCquubvY4kEhT2Vs6KgSL/x10fgblEFaR6pySQnBBDc1sb8TFRNLa0kRwfQ+/kBK+jiYiEtBF9knnmqvGsqdjBTX8spmk3oxQikWaP5cw5N8Q5N9T/cddHxO2tWV7byBVHDeKNW47jiqMG4auN+FVFRES6xLHDMnnkwtF8uqqC+15fwJ6m24hEij0upWFmhzrnlpnZuN297pybE7hYweeZq/47LPzj80d5mEREJPxcMC6b9ZX1/Pr9ErIzkrj7tBFeRxLxzN7WOfsWcD3w2G5ec8BXApJIREQi0h2nDGd9VR2P/6uU7PRELs7L8TqSiCf2WM6cc9f7P2rWu4iIBJyZ8bMLjmBzdQPf/ctC+qcmcnxuptexRLrd3tY5yzezvh2eX21mb5rZ42amjSVFRKTLxUZH8dSV4xjeuyc3zyxm2ebtXkcS6XZ7u1vzGaAJwMwmAj8HXqB9n81nAx9NREQiUUpCLFMn55MUH8010wrZsr3B60gi3Wpv5SzaOVfp//wS4Fnn3OvOue8DwwMfTUREIlX/tESmTs6nur6ZKdMKqW1s8TqSSLfZazkzs51z0k4B/t3htc5smC4iInLADu+fypNXjGP5lhpufXEOLa1aA00iw97K2cvALDN7E6gHPgIws+G0D22KiIgE1EmH9Obh80Yxq8TH999crDXQJCLs7W7Nn5jZv4B+wD/cf/+LiAJu745wIiIilx81kPVVdTz94UpyMhK55STNrJHwttfhSefcZ7s5VhK4OCIiIv/rntMPoayqnl/8fTkD0hI5b8wAryOJBIzmjomISNCLijJ+edFotlQ3cM+fF9A3JYGjhvbyOpZIQOxtzpmIiEjQiI+J5tmrx5OdkcgNfyxmpa/W60giAaFyJiIiISMtKY7pkycQE2VMnjab8tpGryOJdDmVMxERCSkDeyXx/OR8fDWNXDujiPqmVq8jiXQplTMREQk5Y3LSePzSsSwo28adr8yltU1LbEj4UDkTEZGQdPrhffnBOSP5x5It/PidJV7HEekyultTRERC1pTjhrCuso5p/1lDTnoS1xw/xOtIIgdN5UxERELaA2ePZOO2eh5+Zwn90xI5c1RfryOJHJSADmua2ZlmttzMVpjZfXt534Vm5swsz/98sJnVm9k8/+P3gcwpIiKhKzrK+M0lYzkyO407X5nL3HVVXkcSOSgBK2dmFg08CZwFjAQuM7ORu3lfMnAn8PkuL610zo3xP24KVE4REQl9iXHRPDcpjz4pCVw3o4h1FXVeRxI5YIG8cjYBWOGcW+WcawJeAc7bzfseBh4BGgKYRUREwlxmz3imTcmn1TkmT5/NtromryOJHJBAlrMBwPoOz8v8x75gZuOAHOfcO7s5f4iZzTWzWWZ2QgBziohImBiW1ZNnr8qjrLKeG14opqFZa6BJ6PFsKQ0ziwJ+BXxrNy9vAgY658YCdwMvmVnKbr7GDWZWZGZFPp8vsIFFRCQkTBiSwWMXH8nsNZXc89oC2rQGmoSYQJazDUBOh+fZ/mM7JQOjgA/NbA1wNPCWmeU55xqdcxUAzrliYCUwYtdv4Jx71jmX55zLy8rKCtAfQ0REQs3XjuzPvWceytvzN/LoP5Z7HUdkvwRyKY1CINfMhtBeyi4FLt/5onOuGsjc+dzMPgS+7ZwrMrMsoNI512pmQ4FcYFUAs4qISJi56cShrKus4+kPV5KTnsTlRw30OpJIpwSsnDnnWszsNuA9IBqY6pxbbGYPAUXOubf2cvpE4CEzawbagJucc5WByioiIuHHzHj4vMPZVF3P999cRL+0BE4+pLfXsUT2yZwLj7H4vLw8V1RU5HUMEREJMrWNLVzyzKesLt/Bqzcew6gBqV5HEsHMip1zebt7TXtriohIWOsZH8PUyfmkJcZyzfRCNm6r9zqSyF6pnImISNjrk5LAtCkTqG9qZcq0QrY3NHsdSWSPVM5ERCQiHNI3md9fNZ6VvlpumTmH5tY2ryOJ7JbKmYiIRIzjhmfy8wtH8/GKcu7/y0LCZd61hJdALqUhIiISdL4xPpv1lXX89l+l5KQnceepuV5HEvkSlTMREYk4d52ay/qqOn79fgnZ6YlcOD7b60giX1A5ExGRiGNm/PyC0WyubuDe1xfQLzWBY4dn7vtEkW6gOWciIhKR4mKiePrK8QzN6sGNM4sp2VLjdSQRQOVMREQiWGpiLFMn55MQG82UaYVs3d7gdSQRlTMREYls2elJTJucT1VdE9fMKGRHY4vXkSTCqZyJiEjEGzUglScvH8eSjdu5/eW5tGgNNPGQypmIiAhw8qG9eei8Ufx72VZ++PZirYEmntHdmiIiIn5XHj2I9VV1PDNrFTnpSdx44jCvI0kEUjkTERHp4N4zDqWsqp6f/W0ZA9ITOWd0f68jSYRRORMREekgKsp47KIj2VLdwN2vzqdvSgJ5gzO8jiURRHPOREREdpEQG80frs5jQFoi171QxCpfrdeRJIKonImIiOxGeo84pk/JJ8qMKdMLqaht9DqSRAiVMxERkT0Y1KsHz03KY3N1A9e9UERDc6vXkSQCqJyJiIjsxbiB6fz20jHMW7+Nb/5pHm1tWmJDAkvlTEREZB/OHNWP7331MP62aDM/fXep13EkzOluTRERkU649vghlFXV89zHq8nJSGLSsYO9jiRhSuVMRESkE8yM758zkrKqen709mL6pyVy2sg+XseSMKRhTRERkU6KjjIev2wMowakcvvLc5i/fpvXkSQMqZyJiIjsh6S4GJ6flE9mz3iunVHI+so6ryNJmFE5ExER2U9ZyfFMn5JPU0sbk6fNprqu2etIEkZUzkRERA7A8N7JPHt1Husr67nhj0U0tmgNNOkaKmciIiIH6OihvXj0otF8vrqSe19bgHNaA00Onu7WFBEROQjnjRlAWVU9j763nOz0JL59xiFeR5IQp3ImIiJykG45aRjrK+v43QcryE5P5NIJA72OJCFM5UxEROQgmRkPnz+KjdUNfO+vi+iXlsiJI7K8jiUhSnPOREREukBsdBRPXj6W3N49uWVmMUs2bvc6koQolTMREZEukpwQy7Qp+SQnxHLN9EI2Vdd7HUlCkMqZiIhIF+qXmsi0KfnUNrYwZVohNQ1aA032j8qZiIhIFzusXwpPXTGO0q213PLiHJpb27yOJCFE5UxERCQAJo7I4mdfP4KPSst54I1FWgNNOk13a4qIiATIxfk5rK+q44l/ryAnI5HbvpLrdSQJASpnIiIiAXT3aSMoq6rnl/8oITs9ifPHDvA6kgQ5lTMREZEAMjMeuXA0m6rruee1+fRJSeCYYb28jiVBTHPOREREAiwuJopnrsxjUK8e3PjHIlZsrfE6kgQxlTMREZFukJoUy7TJ+cTFRDNpaiFbaxq8jiRBSuVMRESkm+RkJDF1ch6VO5q4bkYRdU0tXkeSIKRyJiIi0o1GZ6fxxGVjWbShmjtenktrm5bYkC9TORMREelmp47sww/PPZz3l27lobcXaw00+RLdrSkiIuKBq48ZzPrKOv7w0WpyMpK47oShXkeSIKFyJiIi4pH7zzqMDdvq+cm7SxmQlshZR/TzOpIEAQ1rioiIeCQqyvjVxWMYm5PGXX+aR/HaKq8jSRBQORMREfFQQmw0f7g6j76pCVz/QhFrynd4HUk8pnImIiLisV4945k+ZQLOOSZPm03ljiavI4mHVM5ERESCwJDMHjw3KY+N1Q1c/0IRDc2tXkcSj6iciYiIBInxgzL49cVjKF5bxbdenU+b1kCLSLpbU0REJIicPbofG7Ydyk/fXUZ2eiL3f/UwryNJN1M5ExERCTLXnzCU9ZX1PFOwiuyMJK46epDXkaQbBXRY08zONLPlZrbCzO7by/suNDNnZnkdjt3vP2+5mZ0RyJwiIiLBxMx48GsjOeXQ3jz45iL+tXSL15GkGwWsnJlZNPAkcBYwErjMzEbu5n3JwJ3A5x2OjQQuBQ4HzgSe8n89ERGRiBATHcUTl4/l8P6p3PbSXBaWVXsdSbpJIK+cTQBWOOdWOeeagFeA83bzvoeBR4CGDsfOA15xzjU651YDK/xfT0REJGIkxcXw/KQ8MnrEcc2MQsqq6ryOJN0gkOVsALC+w/My/7EvmNk4IMc5987+nisiIhIJeqckMG1KPg3NrUyZVkh1fbPXkSTAPFtKw8yigF8B3zqIr3GDmRWZWZHP5+u6cCIiIkFkRJ9knrlqPGsqdnDTH4tpamnzOpIEUCDL2QYgp8PzbP+xnZKBUcCHZrYGOBp4y39TwL7OBcA596xzLs85l5eVldXF8UVERILHscMyeeTC0Xy6qoL7Xl+Ac1oDLVwFcimNQiDXzIbQXqwuBS7f+aJzrhrI3PnczD4Evu2cKzKzeuAlM/sV0B/IBWYHMKuIiEjQu2BcNmVV9fzqnyVkZyRx92kjvI4kARCwcuacazGz24D3gGhgqnNusZk9BBQ5597ay7mLzexVYAnQAtzqnNM+FiIiEvFu/8pwyqrqePxfpWSnJ3JxXs6+T5KQYuFyWTQvL88VFRV5HUNERCTgmlvbuGZ6IZ+urGD6lAkcn5u575MkqJhZsXMub3evaW9NERGREBMbHcWTV4xjeO+e3DyzmGWbt3sdSbqQypmIiEgISkmIZerkfJLio5kyrZDN1Q37PklCgsqZiIhIiOqflsjUyflsr29myvRCahtbvI4kXUDlTEREJIQd3j+VJ68YR8mWGm59cQ7NrVoDLdSpnImIiIS4kw7pzY/PH8WsEh8/eHOR1kALcYFc50xERES6yWUTBrK+so6nPlxJTkYSt5w03OtIcoBUzkRERMLEt08/hLKqen7x9+UMSEvkvDHaljoUqZyJiIiEiago49GLRrN5ewP3/HkBfVMSOGpoL69jyX7SnDMREZEwEh8TzbNXjSc7I5Eb/ljMiq21XkeS/aRyJiIiEmbSkuKYMWUCsdHGlOmz8dU0eh1J9oPKmYiISBjKyUjiuUn5+Goaue6FIuqbtEV1qFA5ExERCVNjctJ4/NKxLCjbxh2vzKW1TUtshAKVMxERkTB2+uF9+cE5I/nnki38+J0lXseRTtDdmiIiImFuynFDWF9Zz9T/rCYnPYlrjh/idSTZC5UzERGRCPC9sw9jw7Y6Hn5nCf3TEjlzVF+vI8keaFhTREQkAkRHGb+5ZCxHZqdx5ytzmbuuyutIsgcqZyIiIhEiMS6a5ybl0SclgetmFLG2YofXkWQ3VM5EREQiSGbPeKZPyafVOaZMK6RqR5PXkWQXKmciIiIRZmhWT569Ko+yqnpu+GMRDc1aAy2YqJyJiIhEoAlDMnjs4iMpXFPFt/88nzatgRY0dLemiIhIhPrakf0pq6rnkb8vIycjiXvPPNTrSILKmYiISES76cShrK+q4+kPV5KTnsTlRw30OlLEUzkTERGJYGbGQ+cezqZt9Xz/zUX0S0vg5EN6ex0romnOmYiISISLiY7id5eP49C+ydz64hwWbaj2OlJEUzkTEREResTHMHVyPmmJsVwzvZAN2+q9jhSxVM5EREQEgD4pCUybMoH6plaumVbI9oZmryNFJJUzERER+cIhfZP5/VXjWemr5eaZxTS1tHkdKeKonImIiMiXHDc8k59fOJr/rKjg/r8sxDmtgdaddLemiIiI/I9vjM9mfWUdv/1XKQMzkrjz1FyvI0UMlTMRERHZrbtOzaWsqp5fv19CdnoiF47P9jpSRFA5ExERkd0yM352wRFsqq7n3tcX0C81gWOHZ3odK+xpzpmIiIjsUVxMFE9fOZ6hWT24cWYxJVtqvI4U9lTOREREZK9SE2OZNmUCibHRTJlWyNbtDV5HCmsqZyIiIrJPA9ISmTo5n6q6Jq6ZUciOxhavI4UtlTMRERHplFEDUnny8nEs2bid216aQ0ur1kALBJUzERER6bSTD+3NQ+eN4oPlPh58a7HWQAsA3a0pIiIi++XKowexvqqOZ2atYmBGEjeeOMzrSGFF5UxERET2271nHMqGqnp+9rdlDEhP5JzR/b2OFDZUzkRERGS/RUUZv7zoSLZsb+DuV+fTNyWBvMEZXscKC5pzJiIiIgckITaaZ6/KIzstketeKGKVr9brSGFB5UxEREQOWHqPOKZNySfajMnTCqmobfQ6UshTORMREZGDMqhXD/4wKY8t2xu47oUiGppbvY4U0lTORERE5KCNG5jOby8dw7z127jrlXm0tmmJjQOlciYiIiJd4sxR/fjeVw/j74s389N3l3odJ2Tpbk0RERHpMtceP4Syqnqe/3g1OemJTD5uiNeRQo7KmYiIiHQZM+P754xkw7Z6Hvq/JQxIT+K0kX28jhVSNKwpIiIiXSo6ynj80rEcMSCV21+ew/z127yOFFJUzkRERKTLJcZF89ykfLKS47l2RiHrK+u8jhQyVM5EREQkILKS45k2eQLNrY7J02ZTXdfsdaSQoHImIiIiATO8d0+evWo86yvrueGPRTS2aA20fVE5ExERkYA6amgvHr1oNJ+vruQ7ry2gTWug7ZXu1hQREZGAO2/MAMqq6nn0veVkpydyzxmHeh0paAX0ypmZnWlmy81shZndt5vXbzKzhWY2z8w+NrOR/uODzazef3yemf0+kDlFREQk8G45aRiX5ufw5AcreWX2Oq/jBK2AXTkzs2jgSeA0oAwoNLO3nHNLOrztJefc7/3vPxf4FXCm/7WVzrkxgconIiIi3cvMePj8UWysbuB7f11Ev7REThyR5XWsoBPIK2cTgBXOuVXOuSbgFeC8jm9wzm3v8LQHoEFoERGRMBYbHcVTV4xjRJ9kbplZzJKN2/d9UoQJZDkbAKzv8LzMf+xLzOxWM1sJ/AK4o8NLQ8xsrpnNMrMTAphTREREulHP+BimTc4nJTGWa6YXsqm63utIQcXzuzWdc08654YB9wIP+A9vAgY658YCdwMvmVnKruea2Q1mVmRmRT6fr/tCi4iIyEHpm5rA1Mn51Da2MGVaITUNWgNtp0CWsw1ATofn2f5je/IKcD6Ac67ROVfh/7wYWAmM2PUE59yzzrk851xeVpbGrEVERELJYf1SePrKcazYWsstL86hubXN60hBIZDlrBDINbMhZhYHXAq81fENZpbb4enZQKn/eJb/hgLMbCiQC6wKYFYRERHxwAm5Wfz060fwUWk533tjIc5p+nnA7tZ0zrWY2W3Ae0A0MNU5t9jMHgKKnHNvAbeZ2alAM1AFTPKfPhF4yMyagTbgJudcZaCyioiIiHcuzs9hfVUdT/x7BTnpSdx+Su6+TwpjFi4NNS8vzxUVFXkdQ0RERA6Ac467X53PG3M38OtLjuTrY7O9jhRQZlbsnMvb3WvaIUBEREQ8Z2Y8cuFoNlXX853XFtA3JZFjhvXyOpYnPL9bU0RERAQgLiaKZ67MY1CvHtz4xyJWbK3xOpInVM5EREQkaKQmxTJtcj5xMdFMmlrI1poGryN1O5UzERERCSo5GUlMnZxH5Y4mrp1eRF1Ti9eRupXKmYiIiASd0dlpPHHZWBZvrOaOl+fS2hYeNzB2hsqZiIiIBKVTR/bhh+cezvtLt/KjtxdHzBpoultTREREgtbVxwxmfWUdf/hoNTnpSVw/cajXkQJO5UxERESC2v1nHcaGbfX85N2lDEhP5KtH9PM6UkBpWFNERESCWlSU8auLxzBuYBp3/WkexWvDe9MglTMREREJegmx0Tw3KZ/+qQlc/0Ixa8p3eB0pYFTOREREJCRk9Ihj+pQJOOeYPG02lTuavI4UECpnIiIiEjIGZ/bguUl5bKxu4PoXimhobvU6UpdTORMREZGQMn5QBr+5ZAzFa6v41qvzaQuzNdBUzkRERCTkfPWIfnz3q4fyzsJN/Pzvy7yO06W0lIaIiIiEpOtPGMr6ynqeLVhFTnoiVx0z2OtIXULlTEREREKSmfHg10aycVs9D761mH6piZw6so/XsQ6ahjVFREQkZMVER/HE5WM5vH8qt788l4Vl1V5HOmgqZyIiIhLSkuJieH5yHhk94rhmRiFlVXVeRzooKmciIiIS8nonJzB9Sj4Nza1MmVZIdX2z15EOmMqZiIiIhIXcPsk8c9V41lTs4KY/FtPU0uZ1pAOiciYiIiJh49hhmfziG6P5dFUF972+AOdCbw003a0pIiIiYeXrY7Mpq6znsX+WkJ2eyN2nH+J1pP2iciYiIiJh57avDGd9VR2P/3sF2elJXJyf43WkTlM5ExERkbBjZvzk60ewqbqB776xkH5pCZyQm+V1rE7RnDMREREJS7HRUTx1xTiG9+7JzTPnsGzzdq8jdYrKmYiIiISt5IRYpk3Jp0d8NFOmFbK5usHrSPukciYiIiJhrV9qIlMn57O9vpkp0wupbWzxOtJeqZyJiIhI2Du8fypPXTmeki013PriHJpbg3cNNJUzERERiQgnjsjiJ+ePYlaJjx+8uSho10DT3ZoiIiISMS6dMJD1VXU8+cFKstOTuPXk4V5H+h8qZyIiIhJRvnXaIayvrOfR95aTnZ7IeWMGeB3pS1TOREREJKJERRmPXjSazdsbuOfPC+ibksBRQ3t5HesLmnMmIiIiESc+JppnrxpPdkYiN/yxmBVba72O9AWVMxEREYlIaUlxzJgygdhoY8r02fhqGr2OBKiciYiISATLyUji+Un5+Goaue6FItZW7ODiZz5la413i9WqnImIiEhEOzInjccvHcuCsm1c8dznFK6p5PH3Sz3LoxsCREREJOLd/vJcnIOyqnoAZn6+jpmfryM+JorlPz6rW7PoypmIiIhEvI++czLnjulPdJQBkBAbxXlj+vPRvSd3exaVMxEREYl4vVMSSI6Poc054mOiaGxpIzk+ht7JCd2eRcOaIiIiIkB5bSNXHDWIyycM5KXZ6/B5dFOABeu+UvsrLy/PFRUVeR1DREREZJ/MrNg5l7e71zSsKSIiIhJEVM5EREREgojKmYiIiEgQUTkTERERCSIqZyIiIiJBROVMREREJIionImIiIgEEZUzERERkSCiciYiIiISRFTORERERIKIypmIiIhIEAloOTOzM81suZmtMLP7dvP6TWa20MzmmdnHZjayw2v3+89bbmZnBDKniIiISLAIWDkzs2jgSeAsYCRwWcfy5feSc+4I59wY4BfAr/znjgQuBQ4HzgSe8n89ERERkbAWyCtnE4AVzrlVzrkm4BXgvI5vcM5t7/C0B+D8n58HvOKca3TOrQZW+L+eiIiISFiLCeDXHgCs7/C8DDhq1zeZ2a3A3UAc8JUO5362y7kDAhNTREREJHh4fkOAc+5J59ww4F7ggf0518xuMLMiMyvy+XyBCSgiIiLSjQJZzjYAOR2eZ/uP7ckrwPn7c65z7lnnXJ5zLi8rK+vg0oqIiIgEgUCWs0Ig18yGmFkc7RP83+r4BjPL7fD0bKDU//lbwKVmFm9mQ4BcYHYAs4qIiIgEhYDNOXPOtZjZbcB7QDQw1Tm32MweAoqcc28Bt5nZqUAzUAVM8p+72MxeBZYALcCtzrnWQGUVERERCRbmnNv3u0JAXl6eKyoq8jqGiIiIyD6ZWbFzLm93r3l+Q4CIiIiI/FfYXDkzMx+wthu+VSZQ3g3fJ1Lo59n19DPtWvp5dj39TLuefqZdqzt+noOcc7u9mzFsyll3MbOiPV2GlP2nn2fX08+0a+nn2fX0M+16+pl2La9/nhrWFBEREQkiKmciIiIiQUTlbP8963WAMKOfZ9fTz7Rr6efZ9fQz7Xr6mXYtT3+emnMmIiIiEkR05UxEREQkiKicdYKZ5ZjZB2a2xMwWm9mdXmcKdWaWYGazzWy+/2f6I68zhQMzizazuWb2f15nCQdmtsbMFprZPDPTKtddwMzSzOw1M1tmZkvN7BivM4UqMzvE/+/mzsd2M7vL61yhzsy+6f97aZGZvWxmCd2eQcOa+2Zm/YB+zrk5ZpYMFAPnO+eWeBwtZJmZAT2cc7VmFgt8DNzpnPvM42ghzczuBvKAFOfcOV7nCXVmtgbIc85p/aguYmYzgI+cc8/5911Ocs5t8zhWyDOzaGADcJRzrjvW/AxLZjaA9r+PRjrn6v1bSb7rnJvenTl05awTnHObnHNz/J/XAEuBAd6mCm2uXa3/aaz/od8UDoKZZQNnA895nUVkd8wsFZgIPA/gnGtSMesypwArVcy6RAyQaGYxQBKwsbsDqJztJzMbDIwFPvc4SsjzD8HNA7YC/3TO6Wd6cH4DfAdo8zhHOHHAP8ys2Mxu8DpMGBgC+IBp/uH358ysh9ehwsSlwMtehwh1zrkNwC+BdcAmoNo594/uzqFyth/MrCfwOnCXc26713lCnXOu1Tk3BsgGJpjZKI8jhSwzOwfY6pwr9jpLmDneOTcOOAu41cwmeh0oxMUA44CnnXNjgR3Afd5GCn3+4eFzgT97nSXUmVk6cB7tv0j0B3qY2ZXdnUPlrJP886JeB150zv3F6zzhxD+s8QFwpsdRQtlxwLn+OVKvAF8xs5neRgp9/t+icc5tBd4AJnibKOSVAWUdrpK/RntZk4NzFjDHObfF6yBh4FRgtXPO55xrBv4CHNvdIVTOOsE/ef15YKlz7lde5wkHZpZlZmn+zxOB04BlnoYKYc65+51z2c65wbQPb/zbOdftv+2FEzPr4b8BCP/Q2+nAIm9ThTbn3GZgvZkd4j90CqAbqw7eZWhIs6usA442syT/3/2n0D7PvFvFdPc3DFHHAVcBC/1zpAC+65x717tIIa8fMMN/h1EU8KpzTss/SDDpA7zR/v9nYoCXnHN/9zZSWLgdeNE/FLcKmOJxnpDm/8XhNOBGr7OEA+fc52b2GjAHaAHm4sFuAVpKQ0RERCSIaFhTREREJIionImIiIgEEZUzERERkSCiciYiIiISRFTORERERIKIypmIBJyZOTN7rMPzb5vZD7voa083s290xdfax/e5yMyWmtkHu3lthJm9a2alZjbHzF41sz5mdpKZHdASMWZ2l5klHXxyEQk1Kmci0h0agQvMLNPrIB35NzburGuB651zJ+/yNRKAd2jfkijXv93TU0DWQca7i/ZNlzvNv26giIQ4lTMR6Q4ttC/k+M1dX9j1ypeZ1fo/nmRms8zsTTNbZWY/N7MrzGy2mS00s2EdvsypZlZkZiX+fUYxs2gze9TMCs1sgZnd2OHrfmRmb7Gb1enN7DL/119kZo/4j/0AOB543swe3eWUy4FPnXNv7zzgnPvQOfel3QTM7Idm9u0OzxeZ2WD/TgTvmNl8/7FLzOwO2vf1+2DnlTozO93MPvVfmfuzf69fzGyNmT1iZnOAi8zsDjNb4v8zv7KPfy4iEoS0Q4CIdJcngQVm9ov9OOdI4DCgkvbV5J9zzk0wsztpX2n+Lv/7BtO+7+Uw2gvNcOBqoNo5l29m8cB/zOwf/vePA0Y551Z3/GZm1h94BBgPVAH/MLPznXMPmdlXgG8754p2yTgKOJgN588ENjrnzvZnSHXOVZvZ3cDJzrly/xXHB4BTnXM7zOxe4G7gIf/XqPBfscPMNgJDnHONO7dIE5HQoitnItItnHPbgReAO/bjtELn3CbnXCOwEthZrhbSXsh2etU51+acK6W9xB1K+16YV/u3XPsc6AXk+t8/e9di5pcPfOjf9LgFeBGYuB95D8RC4DT/1a8TnHPVu3nP0cBI2gvmPGASMKjD63/q8PkC2rdHupL2K5YiEmJUzkSkO/2G9rlbPToca8H//yIziwLiOrzW2OHztg7P2/jylf9d96FzgAG3O+fG+B9DnHM7y92Og/lD7GIx7Vfa9uWLP6dfAoBzroT2K3kLgR/7h1B3ZcA/O/xZRjrnru3wesc/z9m0X6UcBxTu57w6EQkCKmci0m2cc5XAq7QXtJ3W8N9ycy4QewBf+iIzi/LPQxsKLAfeA242s1j44o7KHnv7IsBs4EQzy/RPrr8MmLWPc14CjjWzs3ceMLOJZjZql/etob0wYWbjgCH+z/sDdc65mcCjO98D1ADJ/s8/A47zD9fin6c2Ytcg/nKb45z7ALgXSAV67iO/iAQZ/UYlIt3tMeC2Ds//ALxpZvOBv3NgV7XW0V6sUoCbnHMNZvYc7UOfc8zMAB9w/t6+iHNuk5ndB3xA+9Wqd5xzb+7jnHr/TQi/MbPfAM20Dy3eCXS8O/V12odZF9M+zFriP34E8KiZtfnPvdl//Fng72a20Tl3splNBl72z5+D9jloJXxZNDDTzFL9+R93zm3bW34RCT7m3K6jASIiIiLiFQ1rioiIiAQRlTMRERGRIKJyJiIiIhJEVM5EREREgojKmYiIiEgQUTkTERERCSIqZyIiIiJBROVMREREJIj8P4oweW/OCJI3AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAJeCAYAAAAAzPn5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xm41WW5//H3DYjiAM5omjPOQzmbCBsBAcURj0lqORwx\n006mmVqW+ivr5CnNPFnaMc005wlQAU234JizlqI2aA44K4MT0/P749noFmGzgLXWdw3v13Xti72+\na629PxDhvZ/n+9x3pJSQJElS7ehUdABJkiR9mgWaJElSjbFAkyRJqjEWaJIkSTXGAk2SJKnGWKBJ\nkiTVmIoXaBExOCImRsSzEXHSPJ7/TkQ8GhGPRMSTETEzIpZve+75iHi87fm/VDqrJElSLYhK9kGL\niE7As0B/4BXgQeDAlNLE+bx+KHBcSmlA2+N/AtuklN6pWEhJkqQaU+kVtO2B51JKL6SUZgBXAnt3\n8PrhwBXtHgduw0qSpCZT6eJnDeDFdo9farv2GRHRDRgMXNfucgJui4gHI+LIiqWUJEmqIV2KDtDO\nnsDdKaV3213bOaU0KSJWIRdqT6eU7i4onyRJUlVUukB7GVir3eM1267Ny4F8enuTlNKktl/fiIgb\nyFumnynQIsKBopIkqW6klKKj5yu9xfkgsEFErB0RXclF2Mi5XxQRPYC+wE3tri0dEcu2fb4MsBvw\n1/l9o5SSH1X8OO200wrP0Gwf/pn7Z94MH/6Z+2feDB+lqOgKWkppVkQcC4wjF4MXpZSejoij8tPp\nwraX7gOMTSl90O7tPYEb2lbHugCXp5TGVTKvJElSLaj4PWgppTHARnNdu2Cux38A/jDXtX8BX6h0\nPkmSpFpjCwstkpaWlqIjNB3/zKvPP/Pq88+8+vwzr00VbVRbLRGRGuH3IUmSGl9EkAo+JCBJkqSF\nZIEmSZJUYyzQJEmSaowFmiRJUo2xQJMkSaoxFmiSJEk1xgJNkiSpxligSZIk1RgLNEmSpBpjgSZJ\nklRjLNAkSZJqjAWaJElSjbFAkyRJqjEWaJIkSTXGAk2SJKnGWKBJkiTVGAs0SZKkGmOBJkmSVGMs\n0CRJkmqMBZokSVKNsUCTJEmqMRZokiRJNcYCTZIkqcZYoEmSJNUYCzRJkqQaY4EmSZJUYyzQtNBS\nSpx88lmklIqOIklSQ7JA00K77rqxnH/+JK6/flzRUSRJakgWaCrZBRdcxmabDeXb357A1Klnc8op\n49lss6FccMFlRUeTJKmhdCk6gOrHiBEHscQSK3HEEeOB4MMPZ/OTnxzLsGGDio4mSVJDsUBTySKC\nRx4JOnf+kKWWOp5Jk2YDQUQUHU2SpIbiFqcWyl13vchRRw3m1Vd/Qa9eQzjrrBeZPbvoVJIkNZZo\nhJN4EZEa4fdR66ZPh1VXhWefzb9OnQqDBsHWW8N554ELaZIkLVhEkFLq8L+arqCpZOPHwyab5OIM\nYLnl4NZb4YEH4DvfAWtkSZLKwwJNJRs1CoYO/fS1Hj1g7Fi44w74/vct0iRJKgcPCagkKeUC7cYb\nP/vciivCbbdBSwssuSScdlrV40mS1FAs0FSSp5+GWbNgiy3m/fzKK8Of/wx9++Yi7eSTq5tPkqRG\nYoGmkszZ3uzoIEDPnp8u0r797erlkySpkXgPmkoyejTsueeCX7fGGvl+tF/9Cn7968rnkiSpEbmC\npgV66y148sl8j1kp1lorF2l9+0LXrnDkkRWNJ0lSw7FA0wLdcgvsuisstVTp71l33bzd2a9fLtK+\n9rXK5ZMkqdFYoGmBRo/+bHuNUvTqlU939u+f70k78MDyZ5MkqRE5SUAdmj493/w/cWL+dVE8+SQM\nHJjvSRs2rLz5JEmqN6VMEnAFTR2aMAE22mjRizPIrTluvRUGD87bnaUcNpAkqZl5ilMdWtTtzbl9\n8Yu5VccRR8CYMYv/9SRJamQWaJqvOdMDyrXitf32eRLBIYfkAwSSJGneLNA0XxMn5nvQttyyfF/z\nS1+Ca6/NBwYmTCjf15UkqZFYoGm+SpkesCj69oUrroD99oP77ivv15YkqRFYoGm+Sp0esCgGDIA/\n/AH23hseeqgy30OSpHplmw3N01tvwXrrwWuvLVyD2oV1000wYgSMHQtf+ELlvo8kSbXCNhtaZLfe\nmqcAVLI4g7yCNn06DBmSm9puvnllv58kSfWg4lucETE4IiZGxLMRcdI8nv9ORDwaEY9ExJMRMTMi\nli/lvaqcSm5vzu0//gN+8QsYNAieeaY631OSpFpW0S3OiOgEPAv0B14BHgQOTClNnM/rhwLHpZQG\nLMx73eIsrxkzYNVV4emnYbXVqvd9L74YfvhDuPNO2GCD6n1fSZKqqRa2OLcHnkspvdAW6Epgb2Ce\nBRowHLhiEd+rMpkwIc/RrGZxBnDYYXm7s39/uOsuWGed6n5/SZJqRaULtDWAF9s9folceH1GRHQD\nBgPHLOx7VV7V3N6c21FH5SJt111zkfb5zxeTQ5KkItXSIYE9gbtTSu8WHaSZzZkecM01xWX45jfh\no48+WUlbffXiskiSVIRKF2gvA2u1e7xm27V5OZBPtjcX9r2cfvrpH3/e0tJCS0vLwiUVkG/S//BD\n2GqrYnN85zufFGmtrfmeOEmS6lFrayutra0L9Z5KHxLoDDxDvtF/EvAXYHhK6em5XtcD+CewZkrp\ng4V5b9trPSRQJj//OfzjH/Cb3xSdJPvhD/P8zjvvhJVWKjqNJEmLr5RDAhVts5FSmgUcC4wD/gZc\nmVJ6OiKOiogR7V66DzB2TnHW0XsrmVflHY5eDmecAbvvDgMHwjvvFJ1GkqTqcJKAPvb227DuuvDq\nq9CtW9FpPpESHH883HtvbmbbvXvRiSRJWnSFr6CpvowZAy0ttVWcQR7WfvbZsO22eeLAtGlFJ5Ik\nqbIs0PSxWtvebC8CzjsPNt00Z3z//aITSZJUOW5xCsjTA3r2hL/9rbbbWsyeDYcemrdhR46s/KxQ\nSZLKzS1Oleyee2D99Wu7OAPo1Al+/3tYcUUYNiy34pAkqdFYoAmo7e3NuXXpAn/8Iyy5JHz5y3n1\nT5KkRmKBJqC+CjSAJZaAK6+EWbPgoINg5syiE0mSVD4WaOKZZ/JN91/4QtFJFk7Xrnkk1eTJ+b60\nWbOKTiRJUnlYoInRo2Ho0HxSst4stVSeNPDKK3DkkfkQgSRJ9c4CTXW3vTm3bt3y7+G55+CYY3Jj\nW0mS6pltNprcO+/A2mvDa6/VXoPahTVlCuy2G+ywA/zyl/W5IihJany22dAC1er0gEXRvXv+/dxz\nD5x0kitpkqT6ZYHW5Op9e3Nuyy8P48bB2LHwwx8WnUaSpEXjFmcTmzM94K9/hc99rug05fXGG3ll\ncPhwOPXUotNIkvSJUrY4u1QrjGrPvffCeus1XnEGsMoq8Oc/Q9++uaHtiScWnUiSpNJZoDWxRtve\nnNtqq8Edd+QirWtX+Na3ik4kSVJpLNCa2KhR8Kc/FZ2istZY49MraV//etGJJElaMAu0JvXsszBt\nGmy9ddFJKm/ttfNKWktLXkk7/PCiE0mS1DELtCZVz9MDFsV668Htt0O/frlIO/jgohNJkjR/FmhN\natQoOP74olNU14Ybwm23Qf/+uUg74ICiE0mSNG+22WhC774La60Fr74KSy9ddJrqe+KJPHHgt7+F\nffYpOo0kqdnYZkPzNGZMvmm+GYszgC23hFtugSFDYIklYI89ik4kSdKnOUmgCY0ale8/a2Zbbw0j\nR8Jhh+XJA5Ik1RK3OJvMzJl5esATT+QWFM3u7rthv/3g6qvzKU9JkirNYen6jHvvhXXWsTibo3dv\nuOqqfGDgnnuKTiNJUmaB1mQafXrAoujXDy67DPbdFx54oOg0kiRZoDUd7z+bt912g4svhr32gkce\nKTqNJKnZWaA1keeegylTmmN6wKLYY4/cemP33fM9epIkFcU2G01kzvSATpbl87XvvjBjBgwalGd4\nbrpp0YkkSc3IAq2JjBoFxx1XdIrad8ABMH163va84448gUCSpGqyQGsS774LDz0EAwYUnaQ+HHxw\nLtIGDIDW1jzLU5KkarFAaxJjx0KfPs07PWBRHH44fPRRnt3Z2gprr110IklSs7BAaxKe3lw0Rx+d\nV9L694e77rJ/nCSpOpwk0ARmzoTVVoPHHoM11yw6TX066yy46KJcpK22WtFpJEn1zGHpAuC++2Ct\ntSzOFsd3v/vp7c5VVik6kSSpkVmgNQG3N8vjBz/IRdrAgfl054orFp1IktSo7IjVBEaPdrxTufzo\nR7lA2223fDJWkqRKsEBrcP/4B7zzDmyzTdFJGkNEvh9t551hyBCYOrXoRJKkRmSB1uBGjcojjJwe\nUD4R8MtfwlZb5bFQ771XdCJJUqPxP9sNzu3NyoiA88+HXr3ygPUPPig6kSSpkdhmo4FNngyf/zxM\nmgTLLFN0msY0axZ87Wvw5ptw442w1FJFJ5Ik1bpS2my4gtbAxo6F3r0tziqpc2e45BLo3h3+4z9y\nU1tJkhaXBVoDc3uzOrp0gcsvz8Xa8OEwY0bRiSRJ9c4tzgY1a1bueP/II3mbU5X30Uew3355Ne2y\ny3LBJknS3NzibGL33ZfnRlqcVc+SS8J11+X70Q4/HGbPLjqRJKleWaA1qFGj3N4swlJLwU03wQsv\nwFFHWaRJkhaNBVqD8v6z4iy9dP7zf+op+OY3wd13SdLCskBrQP/8J7z1Fmy7bdFJmteyy8Itt8CD\nD8IJJ1ikSZIWjgVaA3J6QG3o0SO3Omlthe99zyJNklQ6/xPegNzerB0rrADjxsHNN8MZZxSdRpJU\nL2yz0WCmTIE114RXXsnbbKoNr78OLS1wyCFwyilFp5EkFamUNhtdqhVG1TF2LOy8s8VZrVl1Vfjz\nn6Fv39yO4/jji04kSaplFmgNxu3N2rX66nDHHblI69oVjj226ESSpFrlFmcDmTM94OGHYa21ik6j\n+Xn++bzd+b3vwYgRRaeRJFVbTWxxRsRg4JfkAwkXpZR+No/XtADnAEsAb6SU+rVdfx6YDMwGZqSU\ntq903np2//3wuc9ZnNW6ddbJ250tLXm782tfKzqRJKnWVLRAi4hOwP8C/YFXgAcj4qaU0sR2r+kB\n/BrYLaX0ckSs3O5LzAZaUkrvVDJno3B7s36svz7cfjvsumve7hw+vOhEkqRaUukVtO2B51JKLwBE\nxJXA3sDEdq/5CnBdSullgJTSm+2eC2wFUrJRo+Cii4pOoVJttFFuwTFgQC7Shg0rOpEkqVZUuvhZ\nA3ix3eOX2q61tyGwYkTcGREPRsQh7Z5LwG1t14+scNa69q9/wRtvwHbbFZ1EC2OzzWDMGDjmGBg5\nsug0kqRaUQunOLsAWwO7AssA90XEfSmlvwM7p5QmRcQq5ELt6ZTS3UWGrVWjRzs9oF5ttdUn//t1\n7QqDBxedSJJUtEoXaC8D7W9ZX7PtWnsvAW+mlD4EPoyI8cBWwN9TSpMAUkpvRMQN5C3TeRZop59+\n+seft7S00NLSUqbfQn0YNQqOPrroFFpU224LN90Ee+0FV1wB/fsXnUiSVC6tra20trYu1Hsq2mYj\nIjoDz5APCUwC/gIMTyk93e41GwPnAYOBJYEHgC8DzwOdUkrTImIZYBxwRkpp3Dy+T1O32XB6QOOY\nMCHfi3bttdCnT9FpJEmVUEqbjYpuiKWUZgHHkourvwFXppSejoijImJE22smAmOBJ4D7gQtTSk8B\nPYG7I+LRtuuj5lWcKd9o/qUvWZw1gl12gSuvhP33h/vuKzqNJKkoNqptAIcemg8HHHNM0UlULmPH\n5rmdN9/swQ9JajSFr6Cp8mbNgltugaFDi06icho0KLdMGToUHnsMUkqcfPJZNPMPIpLUTCzQ6twD\nD+TxTmuvXXQSlduee8JvfgNDhsA554zl/PMncf317vJLUjOwQKtzTg9obG+8cRmdOw/lu9+dwNSp\nZ3PKKePZbLOhXHDBZUVHkyRVUC30QdNiGDUKLryw6BSqlBEjDmLFFVdixIjxvPtu8MEHs/nJT45l\n2LBBRUeTJFWQBVode/55eP112N4R8g0rIogIZs36kBVWOJ5Jk2aTUr4mSWpcbnHWsdGjYffdoXPn\nopOokp577kUuvngwr776CzbddAjnnvvigt8kSaprttmoY4MGwYgRDtluJu+8AzvtBCecAEc6nVaS\n6lIpbTYs0OrU1Kmwxhrw8suw3HJFp1E1Pfcc9O6dG9r261d0GknSwrIPWgO77ba8kmJx1nx69crF\n2fDhuViTJDUeC7Q6NWqU7TWaWb9+cMYZ+e/Au+8WnUaSVG5ucdahWbNg9dXhL3+BddYpOo2KdNxx\n8NRTeZpEF89kS1JdcIuzQT34IPTsaXEm+PnPc2F23HFFJ5EklZMFWh1ye1NzdOkCV1wBd94Jv/51\n0WkkSeVigVaHRo1yOLo+0aNH/jvx4x/nwyOSpPpngVZnXngBXn0Vdtih6CSqJeutB1dfDQcfDBMn\nFp1GkrS4LNDqjNMDND+77AI/+1ne/n7rraLTSJIWhwVanXF7Ux059FDYd1/Yf3+YPr3oNJKkRWWb\njToyZ3rASy9B9+5Fp1GtmjUrF2mrrQYXXADOVZek2mKbjQZz++2w444WZ+pY585w+eXwwANw7rlF\np5EkLQpbW9YRtzdVquWWg5Ej8ziwDTfM9y1KkuqHW5x1YvbsPD3g/vth3XWLTqN6cd99sPfeuU/a\nZpsVnUaSBG5xNpQHH4RVVrE408LZaSc4++x8svONN4pOI0kqlQVanXB7U4vq4INh+HDYbz/46KOi\n00iSSmGBVicc76TF8aMfwaqrwte/Dg1+N4AkNQQLtDrw73/DK6/kE5zSoujUCS69FB5/PA9YlyTV\nNk9x1oHRo2HIEKcHaPEss0w+2bnjjrDRRrDXXkUnkiTNjytodcDtTZXLmmvCDTfAf/5nXk2TJNUm\n22zUuGnTcnuNl1+2Qa3K5+qr4cQTczPb1VYrOo0kNRfbbDSA22+HHXawOFN5HXAAHH54Hgn14YdF\np5Ekzc0Crca5valK+eEPYe214YgjPNkpSbXGLc4aNns2fO5zcO+9sN56RadRI/rgA+jbN08b+P73\ni04jSc2hlC1OT3HWsIcegpVWsjhT5XTrBjfdlLfRN94Yhg0rOpEkCSzQaprTA1QNq6+ei7TddoN1\n1oFttik6kSTJe9Bq2OjR3n+m6vjiF+GCC2CffXJTZElSsVxBq1Evvpg/dtqp6CRqFvvtB888k+9H\nu+suWHrpohNJUvNyBa1GOT1ARTj55Hwv2qGH5kMqkqRiWKDVKNtrqAgR8LvfwUsvwRlnFJ1GkpqX\nbTZq0Hvv5Ru3X3wRevQoOo2a0Wuv5ZOdP/0pDB9edBpJaiy22ahTt98O221ncabi9OyZB6sPGJDb\nvOywQ9GJJKm5uMVZg9zeVC3Ycku46KJ8eODFF4tOI0nNxS3OGjN7NqyxBtx9N6y/ftFpJPj5z+Hy\ny2HCBFh22aLTSFL9c1h6HXr4YVh+eYsz1Y4TTsh90g45xJOdklQtFmg1xu1N1ZoI+O1v4e234dRT\ni04jSc3BAq3GOD1AtahrV7juOrjqKvjjH4tOI0mNz3vQashLL8FWW+UWB108X6sa9NRT0NICN9wA\nO+9cdBpJqk/eg1Zn5kwPsDhTrdp0U7j0Uth/f3j++aLTSFLjskCrIW5vqh4MHgynnJL/rk6dWnQa\nSWpMbnHWiPffh9VWg3//O5/ilGpZSnD00fDyy3Djjc6MlaSF4RZnHbn9dth2W4sz1YcIOO+8/IPF\nSScVnUaSGo8FWo1we1P1Zokl4Jpr8kioiy4qOo0kNRa3OGvA7Nmw5ppw113Qq1fRaaSF88wz0KcP\nXH019O1bdBpJqn1ucdaJRx6B7t0tzlSfNtooj4L68pfhH/8oOo0kNQYLtBrg9qbq3YABcNppMHQo\nTJ5cdBpJqn8VL9AiYnBETIyIZyNinrcTR0RLRDwaEX+NiDsX5r2NwPFOagRHHw0DB+aVtJkzi04j\nSfWtovegRUQn4FmgP/AK8CBwYEppYrvX9ADuBXZLKb0cESunlN4s5b3tvkbd3oP28suw5ZZOD1Bj\nmDkT9tgDNt4Yzj236DSSVJtq4R607YHnUkovpJRmAFcCe8/1mq8A16WUXgZIKb25EO+te6NH58af\nFmdqBF265Hmd48blAeuSpEVT6QJtDeDFdo9farvW3obAihFxZ0Q8GBGHLMR76573n6nRLL983rY/\n/fTc30+StPBq4ZBAF2BrYAgwGPhBRGxQbKTqeP/93Fpj0KCik0jltcEGeSXtoIPg2WeLTiNJ9afS\nG2svA2u1e7xm27X2XgLeTCl9CHwYEeOBrUp878dOP/30jz9vaWmhpaVlcXJXxZ//DNtsAyusUHQS\nqfz69oWf/CSf7HzgAf+eS2pera2ttLa2LtR7Kn1IoDPwDPlG/0nAX4DhKaWn271mY+A88urZksAD\nwJfb3tfhe9t9jbo8JHDUUbmH1PHHF51EqpwTToDHHoMxY/L0AUlqdoUfEkgpzQKOBcYBfwOuTCk9\nHRFHRcSIttdMBMYCTwD3AxemlJ6a33srmbeaUsr3nw0dWnQSqbLOOgu6dYNvfjP/vZckLZijngry\n8MPwla/kMTlSo5syBXbeGUaMyIWaJDWzUlbQbO5QEE9vqpl0755Pdu60Ux5pNnhw0YkkqbbVwinO\npjRqlNubai7rrAPXXgtf/So89VTRaSSptlmgFeCVV+Cf/8xbPlIz2Xln+PnP8+rxm28u+PWS1Kws\n0Apw8815i8cTbWpGX/0qHHAADBsG06cXnUaSapMFWgHc3lSzO/NMWHHFPGC9zs73SFJVeIqzyj74\nAHr2hBdesHGnmtu0adC7NxxySO6VJknNwlOcNeiOO2DrrS3OpGWXzavJO+6YGza7qixJn3CLs8rc\n3pQ+8fnPw/XXw+GHw5NPFp1GkmqHBVoVzZkeYP8z6RM77ADnngt77QWvv150GkmqDRZoVfTYY7D0\n0nk7R9Inhg/P96Ltuy98+GHRaSSpeBZoVeT2pjR/p58Oa6yRx0HVyZkfSaoYC7QqGjXK7U1pfjp1\ngksuyVMGfvazotNIUrFss1Elr7wCm28Or71mg1qpIy+/nE92/upXectTkhpNKW02XEGrkltugUGD\nLM6kBVljDbjxxrzV+eijRaeRpGJYoFWJ959JpdtmG/jNb2DvvWHSpKLTSFL1ucVZBXOmBzz/fB5v\nI6k0P/5x/uGmtRW6dSs6jSSVh1ucNeLOO+GLX7Q4kxbW978P66+fG9nW8M9gklR2FmhV4PamtGgi\n4KKL4F//gh/9qOg0klQ9zuKssDnTA267regkUn3q1i0fGthhB9h4YzjggKITSVLlWaBV2OOPw1JL\nOT1AWhyrrQYjR8LAgbDuurDddkUnkqTKcouzwuZsb0aHtwJKWpCttoLf/S73RnvppaLTSFJllVSg\nRcTaETGg7fNuEbFcZWM1DqcHSOWz997wX/+Vf33vvaLTSFLlLLDNRkQcCYwAVkwprR8RvYDfppT6\nVyNgKWq1zcarr8Imm8Drr9ugViqXlOCww2DaNLj66jwiSpLqSbnabBwD7AxMAUgpPQesuvjxGt/N\nN8Nuu1mcSeUUARdckH8A+uEPi04jSZVRSoH2UUpp+pwHEdEFqL3lqhrk9qZUGUsuCTfcAH/6E1x+\nedFpJKn8SinQ7oqI7wHdImIgcA0wqrKx6t+HH+YGtUOGFJ1EakyrrJJPdn7723DffUWnkaTyKqVA\nOxl4A3gSOAq4BTi1kqEawZ13wpZbwkorFZ1Ealybbw6XXALDhsELLxSdRpLKp8NDAhHRGbg0pXRQ\n9SItvFo8JPCNb8A668B3v1t0EqnxnXNOLtTuvhuW84y5pBpXyiGBUk5x3g3s2v4+tFpTawVaSrD2\n2jB2bD7FKamyUoIRI/KJ6euvh86di04kSfNXrgLtUmATYCTwceehlNLZ5QhZDrVWoD3+OOy3H/z9\n7zaolapl+nQYNAi23x5+9rOi00jS/JVSoJUy6ukfbR+dADcPSjDn9KbFmVQ9XbvCtdfmmZ2bbAKH\nHlp0IkladAtcQfv4hRHLAqSUplU00SKotRW0HXaAn/wE+tdMK1+peUycCH36wHXXwS67FJ1Gkj6r\nXFucmwN/BFZsu/Qm8NWU0t/KkrIMaqlAe+21PBj99dfzT/SSqm/cOPja1+Cee2C99YpOI0mfVq5J\nAhcCx6eU1k4prQ2cAPyuHAEb0ZzpARZnUnF22w1OPTXfajBlStFpJGnhlVKgLZNSunPOg5RSK7BM\nxRLVOacHSLXhmGOgpQUOPBBmzSo6jSQtnFK2OG8AHiFvcwIcDGyTUtq3wtlKVitbnB9+CD17wj/+\nASuvXHQaSTNmwO6754a255xTdBpJysq1xXk4sApwPXAdsHLbNc2ltRW22MLiTKoVSywBV18Nt9wC\nF15YdBpJKt0C22yklN4B/qsKWeqe25tS7VlhBRg9Gnr3hl69oF+/ohNJ0oItcAUtIm6LiOXbPV4h\nIsZWNlb9SSn/R8ACTao9vXrBlVfC8OHw3HNFp5GkBStli3PllNK7cx60raitWrlI9enJJ/N4GUc7\nSbWpXz/4f/8v/xD1zjtFp5GkjpVSoM2OiLXmPIiItYHi78ivMU4PkGrfiBEwZAgccEA+QCBJtaqU\nAu37wN0R8ceIuAwYD5xS2Vj1x+1NqT78z//kwwPf/nbRSSRp/koa9RQRKwM7klfOHkgpvVnpYAuj\n6DYbr78OG27o9ACpXkyeDF/6EnzjG7lfmiRV02K12YiItSOiB0BbQfYesBvw1YiwDGnn5pth4ECL\nM6le9OiRb0v48Y/zWChJqjUdbXFeTdvEgIj4AnAN8G9gK+D8ykerH25vSvVnvfVyj7RDDskD1iWp\nlsx3izMinkgpbdn2+c+B2Sml70ZEJ+CxOc/VgiK3OD/6CFZdFf7+d1hllUIiSFoMl1wCZ54J998P\nK61UdBpJzWBxJwm0f+OuwJ8BUkqzy5CtYbS25jEyFmdSfTr0UNh3X9h/f5g+veg0kpR1VKDdERFX\nR8S5wAo9I/7oAAAgAElEQVTAHQARsTrgP2NtnB4g1b+f/hS6d4djj81NpyWpaB1tcQbwZWB14OqU\n0stt178IrJpSqplpAkVtcaYE666b70HbfPOqf3tJZTR1ah4HddhhcNxxRaeR1MgWa4szZVemlM6Z\nU5y1XX+0loqzIv31r7kx7WabFZ1E0uJabjkYORLOOisPV08pcfLJZ1FkCx9JzauURrWaD6cHSI1l\n7bXhuuvyfWnnnDOW88+fxPXX24dDUvVZoC2G0aNh6NCiU0gqpyeeuIyuXYdy0kkTmDr1bE45ZTyb\nbTaUCy64rOhokprIAgu0iPhWKdeazeuvw1NPQd++RSeRVE4jRhzEOeccw7LLzgaCadNmc8YZxzJi\nxEFFR5PUREpZQfvaPK4dWuo3iIjBETExIp6NiJPm8XzfiHg3Ih5p+zi13XPPR8TjEfFoRPyl1O9Z\nDbfcAgMGwJJLFp1EUjlFBBHBrFkfsvrqx/Pqqx/w73/na5JULV3m90REDAe+AqwbESPbPbUc8HYp\nX7ytqe3/Av2BV4AHI+KmlNLcfbvHp5T2mseXmA20pJTeKeX7VZPbm1Ljeu65F7n44sHst99uHH/8\nOE477UV694btty86maRm0VGbjbWBdYGfAie3e2oq8ERKaeYCv3jEjsBpKaUhbY9PJh8Q/Vm71/QF\nvpNS+kw3sYj4F7BtSumtBXyfqrbZ+Ogj6NkTnn02TxGQ1Nhuvjm337jqKujXr+g0kurd4rbZeCGl\n1JpS2imldFe7j0dKKc7arAG82O7xS23X5rZTRDwWETdHxKbtYwC3RcSDEXFkid+z4u66Czbd1OJM\nahZ77JHndn75y/n0tiRVWimHBPaLiOciYnJETImIqRExpYwZHgbWSil9gbwdemO753ZOKW0N7A4c\nExG9y/h9F5nD0aXm09KS/79/5JFwxRVFp5HU6OZ7D1o7ZwF7ppSeXoSv/zKwVrvHa7Zd+1hKaVq7\nz2+NiPMjYsWU0tsppUlt19+IiBuA7YG75/WNTj/99I8/b2lpoaWlZRHiLlhK+SfokSMX/FpJjWX7\n7eH222Hw4Dx5YMSIohNJqgetra20trYu1Hvmew/axy+IuCeltPOiBIqIzsAz5EMCk4C/AMPbF3sR\n0TOl9Frb59uTx0qtExFLA51SStMiYhlgHHBGSukzXSOreQ/aX/+aDwf86182qJWa1d//DgMHwje+\nASeeWHQaSfWmlHvQSllBeygiriJvPX4052JK6foFvTGlNCsijiUXV52Ai1JKT0fEUfnpdCGwf0Qc\nDcwAPiDP/wToCdwQEakt5+XzKs6qbc72psWZ1Lw22AAmTMhF2uTJ8KMf+W+CpPIqZQXt4nlcTiml\nwysTaeFVcwVt553hhz+EQYOq8u0k1bA33sj/FvTuDb/8JXRyNoukEpSygrbAAq0eVKtAe+MN6NUL\nXnvNBrWSsnffzbc99OoFv/sddCllX0JSU1usNhvtvsiGEfHniPhr2+Mt23f7bya33gr9+1ucSfrE\n8svD2LHwyitw4IG5T6IkLa5SFuR/B5xCvkeMlNITwIGVDFWrRo1yeoCkz1pmmXyyOyXYay94772i\nE0mqd6UUaEunlOaeg1lqo9qGMX063HZbblgpSXNbcsk8aWD11fN9aZMnF51IUj0rpUB7MyLWJ3f1\nJyL2J7fMaCp33QWbbOL0AEnz16UL/P73sPXWeSTUG28UnUhSvSqlQDsGuADYOCJeBo4Djq5oqhrk\ncHRJpejUCc49N6+29+kDL71UdCJJ9ajkU5xtzWI7pZSmVjbSwqv0Kc6UYP314cYbYcstK/ZtJDWY\n//kfOP/8fHvEBhsUnUZSrVisRrURcXBK6bKIOH7uLwqQUjq7LCnrwFNPwaxZsMUWRSeRVE9OPBG6\nd4e+ffNJz803LzqRpHrRUceeZdp+Xa4aQWrZnO1NO4VLWlhHHZWLtAED8knw7bYrOpGkemCj2hL0\n7g2nnpoHJEvSohg1Co44Aq6+Glpaik4jqUjlalT7h4hYvt3jFSLi9+UIWA/efBOefNJ/UCUtnj33\nzG04DjgAbr656DSSal0ppzi3TCm9O+dBSukd4IuVi1Rbbr0Vdt0Vllqq6CSS6l2/fp+spF11VdFp\nJNWyUqbGdYqIFdoKMyJixRLf1xBGjco/+UpSOeywQz7VOXgwTJkCRx5ZdCJJtaiUQusXwH0RcQ0Q\nwP7AmRVNVSOmT4dx4+C884pOIqmRbLFFbn49cGAu0k44oehEkmrNAgu0lNKlEfEQsGvbpf1SSk9V\nNlZtmDABNtoIevYsOomkRrPBBjB+fD7dOXkynHGGJ8UlfaKjPmjdU0pT2rY0XwX+1O65FVNKb1cj\nYJHc3pRUSZ//fP5BcNCgvJJ29tl5EoEkzbfNRkSMTikNjYh/0TaHc85TQEoprVeNgKWoRJuNlPJP\nuNdfD1ttVdYvLUmf8u67eTTURhvB734HnTsXnUhSJZXSZqOjAq13SunuiFgqpfRhRRKWSSUKtKef\nzj/VvvCC2w6SKu+992DffaFHD7j8cujatehEkiplcfugndv2673li1Q/Ro1yeoCk6llmmfzvzqxZ\nsPfe8P77RSeSVKSOVtDuB54A9gGunPv5lNJ/VTZa6SqxgrbLLvC978GQIWX9spLUoZkz4fDD4fnn\nc8HWo0fRiSSV2+KuoA0F7gA+AB6ex0fDeusteOKJ3FRSkqqpSxe45BLYcsvcJPvNN4tOJKkIHbXZ\nODGldFJErJVS+kPVEtWAW2/NxZnTAyQVoVOn3H/x1FOhT5/c2HaNNYpOJamaOlpB2z0iAjiwWmFq\nhe01JBUtAs48Ew49NN9y8c9/Fp1IUjV1tII2BngHWDYiptDWXoNP2mx0r0K+qpszPeDccxf8Wkmq\ntO9+F5ZbLq+kjR0Lm21WdCJJ1TDfFbSU0okppeWBm1NK3VNKy7X/tYoZq+ruu6FXL1httaKTSFJ2\n9NHws59B//7w0ENFp5FUDQvsWZ1S2jsi1o6IAQAR0S0ilqt8tGK4vSmpFh10EFx4Iey+ex4RJamx\nLbBAi4gjgWuBC9ourQncWMlQRUnJAk1S7dprL7jiCth/f7jllqLTSKqkUqa+HQPsDEwBSCk9B6xa\nyVBFeeYZ+OgjRztJql39+8PIkXDYYXD11UWnkVQpHR0SmOOjlNL0aGupHxFd+PRszobh9ABJ9WDH\nHXPrjSFDYOpUOOKIohNJKrdSVtDuiojvAd0iYiBwDTCqsrGK4fampHqx5ZbQ2go/+hGcc07RaSSV\n23xHPX38gohOwBHAbuQWG2OB/yv7bKXFUI5RT2+/DeusA6+9Bt26lSeXJFXav/8NAwfC8OFw2mnu\nAEj1oJRRTwvc4kwpzY6IPwD3tV16ppaKs3KZMz3A4kxSPVlrrXyqc9AgmDwZzj7bIk1qBKWc4mwB\nngN+DZwPPBsRfSqcq+rc3pRUr3r2hDvvhPvvhyOPhFmzik4kaXGVssX5MPCVlNIzbY83BK5IKW1T\nhXwlWdwtzhkzYNVV4amnYPXVyxhMkqpo2jTYZx9YaSX44x+ha9eiE0mal1K2OEs5JLDEnOIMIKX0\nLLDE4oarJXffDRtsYHEmqb4tuyyMHp3bBe2zD7z/ftGJJC2qUgq0hyLi/yKipe3j/4CGGjbi9qak\nRrHUUnDNNXkVbcgQmDKl6ESSFkUpW5xLkpvV9m67NB74TUrpowpnK9nibnFuuCFceSVsvXUZQ0lS\ngWbPhmOPhQcfzIegVl656ESS5ihli3O+BVpErAKsklJ6aq7rmwGvp5TeKFvSxbQ4Bdozz+TO3C++\n6MknSY0lJfje9/Lkgdtug899ruhEkmDx70E7D5jXz1wrAucuTrBa4vQASY0qAn76UzjkENhlF/jn\nP4tOJKlUHRVoG6SUxs99MaU0AdiycpGqy/vPJDW6k0+GE06Avn3zaXVJta+jRrXLdfBcQ5zifPtt\nePRR2HXXopNIUmV94xvQvXu+pWP0aNimZholSZqXjlbQ/h4Ru899MSKGAA2xUD5mDLS0OD1AUnM4\n+GD4zW/y6c4JE4pOI6kjHa2gHQfcHBEHAA+3XdsW2AkYWulg1eD2pqRms88+uV/asGFw6aUweHDR\niSTNS4dtNtpabHwF2Lzt0t+AP6WUPqxCtpItyinOGTPyeJS//tWTTZKaz3335WLt17+G/fcvOo3U\nXBZ7WHpbr7OLy5qqRtxzD6y3nsWZpOa0004wblze7pw6FQ47rOhEktrrsEBrZG5vSmp2W20Fra0w\ncGCeOPCtbxWdSNIcTVugjR4Nf/pT0SkkqVgbbpgPDAwYAJMnww9+YF9IqRaUMouTiOgWERtVOky1\nPPssTJvmaCdJAlhrrVykXXstfOc7eQKBpGItsECLiD2Bx4AxbY+/EBEjKx2skpweIEmf1rNn3u68\n5x4YMQJmzSo6kdTcSllBOx3YHngXIKX0GLBuBTNV3OjRuUCTJH1ixRXzzM5//hMOOiifdpdUjFIK\ntBkppclzXavbBfB33oGHH87dtCVJn7bccnDzzfD++7DvvvDBB0UnkppTKQXa3yLiK0DniOgVEecB\n91Y4V8WMGZPn0S29dNFJJKk2LbUUXHcd9OiR23BMmVJ0Iqn5lFKgfRPYDPgI+BMwGajbw9hub0rS\ngi2xBPzxj7DJJvmE51tvFZ1Iai6lFGh7pJS+n1Laru3jVGCvUr9BRAyOiIkR8WxEnDSP5/tGxLsR\n8Ujbx6mlvndhzZyZV9As0CRpwTp1gvPPh3798s7DpElFJ5KaRykF2iklXvuMiOgE/C8wiLwKNzwi\nNp7HS8enlLZu+/jxQr63ZPfcA+usA2ussThfRZKaRwT87Gf50MAuu8C//lV0Iqk5zLdRbUQMAXYH\n1oiIX7V7qjsws8Svvz3wXErphbaveSWwNzBx7m+3GO8tmdubkrRoTjkFuneHPn3yiKhNNik6kdTY\nOlpBewV4CPgQeLjdx0jyqlYp1gBebPf4pbZrc9spIh6LiJsjYtOFfG/JHO8kSYvumGPgzDNh113h\nkUeKTiM1tvmuoKWUHgcej4ieKaU/tH8uIr4FnFumDA8Da6WU3m9btbsR2LBMX/tjzz2XTyI5PUCS\nFt1Xv5pbcQweDNdfD717F51IakylzOI8EDhrrmuHUlqB9jKwVrvHa7Zd+1hKaVq7z2+NiPMjYsVS\n3tve6aef/vHnLS0ttLS0fOr5UaNgjz3yTa+SpEW3776w7LKw3375pOegUvdUpCbV2tpKa2vrQr0n\n0nyGrkXEcOArQG9gQrunlgNmp5QW2Oo1IjoDzwD9gUnAX4DhKaWn272mZ0rptbbPtweuTimtU8p7\n232NNL/fxxy77grHHQd7lXz+VJLUkXvuyUXa+efDsGFFp5HqR0SQUupw4GRHK2j3kgujlYFftLs+\nFXiilAAppVkRcSwwjny/20Uppacj4qj8dLoQ2D8ijgZmAB8AX+7ovaV837m9+y489FDu5SNJKo+d\nd86ti/bYA6ZNg699rehEUuOY7wrap14UsTbQK6V0e0R0A7qklKZWPF2JFrSCduWVeRn+5purGEqS\nmsTEibDbbnDiifDNbxadRqp9paygLfCOrIg4ErgWuKDt0prkG/nrxujRnt6UpErZeGOYMAF+9Sv4\n8Y+hhJ/7JS3AAlfQIuIxck+yB1JKX2y79mRKaYsq5CtJRytoM2dCz57w+OOw5ppVDiZJTeTVV2Hg\nwHzC86yzcpNbSZ9VlhU04KOU0vR2X7QLUDc/H917L6y9tsWZJFXaaqvBXXfB+PHw9a/DrFlFJ5Lq\nVykF2l0R8T2gW0QMBK4BRlU2Vvk4PUCSqmfFFeH22+HZZ+GQQ2DGjKITSfWplC3OTsARwG7kkUxj\ngf9bYF+LKupoi3OTTeDSS2G77aocSpKa2AcfwAEH5M+vvhq6dSs2j1RLStniLOkUZ62bX4H297/n\n4b4vv2yDWkmqthkz8uSB116Dm27KEwgkle8U578i4p9zf5QvZuWMHu30AEkqyhJLwGWXQa9euQ/l\n228XnUiqH6WULtsC27V97AL8CriskqHKxeHoklSszp3ht7+Fvn3zx6RJRSeS6sMibXFGxMMppW0q\nkGeRzGuLc/Jk+Pzn8z8GyyxTUDBJEpB7o/3kJ3DJJXDbbbDOOkUnkoqzuKOe5nyRrds97EReUStl\nyHqhxo6F3r0tziSpFkTA978P3btDnz4wblxucCtp3koptNrP4ZwJPA8cUJE0ZeT2piTVnm9+Mxdp\n/frBLbfAF79YdCKpNjXkKc6ZM3PDxEcfzduckqTact118I1vwA03wJe+VHQaqbrKdYqzR0ScHREP\ntX38IiJ6lC9m+d1/f54cYHEmSbVp2LDco3KfffI9aZI+rZRTnL8HppK3NQ8ApgAXVzLU4nJ7U5Jq\n36BBcP31cNBBeSVN0idKuQdt/ZTSsHaPz2gboF6zRo3KJ4UkSbWtd28YMyb3rJw6NTe2lVRagfZB\nRPROKd0NEBE7Ax9UNtai+8c/cjPEbbctOokkqRRbbw133JFX1KZOhWOOKTqRVLxSCrSvA5e23XcW\nwNvAoZUMtTicHiBJ9WeTTWD8+DxxYPJkOOWU3JpDalYLLNBSSo8DW0VE97bHUyqeajGMGgXHHlt0\nCknSwlpnHZgwAQYOzEXaf/+3RZqa1wLbbETEksAwYB3aFXQppf9X0WQLYU6bjcmT8+nNSZNg2WWL\nTiVJWhRvvQVDhuStz1//Oo+LkhpJWdpsADcBe5Ob1L7X7qPmjBuXbzi1OJOk+rXSSnD77TBxYj40\nMGNG0Ymk6itlBe2vKaXNq5RnkcxZQfvqV2HHHXPzQ0lSffvgA/iP/8graFddBUstVXQiqTzKtYJ2\nb0RsUaZMFTNrVh4bssceRSeRJJVDt265T1q3bvnf9mnTik4kVc98C7SIeDIingB6A49ExDMR8US7\n6zXl/vthjTVg7bWLTiJJKpeuXeHyy2G99fIJz7ffLjqRVB3z3eKMiA5LnZTSCxVJtAgiIp10UqJL\nF/jxj4tOI0kqt5TgxBPzvcbjxuV5y1K9KmWLs6M2G1PLnKeiRo2C3/++6BSSpEqIgP/5H+jRA/r0\nyfM73TFRI+uoQHsYSOTmtHNLwHoVSbSI3nwTttuu6BSSpEqJgB/8ALp3z0XauHGw0UZFp5IqY74F\nWkpp3WoGWVxOD5Ck5vCtb+UirV+/fDjsC18oOpFUfvMt0CJi45TSxIjYel7Pp5QeqVyshbfnnkUn\nkCRVy2GH5Z6XgwbBjTfCTjsVnUgqr44OCfwupXRkRNw5j6dTSmnXykYrXUSkqVOTDWolqcmMGZOb\n2f7pT/mUp1QPSjkksMBGtfUgItLs2bMJh7ZJUtOZMAGGDYPf/Q723rvoNNKCLVaj2ojYLiJWa/f4\nqxFxU0T8KiJWLGfQcrj++nFFR5AkFWCXXeDWW+HrX4fLLis6jVQeHd1WfwEwHSAi+gD/DVwKTAYu\nrHy0hXPKKePZbLOhXHCB/++UpGazzTbw5z/DKafA+ecXnUZafB212eicUprTs/nLwIUppeuA6yLi\nscpHWzgffjibn/zkWIYNG1R0FElSATbdFMaPz/eiTZkCJ59cdCJp0XW0gtY5IuYUcP2BO9o911Fh\nV4h33/2AiPA+NElqYuuum+9J++Mfc4HWALdZq0l1VKBdAdwVETcBHwATACJiA/I2Z025+OIhPPfc\ni0XHkCQV7HOfg7vuyluexxwDs2cXnUhaeB2e4oyIHYHVgXEppffarm0ILFtLfdAiIjXCaVRJUvlM\nmZJ7ZK61Flx8MXSpub0fNaumarPRCL8PSVJ5vf8+7L8/dO0KV14JSy1VdCJpMdtsSJJU75ZeOk8a\n6NoVhg6FadOKTiSVxgJNktTQunaFK66AddaB3XaDd94pOpG0YBZokqSG17lznjSw4455yPprrxWd\nSOqYBZokqSlEwC9+AfvuC336wL//XXQiaf480yJJahoRcNpp0KNHLtLGjYMNNyw6lfRZFmiSpKZz\n3HHQvTu0tMCYMbDllkUnkj7NAk2S1JQOPxyWXRYGDoSbbsr3p0m1wnvQJElN64ADchPbvfaCO+5Y\n8OularFAkyQ1td13h2uugQMPhJEji04jZW5xSpKaXt++cMstnzSz/cpXik6kZmeBJkkSsO22ecD6\noEF5jufXv150IjUzCzRJktpsthmMHw8DBsDkyXDSSUUnUrOyQJMkqZ311oMJE/LpzsmT4cwzc/80\nqZoipVR0hsUWEakRfh+SpNrx5psweHBuv/GrX0Enj9WpTCKClFKHZb9/3SRJmoeVV873pD3+OBx6\nKMycWXQiNRMLNEmS5qNHDxg7Ft54I/dM++ijohOpWVS8QIuIwRExMSKejYj53m4ZEdtFxIyI2K/d\ntecj4vGIeDQi/lLprJIkzW3ppfOkgc6dYc894b33ik6kZlDRAi0iOgH/CwwCNgOGR8TG83ndfwNj\n53pqNtCSUvpiSmn7SmaVJGl+unaFK66ANdeE3XaDd98tOpEaXaVX0LYHnkspvZBSmgFcCew9j9d9\nE7gWeH2u64HbsJKkGtClC/zf/8F220G/fvD63P/Fksqo0sXPGsCL7R6/1HbtYxHxOWCflNJvyAVZ\newm4LSIejIgjK5pUkqQF6NQJzjknz+7s0wdefHHB75EWRS30Qfsl0P7etPZF2s4ppUkRsQq5UHs6\npXR3deNJkvSJCDjjjHyAYJdd4LbboFevolOp0VS6QHsZWKvd4zXbrrW3LXBlRASwMjAkImaklEam\nlCYBpJTeiIgbyFum8yzQTj/99I8/b2lpoaWlpVy/B0mSPuP446F7d2hpgTFjYIstik6kWtXa2kpr\na+tCvaeijWojojPwDNAfmAT8BRieUnp6Pq+/GBiVUro+IpYGOqWUpkXEMsA44IyU0rh5vM9GtZKk\nQlx1FfzXf8HIkbDDDkWnUT0opVFtRVfQUkqzIuJYcnHVCbgopfR0RByVn04Xzv2Wdp/3BG6IiNSW\n8/J5FWeSJBXpy1+GZZfNLTiuuiofIJAWl6OeJEkqg9bW3Mz2ootysSbNj6OeJEmqkpYWGD0ajjwy\n90yTFkctnOKUJKkhbL893H57HrI+dSqMGFF0ItUrCzRJkspo883hrrtg4ECYPBlOPLHoRKpHFmiS\nJJXZ+uvD+PGfFGk/+lHunyaVykMCkiRVyBtvwKBB0Ls3/PKXeRKB5CEBSZIKtMoqcOed8OijcPjh\nMHNm0YlULyzQJEmqoB49YOxYmDQp90z76KOiE6keWKBJklRhSy+dJw1AHrT+3nvF5lHts0CTJKkK\nllwyTxpYffV8X9rkyUUnUi2zQJMkqUq6dIHf/x623jqPhHrjjaITqVZZoEmSVEWdOsG558Iee0Cf\nPvDSS0UnUi2yD5okSVUWkXuj9egBu+wCt90GG2xQdCrVEgs0SZIK8p3vQPfueY7nmDF5CoEEFmiS\nJBVqxAhYbjkYMCCf9Nx++6ITqRZYoEmSVLDhw3ORNnQoXH11XlFTc/OQgCRJNWDo0NyG44AD4Oab\ni06jolmgSZJUI/r1g1Gj4IgjcrGm5uUWpyRJNWSHHfKpzsGDYcoUOPLIohOpCBZokiTVmC22gLvu\ngoEDc5F2wglFJ1K1WaBJklSDNtgAxo/PRdrkyXDGGbl/mppDpJSKzrDYIiI1wu9DkqS5vf56nt3Z\npw+cc06eRKD6FhGklDost/2fWZKkGrbqqnDnnfDQQ/nwwMyZRSdSNVigSZJU45ZfHsaNg5dfzj3T\npk8vOpEqzQJNkqQ6sMwyuQXHrFmw997w/vtFJ1IlWaBJklQnllwyTxpYZZXchmPy5KITqVIs0CRJ\nqiNdusAll8CWW8Kuu8KbbxadSJVggSZJUp3p1AnOOy+vovXpk+9NU2OxD5okSXUoAs48E3r0gF12\ngdtvh/XWKzqVysUCTZKkOvbd70L37nklbexY2GyzohOpHCzQJEmqc1//ei7S+vfPJz23267oRFpc\nFmiSJDWAr3wFllsO9tgDrr02r6ipfnlIQJKkBrHnnnDllbD//nDLLUWn0eKwQJMkqYHsuiuMHAmH\nHZZ7pqk+ucUpSVKD2XFHuO02GDIEpk7NMzxVXyzQJElqQFtuCa2tMHAgTJkC3/520Ym0MCzQJElq\nUL16wfjxuUibPBlOOy33T1Pti5RS0RkWW0SkRvh9SJJUCa+9BoMGQb9+cPbZFmlFiwhSSh3+r+Ah\nAUmSGlzPnnDnnfDAA/Cf/wmzZhWdSAtigSZJUhNYYQUYNw7+/W8YPhymTy86kTpigSZJUpNYdtk8\naWD6dNhnH3j//aITaX4s0CRJaiJLLQXXXAMrrZTbcEyZUnQizYsFmiRJTWaJJeAPf8iD1fv3hzff\nLDqR5maBJklSE+rUCX79axgwAPr2hVdeKTqR2rMPmiRJTSoCfvpT6NEDdtklTx9Yb72iUwks0CRJ\nanonn5yLtL59YexY2HTTohPJAk2SJHH00bDccnnY+s03wzbbFJ2ouVmgSZIkAA4+OBdpQ4bAddfl\nbU8Vw0MCkiTpY3vvDX/6EwwbBmPGFJ2meVmgSZKkTxkwAG66Cb72Nbj22qLTNCe3OCVJ0mfstFMe\nDTVkCEydCocdVnSi5mKBJkmS5mmrraC1FQYOzBMHvvWtohM1Dws0SZI0XxtuCBMm5G3PyZPhBz/I\n/dNUWZFSKjrDYouI1Ai/D0mSatVrr8Fuu+VC7ec/t0hbHBFBSqnDP8GKHxKIiMERMTEino2Ikzp4\n3XYRMSMi9lvY90qSpMrq2TNvd957L4wYAbNmFZ2osVV0BS0iOgHPAv2BV4AHgQNTShPn8brbgA+A\n36eUri/1vW3vdwVNkqQqmDYtt+JYZRW49FLo2rXoRPWnFlbQtgeeSym9kFKaAVwJ7D2P130TuBZ4\nfRHeK0mSqmTZZfOkgQ8+gP32y7+q/CpdoK0BvNju8Utt1z4WEZ8D9kkp/QaIhXmvJEmqvqWWyv3R\nencbLLkAABL7SURBVPTIbTimTCk6UeOphUa1vwS8v0ySpDqyxP9v796D7qrre4+/PwnXQBIHcYoV\nuUhBwGolgnK4hIeDQCgWQaU2QEO9oQeMKGeOxVqPOIcOAuOc41SdDpSih4LQckcoJIgx2E4FFQWR\nIMVjuQjeuAQUJJDv+WOtwCaTy5OQ/az1PM/7NZPJ3nv91trfvUmefPj91u/32xguuAB2262ZOPDr\nX3dd0cQy7GU2HgS2G3i+bfvaoD2Bi5ME2Bo4LMmzozz3eaeddtrzj0dGRhgZGXkpdUuSpLWYMgW+\n9CU49VQ44ABYuBBe+cquq+qfRYsWsWjRonU6Z9iTBKYCd9Pc6P8QcAswt6ruWk3784Fr2kkCoz7X\nSQKSJHXrjDPgvPOakLbjjl1X02+jmSQw1B60qnouyYeBBTTDqedV1V1JPtgcrnNWPmVt5w6zXkmS\ntH4+8QmYMQNmz262iNptt64rGt9cqFaSJG0wF1wAH/94M9Nz1qyuq+mnznvQJEnS5PLnf94sxTFn\nDlx+Oey3X9cVjU99mMUpSZImkKOOggsvbNZJu+GGrqsZnwxokiRpgzv4YLjySpg3Dy67rOtqxh+H\nOCVJ0lDssw9cfz0cfnizRdTxx3dd0fhhQJMkSUOzxx5w001wyCHNjgPz53dd0fhgQJMkSUO1665w\n883NjgOPPw6f/CRkjXMY5TIbkiRpTDz8cHNv2pw5cNZZkzekjWaZDScJSJKkMbHNNvDNb8LixfCh\nD8Fzz3VdUX8Z0CRJ0pjZaiu48Ua45x447jhYtqzrivrJgCZJksbU9Olw3XXwm980a6U99VTXFfWP\nAU2SJI25zTZr1kebPr1ZhuOJJ7quqF8MaJIkqRMbb9zs3bnzzs0Mz0ce6bqi/jCgSZKkzkydCn/3\nd3DAAc2vhx7quqJ+cB00SZLUqQTOPBNmzoTZs2HhQthhh66r6pYBTZIkdS5pFrCdMaMJaQsWNAvc\nTlYGNEmS1Bvz5zch7cADm5mee+zRdUXdMKBJkqReOf74ZnbnnDlw+eWw775dVzT2nCQgSZJ65x3v\naGZ4HnVUc0/aZGNAkyRJvXTIIU0P2rHHwhVXdF3N2HKIU5Ik9dZ++8H117+wmO28eV1XNDYMaJIk\nqddmzYKbboJDD21C2kkndV3R8BnQJElS7+22Gyxe3Ow48Pjj8IlPNEtzTFQGNEmSNC7ssAPcfDMc\nfHAT0j772Ykb0lJVXdfwkiWpifA5JEnS2v3613DYYc3Q5xe/2GwXNZ4koarWGC2dxSlJksaVl78c\nvv51WLKkmTSwbFnXFW14BjRJkjTuTJ8O//IvzVDnO98JTz/ddUUblgFNkiSNS5tv3qyPNm1aswzH\nk092XdGGY0CTJEnj1sYbw4UXwmte08zwfOSRrivaMAxokiRpXJs6Fc45p1nUdmQEHn6464peOpfZ\nkCRJ414CZ58NM2fC7NnN/p3bb991VevPgCZJkiaEBD71KZgxowlpCxbAa1/bdVXrx4AmSZImlJNP\nbkLagQfCddfBG9/YdUXrzoAmSZImnPe8p1mK49BDm5me++zTdUXrxkkCkiRpQnrXu+ArX4Ejj4Qb\nb+y6mnVjQJMkSRPWnDlw2WVw7LFw1VVdVzN6DnFKkqQJbf/9m10HDj8cnngCjjuu64rWzoAmSZIm\nvFmzmv07Dz0Uli6FE0/suqI1M6BJkqRJYffdYfHiZseBpUvh1FO7rmj1DGiSJGnS2HFHuPlmOPhg\neOwxOOOMZv20vklVdV3DS5akJsLnkCRJY+NXv4LDDoO99oIvfAGmjOG0ySRU1RpjobM4JUnSpLP1\n1s09aXfeCfPmwbJlXVf0YgY0SZI0Kc2YAddfD48+CkcfDU8/3XVFLzCgSZKkSWvzzZudBjbdFN72\nNnjyya4rahjQJEnSpLbJJnDRRbDDDnDIIU2PWtcMaJIkadKbOhXOPRf23rvZZP3nP++2HgOaJEkS\nzXIbn/scHHUUzJ4N993XXS2ugyZJktRK4NOfhpkzm5C2YAHsssvY12FAkyRJWslHP9rM8hwZaWZ6\nvuENY/v+BjRJkqRVeO97Yfr0ZteBq65q7k8bK96DJkmStBpHHw1f/jIccUSzsO1YMaBJkiStwWGH\nwaWXwty5cPXVY/OeDnFKkiStxezZcN11Lyxme8wxw30/A5okSdIo7LlnM8x56KGwdCl86EPDe6+h\nD3EmmZNkSZIfJ/nLVRw/IskPktyW5JYk+w4c++ngsWHXKkmStCavex0sXgxnnQVnnjm890lVDe/i\nyRTgx8BBwM+AW4E/q6olA22mVdVv28evB/6pqnZrn/8EeFNVrXHThSQ1zM8hSZI06MEHm9mdRx4J\nf/M3zfppo5WEqlrjGcPuQXszcE9V/WdVLQMuBt4+2GBFOGttCSwfeJ4xqFGSJGmdvOpVTU/aggUw\nfz4sX772c9bFsMPPq4D7B54/0L72IkmOTHIXcA3w3oFDBSxMcmuSDwy1UkmSpHWw9dbNPWm33w5/\n8Rfw7LMb7tq96J2qqivbYc0jgdMHDu1bVbOAPwZOSrJfJwVKkiStwsyZzU4Dv/xls2ba7363Ya47\n7FmcDwLbDTzftn1tlarqW0lek2Srqnqkqh5qX/9lkitohky/tapzTzvttOcfj4yMMDIy8tKrlyRJ\nWotp05qdBo47Dv7kT+CKK2CLLV44vmjRIhYtWrRO1xz2JIGpwN00kwQeAm4B5lbVXQNtdqqqe9vH\ns4CrqurVSaYBU6rqySRbAAuAz1TVglW8j5MEJElSp557Dk44AZYsgWuvhZe9bNXtOp8kUFXPAR+m\nCVd3AhdX1V1JPpjkhLbZO5P8MMn3gL8F/rR9/feAbyW5Dfh34JpVhTNJkqQ+mDoVzj0X9toLDjwQ\nfvGL9b/WUHvQxoo9aJIkqS+q4LTT4JJLYOFCePWrX3x8ND1o7iQgSZK0ASXwmc80Ewj2378JaTvv\nvG7XMKBJkiQNwSmnwIwZMDLSzPR8/etHf64BTZIkaUje/36YPh3e+la4+mp485tHd0uWAU2SJGmI\n3v1u2HLLZgmOE0+8YVTnGNAkSZKG7IEH/pFp0y7m9NP/aFTte7GTgCRJ0kR2wgnHcvbZJ7HNNqPb\ntNOAJkmSNGRJSMLSpU+Pqr0BTZIkaQzcc8/9nH/+nFG1daFaSZKkMdT5Vk+SJEladwY0SZKknjGg\nSZIk9YwBTZIkqWcMaJIkST1jQJMkSeoZA5okSVLPGNAkSZJ6xoAmSZLUMwY0SZKknjGgSZIk9YwB\nTZIkqWcMaJIkST1jQJMkSeoZA5okSVLPGNAkSZJ6xoAmSZLUMwY0SZKknjGgSZIk9YwBTZIkqWcM\naJIkST1jQJMkSeoZA5okSVLPGNAkSZJ6xoAmSZLUMwY0SZKknjGgSZIk9YwBTZIkqWcMaJIkST1j\nQJMkSeoZA5okSVLPGNAkSZJ6xoAmSZLUMwY0SZKknjGgSZIk9YwBTZIkqWcMaJIkST1jQJMkSeoZ\nA5okSVLPGNAkSZJ6xoAmSZLUMwY0SZKknjGgSZIk9YwBTZIkqWeGHtCSzEmyJMmPk/zlKo4fkeQH\nSW5LckuSfUd7riRJ0kQ01ICWZArwBeBQ4HXA3CS7rtTsxqr6o6raA3gf8PfrcK46smjRoq5LmHT8\nzsee3/nY8zsfe37n/TTsHrQ3A/dU1X9W1TLgYuDtgw2q6rcDT7cElo/2XHXHv9Bjz+987Pmdjz2/\n87Hnd95Pww5orwLuH3j+QPvaiyQ5MsldwDXAe9flXEmSpImmF5MEqurKqtoNOBI4vet6JEmSupSq\nGt7Fk72B06pqTvv8VKCq6sw1nHMvsBewy2jPTTK8DyFJkrSBVVXWdHyjIb//rcAfJNkeeAj4M2Du\nYIMkO1XVve3jWcAmVfVIkrWeu8LaPqQkSdJ4MtSAVlXPJfkwsIBmOPW8qroryQebw3UO8M4k84Bn\ngKeAP13TucOsV5IkqQ+GOsQpSZKkddeLSQLrI8m2SW5KcmeSO5J8pOuaJrokmyb5druo8B1JPt11\nTZNFkilJvpfk6q5rmQyS/HRwAe2u65kMksxM8s9J7mp/rr+l65omsiS7tH++v9f+/rj/jg5fko8l\n+WGS25NcmGST1bYdrz1oSbYBtqmq7yfZEvgu8PaqWtJxaRNakmlV9dskU4F/BT5SVf4DNmRJPga8\nCZhRVUd0Xc9El+QnwJuq6tGua5ksknwZ+GZVnZ9kI2BaVS3tuKxJoV0Y/gHgLVV1/9raa/0k+X3g\nW8CuVfVMkkuAa6vq/66q/bjtQauqh6vq++3jJ4G7cJ20oRtYWHhTmnsYx2fCH0eSbAv8Me0uGxoT\nYRz/fBxvkswA9q+q8wGq6lnD2Zh6K3Cv4WxMTAW2WPE/IcDPVtdwQvwASrID8Ebg291WMvG1Q223\nAQ8DC6vq1q5rmgT+N/A/MAyPpQIWJrk1yQe6LmYS2BH4VZLz2yG3c5Js3nVRk8i7ga92XcREV1U/\nAz4H3Ac8CDxWVTeurv24D2jt8OalwMltT5qGqKqWt/umbgu8JcnuXdc0kSU5HPh521uc9peGb9+q\nmkXTc3lSkv26LmiC2wiYBXyx/d5/C5zabUmTQ5KNgSOAf+66lokuyctotqzcHvh9YMskx6yu/bgO\naG0X4aXABVV1Vdf1TCbt8MM3gDld1zLB7Qsc0d4T9VXgwCSrvF9BG05VPdT+/kvgCpq9gTU8DwD3\nV9V32ueX0gQ2Dd9hwHfbP+sarrcCP6mqR6rqOeByYJ/VNR7XAQ34B+BHVfX5rguZDJJsnWRm+3hz\n4GDASRlDVFV/VVXbVdVraBZrvqmq5nVd10SWZFrbM0+SLYBDgB92W9XEVlU/B+5Pskv70kHAjzos\naTKZi8ObY+U+YO8kmyUJzZ/z1a7vOuydBIYmyb7AscAd7T1RBfxVVV3fbWUT2iuBr7QzfqYAl1TV\ndR3XJG1ovwdc0W4htxFwYVUt6LimyeAjwIXtkNtPgPd0XM+El2QaTa/OCV3XMhlU1S1JLgVuA5a1\nv5+zuvbjdpkNSZKkiWq8D3FKkiRNOAY0SZKknjGgSZIk9YwBTZIkqWcMaJIkST1jQJMkSeoZA5qk\noUmyPMnZA8//e5L/uYGufX6Sd2yIa63lfd6V5EdJvr6KYzsnuTbJ3Um+k+TiJK9IckCSa9bz/U5O\nstlLr1zSeGZAkzRMvwPekWSrrgsZlGTqOjR/H/D+qjpopWtsClxLs3/ka6tqT+BLwCvaJuu7yORH\ngWnrckK7eLSkCcS/1JKG6VmalbJPWfnAyj1gSZ5ofz8gyaIkVyb5jyRnJDkmybeT/CDJjgOXOTjJ\nrUmWtBvLk2RKkrPa9t9P8oGB6y5OchVw5yrqmZvk9vbXGe1rnwL2A85LcuZKpxwD/NvgbhpVtbiq\nXrRFUZJPJzll4PkdSbZrt5T6WpLb2vc8Osl8mk2Uv7Gixy7JIUn+re2hu6Rd/Z0k/y/JZ5N8B3hX\nkvlJ7mw/80Vr+e8iqefG7VZPksaFAr5IsyXbygFnVW1XeAOwK/AYzbY/51bVW5J8BJjPC4Fv+6ra\nK8kf0ISanYDjgcfa9psA/5pkxVZNewCvq6r7Bt84ySuBz7bHHwMWJjmiqv5Xkv8KnFJVt61U7x8C\n3x3tF7GKzzkHeLCq3tbWML2qnkjyMWCkqh5N8nLgk8BBVfVUko+3n/309hq/anvuSPIgsENVLUsy\nYz3qktQj9qBJGqqqehL4CnDyOpx2a1X9oqqeAe4FVgSsO4AdBtr9U/se/9G225Vmc/N57R693wa2\nAnZu29+ycjhr7QV8o6oeqarlwIXA7IHjWYfa12bFte6g6QE8I8l+VfXEwPEVbfYGdqcJmbcB84Dt\nBq51ycDjHwAXJTkWeG4D1iupAwY0SWPh8zT3cm0x8NqztD+DkgTYZODY7wYeLx94vpwX9/wP9rql\nfR5gflXt0f7aqapubNv8Zg01rmsIuxPYcxTtnv+crc0AquoeYBZNUDs9yV+vpqYFVTWr/Sx/WFWD\nG1sPfp7DgS+017zV+9Kk8c2/wJKGKQBV9ShNb9f7Bo79lBcCztuBjdfj+kensROwI3A3cANwYpKN\n4PmZlmu76f4WYHaSrdoJBHOBRWs55yLgvyQ5bMULSfZPsvtK7X5KE5pIMqutc8Ww6lNVdRFw9oo2\nwFJgxRDlvwP7tp+P9r61nVlJG3C3q6pvAqe252+5lvol9Zj3oEkapsEers8BJw28di5wVTt0dwOr\n791a02zI+2jC1XTgg1X1TJK/pxkG/V4bXH4BHLnGIqseTnIqL4Syr1XV19b0/lX1dJK3AZ9P8n+A\nZcDtNEO5rxhoehnNkOsdNEOud7evvx44O8ly4Bngv7Wvnwtcn+TBqjooyXuAr7azRgv4a+Celeqa\nCvxje+9ZgM9X1dI1fWZJ/Zaq9Z0JLkmSpGFwiFOSJKlnDGiSJEk9Y0CTJEnqGQOaJElSzxjQJEmS\nesaAJkmS1DMGNEmSpJ4xoEmSJPXM/wdqO7tvTbzrzgAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -802,7 +802,7 @@ "plt.plot(clusters,sc_scores,'*-') #绘制类簇数量与对应轮廓系数关系\n", "plt.xlabel('Number of Clusters')\n", "plt.ylabel('Silhouette Coefficient Score')\n", - "\n", + "plt.savefig('k-means_silhouette_coef.pdf')\n", "plt.show() " ] }, @@ -920,7 +920,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.9" + "version": "3.5.4" } }, "nbformat": 4, diff --git a/3_kmeans/2-kmeans-color-vq.ipynb b/3_kmeans/2-kmeans-color-vq.ipynb index 15e8a280e39f541246c384de522149079a6ad9b3..055cecd9f0703c4347fc1ff586a2704e4ba1a6a3 100644 --- a/3_kmeans/2-kmeans-color-vq.ipynb +++ b/3_kmeans/2-kmeans-color-vq.ipynb @@ -16,7 +16,9 @@ { "cell_type": "code", "execution_count": 1, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "%matplotlib inline\n", @@ -206,7 +208,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.9" + "version": "3.5.4" } }, "nbformat": 4, diff --git a/3_kmeans/k-means_data.pdf b/3_kmeans/k-means_data.pdf new file mode 100644 index 0000000000000000000000000000000000000000..ca8445c84737b5ee348bdfa9fb2ac1cb312d23cb Binary files /dev/null and b/3_kmeans/k-means_data.pdf differ diff --git a/3_kmeans/k-means_groundtruth.pdf b/3_kmeans/k-means_groundtruth.pdf new file mode 100644 index 0000000000000000000000000000000000000000..9a002335b427987ddb16d3562cd90c8bffbc5fb2 Binary files /dev/null and b/3_kmeans/k-means_groundtruth.pdf differ diff --git a/3_kmeans/k-means_predict.pdf b/3_kmeans/k-means_predict.pdf new file mode 100644 index 0000000000000000000000000000000000000000..ec081d39a8bde68cc82d2fb0ce892e72925dc3ee Binary files /dev/null and b/3_kmeans/k-means_predict.pdf differ diff --git a/3_kmeans/k-means_silhouette_coef.pdf b/3_kmeans/k-means_silhouette_coef.pdf new file mode 100644 index 0000000000000000000000000000000000000000..d9dd2679a20d517cfacd58ec30ed60ae1c3a58d1 Binary files /dev/null and b/3_kmeans/k-means_silhouette_coef.pdf differ diff --git a/5_nn/1-Perceptron.ipynb b/5_nn/1-Perceptron.ipynb index c908e876b1eaf15310af8eadb00ac21202a7cdb4..24e2692bbcfe4c37f6a079dc01f5c4a1ea0fbf81 100644 --- a/5_nn/1-Perceptron.ipynb +++ b/5_nn/1-Perceptron.ipynb @@ -197,19 +197,24 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 16, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[2 2 2 2 2 1 1 2 1 1 1 1 2 1 1 1 1 2 2 2]\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAU/UlEQVR4nO3dfZBddZ3n8fe3u9N5hhjSRk2iYQYGcGBmoHpEZMQawC0GRHAXa2AWRQc3PlA8qQs4DjuU7Di4MC7O4uqkEAVl4giDAz6uLCoWK8J0EBAIEJEAgYR0nkPS6af73T+6cUInodP33r6nT9/3qyrV956+95zPSXU++fXvnHNPZCaSpPJpKTqAJKk6FrgklZQFLkklZYFLUklZ4JJUUha4JJWUBS5JJWWBa9KJiFUR0RMR2yJic0T8PCI+EhGj/rxHxOKIyIhoa0RWqRYWuCarUzNzNvAm4CrgUuArxUaS6ssC16SWmVsy8w7gz4FzIuLwiDglIn4ZEVsj4rmIuGKXt/xs+OvmiHgpIo6JiN+NiB9HxIaIWB8RN0fEnEbvizSSBa6mkJn3A6uBtwPbgfcDc4BTgI9GxOnDLz1u+OuczJyVmfcCAfwd8AbgMGARcEWjskt7Y4GrmbwAzM3Mn2bmrzKzkpkPA8uAd+ztTZn568y8MzN7M7Mb+PyrvV5qFA/UqJksADZGxNEMzYsfDrQDU4Fb9vamiJgPfIGh0ftshgY+m8Y9rTQKR+BqChHxxwwV+D3APwF3AIsyc3/gywxNkwDs6eM5Pzu8/IjM3A84e5fXS4WxwDWpRcR+EfEu4JvANzLzVwyNojdm5s6IeAvwF7u8pRuoAL+zy7LZwEvAlohYAPzXxqSXXl34eeCabCJiFTAfGGCojB8DvgF8OTMHI+IM4O+BucDdwCqGDlqePfz+zwAfBaYAJwHbgJuAQ4BfA18HLs7MhY3bK2l3FrgklZRTKJJUUha4JJWUBS5JJWWBS1JJNfRCnnnz5uXixYsbuUlJKr3ly5evz8yOkcsbWuCLFy+mq6urkZuUpNKLiGf2tNwpFEkqKQtckkrKApekkrLAJamkLHBJKikLXJJKygKX6igH11PZdD6VDX9B9i0vOo4mOQtcqqPccjH0/l/o7yI3nUtWdhQdSZOYBS7V08BqYHDocQ5Abi00jiY3C1yqp1nnMXSLzekw9e3QMr/oRJrEvKmxVEctM84g24+G3AZthxLhrTM1fixwqc6ibVHREdQknEKRpJKywCWppCxwSSopC1ySSsoCl6SSssAlqaQscEkqKQtckkrKApekkrLAJamkLHBJKikLXJJKygKXpJKywCWppEYt8Ii4ISLWRcQjuyy7OiIej4iHI+LbETFnXFNKknazLyPwrwEnjVh2J3B4Zv4B8CTwqTrnkiSNYtQCz8yfARtHLPtRZg4MP/0FsHAcskmSXkU95sD/EvhBHdYjSRqDmgo8Ij4NDAA3v8prlkREV0R0dXd317I5SdIuqi7wiPgA8C7gP2dm7u11mbk0Mzszs7Ojo6PazUmSRqjqpsYRcRJwCfCOzNxR30iSpH2xL6cRLgPuBQ6JiNURcS5wHTAbuDMiHoyIL49zTknSCKOOwDPzrD0s/so4ZJEkjYFXYkpSSVngklRSFrgklZQFLkklZYFLUklZ4JJUUha4JJWUBS5JJWWBS1JJWeCSVFIWuCSVlAUuSSVlgUtSSVngklRSFrhUApUdt1JZfwaVrX9LZl/RcTRBVHVHHkmNk30PwbYrIXtg4EmyZS4x66NFx9IE4AhcmugqLwAx/GQnDK4qMIwmEkfg0kTX/nZoOQAqASQx431FJ9IEYYFLE1y0zIJ534P+J6BtEdEyt+hImiAscKkEIqZB+x8WHUMTjHPgklRSFrgklZQFLkklZYFLUkmNWuARcUNErIuIR3ZZNjci7oyIlcNfXzO+MSVJI+3LCPxrwEkjll0G3JWZBwN3DT+XJDXQqAWemT8DNo5YfBpw4/DjG4HT6xtLkjSaaufA52fmmuHHa4H5e3thRCyJiK6I6Oru7q5yc5KkkWo+iJmZCeSrfH9pZnZmZmdHR0etm5MkDau2wF+MiNcDDH9dV79IkqR9UW2B3wGcM/z4HOD2+sSRJO2rfTmNcBlwL3BIRKyOiHOBq4B3RsRK4MTh55KkBhr1w6wy86y9fOuEOmeRJI2BV2JKUklZ4JJUUha4JJWUBS5JJWWBS1JJWeCSVFIWuCSVlAUuSSVlgUtSSVngklRSFrgkjZPMPiqbPkJl7RFUNp5DZk9d12+BS9J46fkO9N0L9ELfctixrK6rt8AladwMQL58v5skc6Cua7fAJWm8TD8Npvw+ENB2MDFjbx/uWp1RP05WklSdiGnEAcvIHCSite7rdwQuSeNsPMobLHBJKi0LXJJKygKXVJWsbKey5TNUNi4h+5YXHacpeRBTUlVy6xWw8wdAH7npfuj4CdHymoJTNRdH4NI+yMpLZN9DZGVr0VEmjoEngL5/fz74YmFRmpUFLo0iB18ku08kN32Q7D6eHHi26EgTw4xzgWkQM6H1QGg7qOhETccpFGk0O38I+RJDo80Wsud2Yvb5RacqXMuM08j234fBddDeSYR10mg1jcAj4uKIeDQiHomIZRExrV7BpAmjdSHw8nm8U4m2hUWmmVCi7SBi6tuIaC86SlOqusAjYgFwAdCZmYcz9BN+Zr2CSRPG1ONh1vnQ9gcw81yYdlrRiSSg9imUNmB6RPQDM4AXao8kTSwRQcz6EMz6UNFRpFeoegSemc8D1wDPAmuALZn5o5Gvi4glEdEVEV3d3d3VJ5UkvUItUyivAU4DDgTeAMyMiLNHvi4zl2ZmZ2Z2dnR0VJ9UkvQKtRzEPBF4OjO7M7MfuA14W31iSZJGU0uBPwu8NSJmREQAJwAr6hNLkjSaWubA7wNuBR4AfjW8rqV1yiVJGkVNZ6Fk5t8Af1OnLJKkMfBSekkqKQtckkrKApekkrLAJamkLHBJKikLXJJKygKXpJKywCWppCxwSSopC1ySSsoCl6SSssAlqaQscFUlc4DsvYfse6joKFLTqvWemGpCmUlu/EsYeBgyyVkfpmXWx4qOJTUdR+Aau8oG6H8AcgfQAztuLjqR1JQscI1dy34Q04EApkDb7xWdSGpKTqFozCLa4YBl5EvXQexPzP540ZGkpmSBqyrRdhAx59qiY0hNzSkUSSopC1ySSsoCV9Oq9PyQyvrTqWy+mKxsKzqONGbOgasp5cBq2HIJsBMGVpIxldj/qqJjSWPiCFzNqbIe4uUf/34YeK7QOFI1airwiJgTEbdGxOMRsSIijqlXMGlcTTkc2g4BZkBMJ2adV3SiMcv+J4emgLpPIvvuLzqOClDrFMoXgB9m5hkR0Q7MqEMmadxFtMHcf4KBldDSQbQeUHSkMcvN58HgM0OPNy2B1y4norXgVGqkqgs8IvYHjgM+AJCZfUBffWJJ4y+iFaYcWnSM6lU2//vj7AUGAQu8mdQyhXIg0A18NSJ+GRHXR8TMkS+KiCUR0RURXd3d3TVsTtIrzL4UaAemwMwlQ1fIqqlEZlb3xohO4BfAsZl5X0R8AdiamZfv7T2dnZ3Z1dVVXVJJu8nKZsgBonVe0VE0jiJieWZ2jlxeywh8NbA6M+8bfn4rcFQN65M0RtEyx/JuYlUXeGauBZ6LiEOGF50APFaXVJJqUun5PpV1x1PZcBY5uKboOBontZ6Fcj5w8/AZKL8BPlh7JEm1yMENsOVSoBcqL5BbLiPm3lh0LI2Dmgo8Mx8EdpuXkVSg3L7LkwpUNhYWRePLKzGlyaZ1EUw7iaEzVKYRsy8rOpHGiZ+FIk0yEUHMuZoc/CTETKJlVtGRNE4scGmSitb5RUfQOHMKRZJKygKXpJKywCWppCxwSSopC1ySSsoCl6SS8jRCSTXJ7IEd/wwMwvQ/97zzBrLAJdUkN30E+pYPPen5HjHvtmIDNRELXFJt+h7gtzfjGniUzEFv7dYgzoFLqs3UY4BpQ3+mHGV5N5AjcEk1iTnXQc/tDM2Bn150nKZigUuqSUQ7zHhv0TGaklMoklRSFrgklZQFLkklZYFLUklZ4JJUUha4JJWUBS5JJWWBS1JJ1VzgEdEaEb+MiO/WI5Akad/UYwR+IbCiDuuRJI1BTQUeEQuBU4Dr6xNHkrSvah2BXwtcAlRqjyJJGouqCzwi3gWsy8zlo7xuSUR0RURXd3d3tZuTJI1Qywj8WODdEbEK+CZwfER8Y+SLMnNpZnZmZmdHR0cNm1OtMpMNazbR29NbdBRJdVB1gWfmpzJzYWYuBs4EfpyZZ9ctmeqqUqlw+buv4n2/8zHe+7r/wuP3ryw6kqQaeR54k3iy6ykeuvsx+nsH6NnWww2fXlZ0JEk1qssNHTLzp8BP67EujY9Zc2ZSGRw61tza1sL+HfsVnEhSrRyBN4mFv/cGPnzN++lYNI8jjnszH7v2g0VHklSjyMyGbayzszO7uroatj1JmgwiYnlmdo5c7ghckkrKApekkrLAJamkLHBJKikLvGR6e3pZ8/SLDA4OFh1FUsHqch64GuPZx5/nomM/Td/OfhYduoBr77mSqdOnFh1LUkEcgZfIt66+nZc276C3p4/nV67h/h88WHQkSQWywEtk7uvm0NY+9EtTZjLHqymlpjbhp1Ayk+V3PszmdVs49vQ/Zvqs6b/9XqVSoaWlef4POuuv/iMv/HotT/zbU5y85ESOePthRUeSVKAJfyXm1z9zC9+6+nYAXvvGeSx96O95dsVqLnnnlWzdsI3/dPEpLPkf7x+PuJI0IZT2Ssw7b7qbndt72bm9lxef6WbtqnVcd8ENbF63hcpghTu++H947onnd3tf384+7rzpbu7+1s/rdsbG+uc38N/P+p9c/u6reOax5+qyTkmq1oSfQjn8Tw5lwwsb6e8dYOr0qcxbMJeW1hYigswkgZbW3f8fuuSdn+GpB1cB8IvvLufSm86vOcvlp32O3zz0DFmpsOK+ldyy9noioub1SlI1JnyBX/SPH+aNhy5gw5pNnH7+nzF1+lQu+OKH+KuTP8vGtZs587LTWXDQ61/xnt6eXlbc+ySVytD00M/v+Le6ZFnz1Iu//UjWbRtfor+3n/Zp7XVZtySN1YQv8PapUzjzsve8YtmiQxbw9ae+uPf3TGvn9b/7OtY+vY6W1uCwow+uS5b3XHgyt1xzBxHB2057i+UtqVAT/iBmtTZ3b+Hb//B9ps6YynsuOJnpM6fVZb1PPbSK3p4+Djv6YKdPJDXE3g5iTtoCl6TJorRnoYyn/r5+Hv35E6x7trvoKJI0ZhN+Dny89PX2c/5bPzV0YLJS4b/d8kne8mdHFh1LkvZZ047An+x6ijW/eZGel3bSu6OPb37u20VHkqQxadoC71h4AJWBoVMCp0ydwhsPW1BwIkkam6Yt8Plv6uDyWz7BEccdxn/4wDv48DXnFB1JksakaefAAY4++SiOPvmoomNIUlWqHoFHxKKI+ElEPBYRj0bEhfUMJkl6dbWMwAeAT2TmAxExG1geEXdm5mN1yiZJehVVj8Azc01mPjD8eBuwAvBIoCQ1SF0OYkbEYuBI4L49fG9JRHRFRFd3txfMSFK91FzgETEL+BfgoszcOvL7mbk0Mzszs7Ojo6PWzUmShtVU4BExhaHyvjkzb6tPJEnSvqjlLJQAvgKsyMzP1y+SJGlf1DICPxZ4H3B8RDw4/OfkOuWSJI2i6tMIM/MewA/ElqSCNO2l9JJUdhZ4FTZ3b2HHtp6iY0hqchb4GP3vi7/KWYs+wnvnn8v/+9f7i44jqYlZ4GOwZf1WvvOlHzHQN0Dfzn6+9PGv1WW9v37waf761L/jcx+4ji3rdzuVXpL2qKk/jXCs2qdNoaVl6LhtBMyeO6vmdfb19vPJP72C7Vt20DallfXPrefqu66oeb2SJj9H4GMwfdZ0/vqfP87rFr+Wg448kE8vu7jmdW7fvJ3enj4ABvoHee6JF2pep6Tm0LQj8J7tO5nS3kbblLH9FRxzaifHnLrbzaGrNue1+3Pk8UfwyD0rqFQqnPHxU+u2bkmTW1MW+NJLvs5t136PKVPbuPKOy/ijPz28sCwRwZXfuZQV9z7JzP1ncOARbyosi6RyaboplA1rNvGv/+v7DA4MsnN7L/9w3vVFR6K1tZXD/+Qwy1vSmDRdgU9pb+PlC0gjYPqsacUGkqQqNV2B73fAbC76xyXM6diPRYcu5NKbzi86kiRVJTKzYRvr7OzMrq6uhm1PkiaDiFiembudPdF0I3BJmiwscEkqKQtckkrKApekkrLAJamkLHBJKikLXJJKqqHngUdEN/BMwzZYH/OA9UWHKEgz7zu4/828/xNt39+UmR0jFza0wMsoIrr2dAJ9M2jmfQf3v5n3vyz77hSKJJWUBS5JJWWBj25p0QEK1Mz7Du5/M+9/KfbdOXBJKilH4JJUUha4JJWUBb4HEbEoIn4SEY9FxKMRcWHRmYoQEa0R8cuI+G7RWRotIuZExK0R8XhErIiIY4rO1CgRcfHwz/0jEbEsIib1basi4oaIWBcRj+yybG5E3BkRK4e/vqbIjHtjge/ZAPCJzHwz8FbgvIh4c8GZinAhsKLoEAX5AvDDzDwU+EOa5O8hIhYAFwCdmXk40AqcWWyqcfc14KQRyy4D7srMg4G7hp9POBb4HmTmmsx8YPjxNob+8S4oNlVjRcRC4BSg+Ls+N1hE7A8cB3wFIDP7MnNzoaEaqw2YHhFtwAzghYLzjKvM/BmwccTi04Abhx/fCJzeyEz7ygIfRUQsBo4E7is4SqNdC1wCVArOUYQDgW7gq8NTSNdHxMyiQzVCZj4PXAM8C6wBtmTmj4pNVYj5mblm+PFaYH6RYfbGAn8VETEL+BfgoszcWnSeRomIdwHrMnN50VkK0gYcBXwpM48EtjNBf4Wut+G53tMY+k/sDcDMiDi72FTFyqFzrSfk+dYW+F5ExBSGyvvmzLyt6DwNdizw7ohYBXwTOD4ivlFspIZaDazOzJd/67qVoUJvBicCT2dmd2b2A7cBbys4UxFejIjXAwx/XVdwnj2ywPcgIoKh+c8Vmfn5ovM0WmZ+KjMXZuZihg5g/Tgzm2YUlplrgeci4pDhRScAjxUYqZGeBd4aETOG/x2cQJMcwB3hDuCc4cfnALcXmGWvLPA9OxZ4H0MjzweH/5xcdCg11PnAzRHxMPBHwGeLjdMYw7913Ao8APyKoY4oxWXl1YqIZcC9wCERsToizgWuAt4ZESsZ+q3kqiIz7o2X0ktSSTkCl6SSssAlqaQscEkqKQtckkrKApekkrLAJamkLHBJKqn/D+qhvYKqDzFRAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEKCAYAAAACS67iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VfX9x/HXJzuQhEAYAQJhiIggyBQZErWoBZWiRRRH\nldb25161Wm0F2zqqFWvVDkSoA2uroqKVIWoYIgqyZIvslYQVAhkkud/fH4mUkUDGzb3Jue/n45EH\nued77jmf8wDe+eZ7vud7zTmHiIjUfWHBLkBERPxDgS4i4hEKdBERj1Cgi4h4hAJdRMQjFOgiIh6h\nQBcR8QgFuniCmW0ys1wzyzazvWY2z8x+YWZWgfemmpnPzPT/Qeo0/QMWr3DAUOdcAyAVeBJ4AHi5\nAu+10vefMvxFajMFuniJATjncpxzHwIjgZ+Y2ZlmNsTMFpf24Deb2Zij3je79M/9ZnbAzM4xs3Zm\n9omZ7TazTDN73cwSAn1BIpWhQBfPcs4tBLYBA4GDwPWlPfihwP+Z2eWlu55X+meCcy7BOfclJT8c\nHgeSgU5ACjA2gOWLVJoCXbxuB9DIOTfHObcSwDm3AngTGHTcvkeGXJxz3znnPnHOFTnn9gDPlrG/\nSK0SEewCRGpYS2CvmfWhZFy9CxBV+vVWeW8ys6bAc5T07uOAcGBvjVcrUg3qoYtnmVlvoAUwD3gD\neA9o6ZxLBP7B/3rkZS05+jjgAzqX7n8dumkqtZwCXTzHzOLN7FLgX8BrpUMtccA+51xhaW991FFv\nyaIkvNsftS2eknH3HDNrCdwfmOpFqs60Hrp4gZltBJoCRZSE8yrgNeAfzjlnZlcA44CGlMxq2QQk\nOuduKH3/WOBWSoYhL6EkzF8FTgfWlx7rHudc68BdlUjlnDLQzexl4FIgwznX9bi2+4CngcbOOY0v\niogEUUWGXCYBFx+/0cxSgMHAZn8XJSIilXfKQHfOzQP2ldH0LBpXFBGpNap0U7T0gYytzrlv/FyP\niIhUUaXnoZtZLPAQJcMtRzb7rSIREamSqjxY1B5oAywrXckuBfjazPo45zKP39nMNI1GRKQKnHOV\n6ixXdMjF+N/CRyucc8nOuXbOubaUrJXRvawwP6ooz36NGTMm6DXo+nRtuj7vfVXFKQPdzN4A5gOn\nm9kWM7vp+LxGQy4iIkF3yiEX59yoU7S38185IiJSVXr0v5rS0tKCXUKN8vL1efnaQNcXimr80X8z\nczV9DpGalp+fz5QpU1izZg2JiYlceeWVpKamBrss8TAzw1XypqgCXeQU3nvvPX56w42kEk+rnEgO\nRjsWWSZXXHEl/5g0gaioqGCXKB6kQBfxszlz5jD8kku5Na8j7Y76BLp8V8RLsevpdsWFTHr91SBW\nKF6lQBfxs7S+/enw5T76WfMT2vJdEQ/GLGL5mlUafhG/q0qg66aoSDn27NnDoiWL6U2zMttjLIJe\nrinvvPNOgCsTKZsCXaQcOTk51I+MJtLK/28SV2Ds378/gFWJlE+BLlKO5ORk8l0xe11+uftsjTvM\nGWecEcCqRMqnQBcpR0xMDNdeO4rpUTvKbN/oDrDZDnLFFVcEuDKRsinQRU7id48/xqZkmBy54UhP\nvdD5+MLt4sXYtUx4ZRIxMTFBrlKkhGa5iJzC7t27GfPwb3j99cnEWASHCvPp3aMnY598jEGDBgW7\nPPEoTVsUqUH5+fns2rWL+Ph4kpKSgl2OeJwCXUTEIzQPXUQkhCnQRUQ8QoEuIuIRCnQREY9QoIuI\neIQCXUTEIxToIiIeoUAXEfEIBbqIiEco0EVEPOKUgW5mL5tZhpktP2rbU2a22syWmtk7Zkd92KKI\niARFRXrok4CLj9s2E+jsnDsb+Bb4tb8LExGRyjlloDvn5gH7jts2yznnK325AEipgdpERKQS/DGG\nPhqY5ofjiIhINURU581m9jBQ6Jx742T7jR079sj3aWlppKWlVee0IiKek56eTnp6erWOUaH10M0s\nFfjAOdf1qG03AjcDFzjnCk7yXq2HLiJSSVVZD72iPXQr/fr+RJcA9wPnnSzMRUQkcE7ZQzezN4A0\nIAnIAMYADwFRwJ7S3RY4524t5/3qoYuIVJI+gk5ExCP0EXQiIiFMgS4i4hEKdBERj1Cgi4h4hAJd\nRMQjFOgiIh6hQBcR8QgFuoiIRyjQRUQ8QoEuIuIRCnQREY9QoIuIeIQCXSSA9u/fz9hHxtCqaXMi\nwsNp1jCJ++/7Jbt27Qp2aeIBWm1RJEAyMzMZ0KcvzTKK+UF+M1pQnyzySI/KYGV8LnO/+oJ27doF\nu0ypJbR8rkgtNmLYcA5NW8aIorYntH0ctp0t3ROZt3BBECqT2kjL54rUUhkZGcyYOZOhhSlltp9f\n3Jw1K1exatWqAFcmXqJAFwmAFStW0Ca6EfUsssz2CAujU0QSixcvDnBl4iUKdJEAiImJId8VnXSf\nPIqJiYkJUEXiRQp0kQDo3bs3+8hnhztUZvsBd5h1hXu48MILA1yZeIkCXSQAoqKiuO9X9/NqvY3k\nusJj2g67Yl6pt4Ebb7yRhg0bBqlC8QLNchEJEJ/Px1233s4br75O/6KmJBdGszu8gM+jd5N28Q94\n/d//IjKy7DF2CT2atihSB6xZs4YJ/3iJzeu/IzmlJTfd/FN69OgR7LKkllGgi4h4RI3MQzezl80s\nw8yWH7WtoZnNNLO1ZjbDzBpUpWAREfGfitwUnQRcfNy2B4FZzrmOwKfAr/1dmIiIVM4pA905Nw/Y\nd9zmYcArpd+/AvzIz3WJiEglVXXaYlPnXAaAc24X0NR/JYmISFVE+Ok4J73rOXbs2CPfp6WlkZaW\n5qfTioh4Q3p6Ounp6dU6RoVmuZhZKvCBc65r6evVQJpzLsPMkoHPnHOdynmvZrmIiFRSTa62aKVf\n35sK3Fj6/U+A9ytzUhER8b9T9tDN7A0gDUgCMoAxwHvAW0ArYDNwlXNufznvVw9dRKSS9GCRiIhH\n6AMuRERCmAJdRMQjFOgiIh6hQBcR8QgFuoiIRyjQRUQ8QoEuIuIRCnQREY/w1+JcIiJ1RnFxMR99\n9BFffvklkZGRDB06lF69egW7rGrTk6IiElIWL17Mj4ZcRr1cHx1zYikKd3wdvZ8OnTsy5b8f0KRJ\nk2CXCOjRfxGRk9qyZQs9unRlZE4retn/PsbB5xzvRm5m+2n1WPTNUsLDw4NYZQk9+i8ichLPPTOO\nPvmNjglzgDAzrihMJXdbFv/973+DVF31KdBFJGS8Oflf9C8s+wPWzIy+OYlMnvhKme11gQJdRELG\nwdxDJBBVbnsCUWTvK3Ml8DpBgS4iIaND2/asJ7vc9o1Rh+jcvWsAK/IvBbqIhIzb77+Hj+tnUOR8\nJ7TtdwXMD8/k/267NQiV+YcCXSQE+Xw+5s2bx5tvvslnn31GcXFxsEsKiOuuu442fbvyYr21bHY5\nQMkMl+VuN+Pqrea+B39Fhw4dglxl1WnaokiImTZtGrf97Be4nHyaU59McimICeOZF57jqquuCnZ5\nNa6wsJCnn3qKF579CwW5eRT6imib2oaHfjeGkSNHBru8IzQPXUROasaMGYwaPoKb8tpzJg0xK8mL\n9S6b8fW+5cVJL4VEqEPJ06IZGRlERkbWmoeJjqZAF6mkrKwsXnz+BV57+Z/sO7CfNimtufW+u7jh\nhhuIiip/NkRd5JzjzPanc/HGenSzxie0r3fZvNJ4G5t3ba8VD9aEOj1YJFIJ69ev5+wzuzDn6Ve5\ndkdTHjnYlbQ14fzl7kf4wcA08vLygl2iXy1dupQDWXs5i6Qy20+zBsQWwOzZswNcmfiLAl1CknOO\nEZcP54K9jbi+oB1tLYEGFsVZlsRdh86gaPk2fvPgQ8Eu06927dpFs/D6hFn5nb5mxLJr164AViX+\npECXkPTVV1+RsWU7ab7mJ7SFmfGj/BQmvvyyp3rpKSkp7CjKwVfOEKhzjh0cIiUlJcCVib9UK9DN\n7B4zW2Fmy81sspl5a9BRPOvLL7+kc3Fiub3VJhZLYngM69atC3BlNadLly40a9mcJWSV2b6G/bi4\naAYMGBDgysRfqhzoZtYCuAPo4ZzrSsna6lf7qzCRmhQREUGxnfxm/WFfMZGRkQGqqOaZGX8Z/zfe\nqLeZr13WkZ66c44Vbg8T663n+fF/IyxMv7jXVdX9mwsH6ptZBFAP2FH9kkRq3kUXXcQSt5tCV/YD\nNRvdASwmko4dOwa4spo1aNAg3v3oA+Z0KOQ39ZfwQsJ6HolbxoepObz61ptceumlwS5RqqFa0xbN\n7E7gMSAXmOmcu76MfTRtUWqlYZcM5VD6Kq4paHvM0EuuK+K5+mu47fcPctc99wSxwprjnGP58uVs\n27aN5ORkevTocWROutQOAZ2HbmaJwDvACCAbeBt4yzn3xnH7uTFjxhx5nZaWRlpaWpXOKeJP2dnZ\n/PCCwWSt20y/gw1pRDRbwnOZG53FVdddw/N//6tCTgImPT2d9PT0I68fffTRgAb6j4GLnXM3l76+\nHjjHOXf7cfuphy61VnFxMTNmzOCf4yewJ3M3HTp15Be330r37t2DXZqEuED30PsALwO9gQJgErDQ\nOfficfsp0EVEKimgT4o6576iZJhlCbAMMGB8VY8nIiLVo7VcRERqIa3lIiISwhToIiIeoUAXEfEI\nBbqIiEco0EVEPEKBLiLiEQp0ERGPUKCLiHiEAl1ExCMU6CIiHhER7AKk7jl48CBff/01Pp+Pnj17\nkpCQEOySRAT10KUSCgoKuOeOO2nZNJlbh43ijuHXkdKsObf87Ofk5uYGuzyRkKfFuaRCfD4fQwdf\nzJ4vVjMyL5VGFgPAflfAWzFbiOzWillz0z31GZwiwaTFuaTGfPTRR3z71XJuzutwJMwBEi2an+af\nRuaK73jnnXeCWKGIqIcuFXLZRT+kycebGGgtymxf6DJZfU4DPlswL8CViXiTeuhSY7Zs2kwL6pfb\n3oJ6bN26NYAVicjxFOhSIcnJyWSRV257Fvk0ado0gBWJyPEU6FIho2/7BXPj9uIrY/jMOcfs+ru5\n+Y5bglCZiHxPgS4VcsUVVxDfvgVvRG8gzxUd2V7givlP1CZcSiLXXHNNECs80apVq7jlZz+na4dO\n9Oh0Fr99+Dfs2LEj2GWJ1BjdFJUKy87O5uc/Gc30GdPpFNmEMGBlYRbnp6UxcfJrNGrUKNglHvH3\nv/2Nh+57gPMKm9KlKJEifHwds5+vw/cw5cP3SUtLC3aJIidVlZuiCnSptO3btzN37lx8Ph/9+/cn\nNTU12CUd46uvvmLI+YO5P/dMmlq9Y9pWu71MiNvAt5s2kJSUFKQKRU5Ns1wkIFq2bMnVV1/NqFGj\nal2YA4x78ikG5zc7IcwBOlkjOvsaMmnixCBUVrZdu3bx24cepn3L1jRt0Ih+3XszefJkioqKTv1m\nkaOohy6ek9yoMfftO53GFltm+2KXxdoBScyc+1mAKzvRypUruXDgIM7Kjad/QRMSiGIDB5hVP5P2\n53bjvY8+1NO3ISrgPXQza2Bmb5nZajNbaWbnVOd4Iv5wqv6DUTIzJ9h8Ph/Dh1zGpfubMepwO1It\nnoYWTU9rwn2HOrFj/gr++MSTwS5T6pDqDrk8B3zknOsEdANWV78kkeoZdN55LAnbU277snoHGHzZ\nDwNYUdk++eQTivYepJ9rdkJbhIXxo9yWvPDnv2joRSqsyoFuZgnAQOfcJADnXJFz7oDfKhOpont/\n/Ss+jtnFbnfig1Br3T6+CdvH6J/+NAiVHWvBggWcmVsfs7J/q25t8biCQrZt2xbgyqSuqk4PvS2w\n28wmmdliMxtvVs6gpUgA9e3blzFP/IEnY1fwYfgWNrsc1rts3ozayPj663nrvSk0btw42GUSERFB\n8Un+BzrnOOwrJiJCH1sgFVPlm6Jm1hNYAJzrnFtkZn8Gsp1zY47bz40Z879NaWlpmgMsAbF8+XKe\nH/dn5s2eQ2REJEOHX86td9xOq1atgl0aAIsXL2bIwAt4LLcHYWX00le7fUys9x2HfUXkFRZwRtvT\nuOP+exk9erRC3oPS09NJT08/8vrRRx8N3Dx0M2sGfOGca1f6egDwgHPusuP20ywXkXIM7HMuiUsz\nGV6YeszQS447zGN8TWuL5xrXgTgiWMt+ptfPoM25XTX7JQQEdJaLcy4D2Gpmp5duuhBYVdXjiYSi\ndz58ny3tYvhT/BrmuZ0sd3uYGr6ZX7OA9iRwi+tMQ4sm0sLpYkncfegMts7/hhdfeCHYpUstVK15\n6GbWDZgARAIbgJucc9nH7aMeushJFBYWMnXqVF57aSLZ+/cTHh3F9oWr+FV+lzL3/9bt583mmXy3\nfUu5N1Sl7tOj/yIecPv/3cqef3zMRda6zHbnHLdFfE7Wvj3ExcUFuDoJFD36L+IBMbExFJiv3PYi\nfBQ7n8bQ5QQKdJFa5vLhP2JR/exyn2ZdSCYDzzmX6OjoAFcmtZ0CXaSWGThwIMntW/Ne5JYTQj3D\n5fJ+ve089Lsx5bxbQpnG0EVqoczMTC5Ou5CcrZn0OdiAOCJZH5PLIjIZ9/xz/OxnPwt2iVLDdFNU\nxEN8Ph8zZszg36+/waEDOXTr05Of3XwzycnJwS5NAkCBLiLiEZrlIiISwhToIiEqKyuLJx57nL7d\netKj01nc+vNfsHq1VsCuyzTkIhKCvvzySy696BI6FybSKy+RKMJYFZHNnMgMfv/UE9x2++3BLjHk\naQxdRE4pJyeHdq1SGZXdirPt2GWEs1wef6q3indn/pf+/fsHqUIBjaGLSAW89tprtC+KOyHMAZpY\nLBflJfOnx/TRd3WRAl0kxMx8/790OxRfbnsv15jPZqcHriDxGwW6SIhxzkcY5f8mbxgaJK2bFOgi\nIeb8IRfzTf2D5bYvsd0MOLdfACsSf1Ggi4SYG2+8kVW2j9Vu3wlt+1wB02N3cd9DDwShMqkufTCh\nSIhJTEzknanvceVlw+hT2JhehxsRTTgrwvbxWWwG9z38IBdccEGwy5Qq0LRFkRC1ZcsW/vbCi0x9\newqHDxdyTr++3PnLe+nTp0+wSxM0D11ExDM0D11EJIQp0EVEPEKBLiLiEQp0ERGPUKCLiHhEtQPd\nzMLMbLGZTfVHQSIiUjX+6KHfBazyw3FERKQaqhXoZpYCDAEm+KccERGpquo++v8scD/QwA+1SA1z\nzpGens5//vM2B3MO0at3d2644QYaNmwY7NJExA+qHOhmNhTIcM4tNbM0KH89zrFjxx75Pi0tjbS0\ntKqeVqpo9+7dXHLxULZty6Rl4z5ERdZn0YJ3+M3DjzDh5fGMHDky2CWKhLT09HTS09OrdYwqP/pv\nZo8D1wFFQCwQD0xxzt1w3H569D/InHOc06cfBTlJdOt4FWb/+9m7L3sLsxePY9q0D+jXT0umitQW\nQVvLxcwGAfc55y4vo02BHmRz5sxhxJXXc3G/3x8T5t9bt+lTEpN3M236B0GoTkTKorVcpExvvz2F\nlk37lBnmAG1T+jFr1nSKiooCXJmI+JNf1kN3zs0GZvvjWOJ/ubl5RIbHltseER4NZhQVFRERoSXy\nReoq9dBDQK9e3dl38Nty27P2fkvLFq2IiYkJYFUi4m8K9BBw7bXXsmv3anbv23BCm89XzOpNH3DX\nXbcHoTIR8Sd9wEWImDp1KtdfdyNntB1Ku5T+REbUI3PPWtZs/pDTOiYzbdqHREZGBrtMESmlTyyS\nk1q0aBGP/eFJ/vvRBxQXF5Oa2o67776dW265RWEuUsso0EPI8uXLeeH5v7Js2TfEx8dz/Q3XcNVV\nVxEbW/7Nz+855yguLtYNUJFaTIEeIn7720d4/i9/pV3KIBonnk7+4QNsz/wCn2Uze85ntG7dOtgl\nikg1KdBDwL///W/uuP1+0no9QGx0wjFtq7/7iEPFK1mxclm5c85FpG7Qg0WUDCfk5eVRXFwc7FJq\nxOOP/ZGz2v/4hDAHOKPdD9mzJ4fZs/VIgEgo8kygFxQU8NRTT9MqpQ0JCQ2IiYll6JDLefrppxl1\nzfUMG3Yljz/+BJmZmcEutcqys7NZu24NLZp1K7PdzEhu1J1pH00LcGUiUht44q5YQUEBF15wETu2\nHqTbaTeR1Ksd2Tk7+ST9aeZ/voSObS4kMrIpk/85i8cff4K//e2vXH/9dQD4fD727NlDdHQ0CQkn\n9norKj8/n1mzZrFnzx7atWvHgAED/D7sUVxcTFhYGFb+wpaEWQRFHv3tREROzhOB/swz49i59RAD\nut+JWRg+52Pu1y9yepsLOOv0y47s145+nJbyA+64/W5at27F/Plf8Jfnnifn4EGKigrp2vVsxox5\nmKFDh1bq/M8//wJjHhlLg/gWxEY3Yt+BzcTEhjNx0kucf/75frvOhg0b0qxZczL3rqNZUscy99l9\nYAXnnXet384pInVHnb8p6pyjRYtW9Oz4c5IS2wKwLWMZy1a/w5BBj5a7uuCGHTOpH5PMme2GkZTY\nFp+viC07F7Piu7cY++hvueOO2yp0/mef/TNPPD6Oc7veSmJ8yyM1bc9czqKVE5k2/UO/Lkv74osv\n8uRjL3Jez/uICI86pm3zji/5dvtUNm/eoCmJInVcSM5yOXDgAE2bJjPykn8c2bZg2T9JiEvmzPaX\nlPmewsI83px2C6OGTiA8/NjgyzmUxcwvHmXt2lW0bNnypOc+dOgQzZu35Afn/Ib4+s1OaN+w9XOK\no1Yy/4u5Vbiysvl8Pq699gbSP53PaSkX0TTpdPILcti8az47dy/hk09mcvbZZ/vtfCISHCE5yyU6\nOhqfr5iiooIj23y+opIVBMsRHhGNcw4LO/Hy4+s3oU3Lc3jppVN/TOoHH3xA06QOZYY5QGrLc1ix\nYgVbt26twJVUTFhYGG+88Rp/H/8s4fHr+XzZM6zZOpkfjejDihXLFOYiIazO/14eHR3NoPPOZ+P2\nBXRIHQRAo8Q27Mxayeltyh6/3pm1goYJrQizsn+eNYxrz7Kl35zy3BkZGcRGJ5XbHh4WQUJ8YzIz\nM2nVqlUFrqZizIxhw4YxbNgwvx1TROq+Ot9DBxgz9jes3PAue7O3ANAupT87s1aStfe7E/YtLj7M\n4pX/pm3KueUer6Awh4QG8ac8b6tWrTiYu7Pc9qKiArIPZNKiRYsKXIWISPV4ItAHDBjA+PF/JX3h\nUyz45u9s2Po5Kc268fEXf+SbdR+Qm7ePwqICtu5cTPqip0hMisG5wjKP5ZxjW+YXDBt2GWPHPkrz\n5imEh4WT1KgJ99xzHzt27Diy79ChQ8k+uIM9+zeVeaz1W+fQt++5NG/evCYuW0TkGHX+pujRsrOz\nee2111iyeBkJCfH06NmdadNm8sHUqRwuLKBTpy7ce++d9O7dm759+9On8820aNrlyPud87F07X9w\nkdvJy80jgmZ0aH0RifEtOZibxfqtn5G5fxmffz6H0047DYDXX5/MnbffQ6/Oo0lufCZmRrGviA1b\n57Jq4/vMmzebLl26lFeyiEiZQnKWS1XNnTuXK4b/mLh6yTSM60ixr4DtWQvp2PE0GjduzMa1BXTv\ndPUJ71u76WOKI79l4cIvjmybMmUKv/zlgxw8kEtcXGP27N1K585n8vd/vEjXrl0DeVki4hEK9Eo6\nfPgw7777LgsXLiImJoZhwy6nTZs2tG3TnksHPUV0VP0T3uPzFfPhnF8xe86sY8LaOcfSpUvZu3cv\nbdq0oX379oG8FBHxmKoEep2f5VIdUVFRjBw5kpEjRx7ZNnv2bJoktS4zzAHCwsJp3uRMlixZckyg\nmxndu3ev8ZpFRMrjiZui/hQdHc3hwoKT7lNUnEd0dPnz3EVEgkGBfpyePXtSUHiAfQe2ldmeX5DD\n9oxVDB48OMCViYicXJUD3cxSzOxTM1tpZt+Y2Z3+LCxYIiMj+dWvfsnXq/9JweFDx7QVFx9m4cqJ\nXH/99SQllf9AkYhIMFT5pqiZJQPJzrmlZhYHfA0Mc86tOW6/WntTtDzOOe6++14mTXyFdikDiKvX\ngtz83WzeMY+08wfyrzcnExUVdeoDiYhUUVBnuZjZe8DzzrlPjtte5wL9e+vWreOllyaw4btNNG+R\nzOjRN9KjR49glyUiISBogW5mbYB0oItz7uBxbXU20EVEgiUo0xZLh1veBu46Psy/N3bs2CPfp6Wl\nkZaWVt3Tioh4Snp6Ounp6dU6RrV66GYWAXwITHPOPVfOPuqhi4hUUsCHXMzsVWC3c+7ek+yjQBcR\nqaSABrqZ9QfmAN8ArvTrIefc9OP2U6CLiFSS1nKpBQoLC/H5fHqSVESqJSQ/gq62mD59OgP6DyI2\nth7168fR6YwuvPzyy/h8vmCXJiIhQj10Pxg37lke+8MfObPdcFKb9yYsLJydWStZtfF9Lhx8Lq+8\nMgmziv+gXbduHRMmTGTzpi2ktGrB6NE30blz5xq8AhGpbTTkEgTr16+nR/feDD73EeLqNT6mrbCo\ngM8WPs5f//4Mw4cPP+WxfD4fd9xxF6+/Npk2LQcQF5vMofxMNm2fx+XDLmXixAlERIT0ApkiIUOB\nHgT33nsfn077lm4dR5TZvmHrfKzeGubM/eyUx/rDHx7n7399lYHd7yYq8n/L9xYWFTB/6V/48dWX\n8Kc/PeW32kWk9lKg+1leXh7h4eEnXbflvIEXEFnUg5Rm3cpsz83bx6cL/8CevZknPVd+fj7Nk1uS\n1usBEuJO/AzS3Ly9TJ//CNu3byUhIaFyFyIidY5uivqBz+dj/PjxnN7hTBISGlC/Xn369zuPadOm\nlbl//bj6HC48VGYbwOHCQ8TExp7yvAsWLCA+rmmZYQ5QL7YRTZPa89lnp+7pi0hoUqAfxTnH9df9\nhN+NGUdqk8u4ZshLjBwynvDDZ3HdqJsYN+7ZE94zatRVbM/6stxjbto5nxEjrjzlufPz84mKPHnw\nR0bEkp+ff+oLEZGQpEA/ypQpU/j0k/kM6vlLWjTtglkY4WERtE3pS1rvBxg75nesX7/+mPeMGDEC\nH/tZs3HmCcfbnrmczTvnc/fdp14qvkuXLuzK/I7CorIDu9hXxM7MNZx99tlVuzgR8TyNoR9lQP9B\nhBV0oW2ZHcH6AAAFsklEQVRK3zLbl679Dxf+8HTGjXvmmO0bN27koot+SN5BH80a9SA8PJI9B1aR\nnbOV96e+S//+/St0/qFDLmPn5kjO6nDijJjVG6YTGb+Nzz+fXfkLE5E6RzdFq6lhw8b84Jwx1ItJ\nLLN9266lFEcvI332rBPaiouLmTFjBh9++BGHDxcyaNAARowYQUxMTIXPv2PHDvqe04+4mPZ0aDWY\nBvHNyTmUybdbPmH3gW/44ot5tG3btsrXJyJ1R1CWz/WS2JhYDh8+VG6gHy48REKj+mW2hYeHM2TI\nEIYMGVLl87do0YLFSxbxzDPPMuGlP7N7TwYNE5O4afSN3H//P0lOTq7ysUXE+9RDP8pdd97N7I83\nlDunfO6Scfz+8V9y7bXXBqQen89HWJhuc4iEIg25VNPGjRvp3r0XvTqNpmWzrke2O+dYs3EGWQcW\nsGbtKi28JSI1ToHuB59//jnDLh9OQlxLGid0pthXyK69i4mLj2Tmx9NITU0NdokiEgIU6H6Sn5/P\n22+/zdw5nxMVFcmllw1l8ODBGv4QkYBRoIuIeIQe/RcRCWEKdBERj1Cgi4h4hAJdRMQjFOgiIh6h\nQBcR8YhqBbqZXWJma8xsnZk94K+iRESk8qoc6GYWBrwAXAx0Bq4xszP8VVhdkZ6eHuwSapSXr8/L\n1wa6vlBUnR56H+Bb59xm51wh8CYwzD9l1R1e/0fl5evz8rWBri8UVSfQWwJbj3q9rXSbiIgEgW6K\nioh4RJXXcjGzvsBY59wlpa8fBJxz7o/H7aeFXEREqiBgi3OZWTiwFrgQ2Al8BVzjnFtdpQOKiEi1\nVPkj6JxzxWZ2OzCTkqGblxXmIiLBU+PL54qISGDU2E1RLz90ZGYpZvapma00s2/M7M5g11QTzCzM\nzBab2dRg1+JvZtbAzN4ys9Wlf4/nBLsmfzKze8xshZktN7PJZhYV7Jqqw8xeNrMMM1t+1LaGZjbT\nzNaa2QwzaxDMGquqnGt7qvTf5lIze8fMEipyrBoJ9BB46KgIuNc51xk4F7jNY9f3vbuAVcEuooY8\nB3zknOsEdAM8M1xoZi2AO4AezrmulAytXh3cqqptEiV5crQHgVnOuY7Ap8CvA16Vf5R1bTOBzs65\ns4FvqeC11VQP3dMPHTnndjnnlpZ+f5CSMPDUHHwzSwGGABOCXYu/lfZ2BjrnJgE454qccweCXJa/\nhQP1zSwCqAfsCHI91eKcmwfsO27zMOCV0u9fAX4U0KL8pKxrc87Ncs75Sl8uAFIqcqyaCvSQeejI\nzNoAZwNfBrcSv3sWuB/w4k2WtsBuM5tUOqQ03sxig12UvzjndgDPAFuA7cB+59ys4FZVI5o65zKg\npJMFNA1yPTVlNDCtIjvqwaJqMLM44G3grtKeuieY2VAgo/S3ECv98pIIoAfwonOuB5BLya/vnmBm\niZT0XlOBFkCcmY0KblUB4bnOh5k9DBQ6596oyP41FejbgdZHvU4p3eYZpb/Kvg285px7P9j1+Fl/\n4HIz2wD8CzjfzF4Nck3+tA3Y6pxbVPr6bUoC3it+AGxwzu11zhUDU4B+Qa6pJmSYWTMAM0sGMoNc\nj1+Z2Y2UDHtW+IdxTQX6QuA0M0stvbt+NeC1mRITgVXOueeCXYi/Oececs61ds61o+Tv7lPn3A3B\nrstfSn9N32pmp5duuhBv3fzdAvQ1sxgzM0quzws3fY//bXEqcGPp9z8B6nLH6phrM7NLKBnyvNw5\nV1DRg1T5waKT8fpDR2bWH7gW+MbMllDyq95Dzrnpwa1MKuFOYLKZRQIbgJuCXI/fOOe+MrO3gSVA\nYemf44NbVfWY2RtAGpBkZluAMcCTwFtmNhrYDFwVvAqrrpxrewiIAj4u+ZnMAufcrac8lh4sEhHx\nBt0UFRHxCAW6iIhHKNBFRDxCgS4i4hEKdBERj1Cgi4h4hAJdRMQjFOgiIh7x/9QzRfYSDZG5AAAA\nAElFTkSuQmCC\n", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -238,12 +243,16 @@ "x = x[shuffled_index]\n", "y = y[shuffled_index]\n", "\n", - "\n", "train_data = np.concatenate((x, y[:, np.newaxis]), axis=1)\n", "\n", + "label_y = y.copy()\n", + "label_y[label_y==-1] = 2;\n", + "print(label_y)\n", "# plot data\n", - "plt.scatter(train_data[:,0], train_data[:,1], c=train_data[:,2], marker='.')\n", + "plt.scatter(train_data[:,0], train_data[:,1], marker='.', s = 300,\n", + " c=label_y, cmap=plt.cm.Spectral)\n", "plt.title(\"Data\")\n", + "plt.savefig(\"perceptron_sample_data.pdf\")\n", "plt.show()\n" ] }, @@ -256,7 +265,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 21, "metadata": { "lines_to_end_of_cell_marker": 2 }, @@ -265,37 +274,47 @@ "name": "stdout", "output_type": "stream", "text": [ - "update weight/bias: 3.662519607024163 3.038628576040485 0.5\n", - "update weight/bias: 3.1283482021588505 1.595298136548129 0.0\n", - "update weight/bias: 1.7022056555578562 0.9488336160189257 -0.5\n", - "update weight/bias: 0.6064534385664728 0.25821553124912766 -1.0\n", - "update weight/bias: -0.0072588404447664345 -1.1732780618880432 -1.5\n", - "update weight/bias: 3.56979581700504 4.157268901515593 -1.0\n", - "update weight/bias: 2.7104258301108155 3.6232316160976543 -1.5\n", - "update weight/bias: 1.6146736131194321 2.9326135313278563 -2.0\n", - "update weight/bias: 1.0805022082541196 1.4892830918355 -2.5\n", - "update weight/bias: -0.3456403383468747 0.8428185713062968 -3.0\n", - "update weight/bias: 3.4230241861565407 3.6955935657768997 -2.5\n", - "update weight/bias: 2.5636541992623156 3.161556280358961 -3.0\n", - "update weight/bias: 1.1375116526613214 2.5150917598297577 -3.5\n", - "update weight/bias: 0.38678027777241897 1.1329290169473543 -4.0\n", - "update weight/bias: -1.446079265832824 -0.7361650837497964 -4.5\n", - "update weight/bias: 1.7930043074867144 5.9278879714909145 -4.0\n", - "update weight/bias: 1.2588329026214018 4.484557531998558 -4.5\n", - "update weight/bias: 0.3697277316535954 3.2936957431536 -5.0\n", - "update weight/bias: -0.519377439314211 2.1028339543086423 -5.5\n", - "update weight/bias: -2.352236982919454 0.23373985361149163 -6.0\n", - "update weight/bias: 1.8159337720901148 4.415105700242464 -5.5\n", - "update weight/bias: 0.7328910527198487 3.024123458986641 -6.0\n", - "update weight/bias: -0.3501516666504174 1.6331412177308182 -6.5\n", - "w = [-0.3501516666504174, 1.6331412177308182]\n", - "b = -6.5\n", + "update weight/bias: 2.9024433699190153 3.129619118339762 0.5\n", + "update weight/bias: 2.013338198951209 1.9387573294948042 0.0\n", + "update weight/bias: 0.4222250668142189 0.37906946899829386 -0.5\n", + "update weight/bias: -0.4668801041535875 -0.8117923198466639 -1.0\n", + "update weight/bias: 1.6670650562137663 2.551793701566567 -0.5\n", + "update weight/bias: 0.8076950693195415 2.0177564161486283 -1.0\n", + "update weight/bias: -0.05167491757468334 1.4837191307306896 -1.5\n", + "update weight/bias: -0.8024062924635857 0.10155638784828613 -2.0\n", + "update weight/bias: 2.4366772808559527 6.765609443088997 -1.5\n", + "update weight/bias: 1.6859459059670503 5.383446700206593 -2.0\n", + "update weight/bias: 0.25980335936605603 4.7369821796773905 -2.5\n", + "update weight/bias: -0.6293018116017504 3.546120390832433 -3.0\n", + "update weight/bias: -1.7123445309720164 2.1551381495766098 -3.5\n", + "update weight/bias: -2.246515935837329 0.7118077100842535 -4.0\n", + "update weight/bias: 0.9925676374822094 7.375860765324964 -3.5\n", + "update weight/bias: 0.1331976505879846 6.841823479907025 -4.0\n", + "update weight/bias: -0.48051462842325465 5.410329886769854 -4.5\n", + "update weight/bias: -1.906657175024249 4.763865366240651 -5.0\n", + "update weight/bias: -2.6573885499131515 3.3817026233582475 -5.5\n", + "update weight/bias: 1.0051310571110115 6.420331199398733 -5.0\n", + "update weight/bias: -0.07791166225925461 5.0293489581429105 -5.5\n", + "update weight/bias: -1.1609543816295207 3.638366716887088 -6.0\n", + "update weight/bias: -1.6951257864948333 2.1950362773947316 -6.5\n", + "update weight/bias: 3.626233232216561 6.632855560776491 -6.0\n", + "update weight/bias: 2.5304810152251775 5.942237476006693 -6.5\n", + "update weight/bias: 1.1043384686241833 5.29577295547749 -7.0\n", + "update weight/bias: -0.7285210749810598 3.4266788547803397 -7.5\n", + "update weight/bias: -1.342233353992299 1.995185261643169 -8.0\n", + "update weight/bias: 1.5602100159267163 5.124804379982931 -7.5\n", + "update weight/bias: 1.0260386110614037 3.6814739404905743 -8.0\n", + "update weight/bias: 0.13693344009359731 2.4906121516456166 -8.5\n", + "w = [0.13693344009359731, 2.4906121516456166]\n", + "b = -8.5\n", + "\n", "\n", "\n", "ground_truth: [-1. -1. -1. -1. -1. 1. 1. -1. 1. 1. 1. 1. -1. 1. 1. 1. 1. -1.\n", " -1. -1.]\n", - "predicted: [-1. -1. -1. -1. -1. -1. 1. -1. 1. 1. 1. 1. -1. 1. 1. 1. 1. -1.\n", - " -1. -1.]\n" + "predicted: [-1. -1. -1. -1. 1. 1. 1. -1. 1. 1. 1. 1. -1. 1. 1. 1. 1. -1.\n", + " -1. -1.]\n", + "accuracy: 0.95\n" ] } ], @@ -303,12 +322,14 @@ "import random\n", "import numpy as np\n", "\n", - "# 符号函数\n", + "\n", "def sign(v):\n", + " \"\"\"符号函数\"\"\"\n", " if v > 0: return 1\n", " else: return -1\n", " \n", "def perceptron_train(train_data, eta=0.5, n_iter=100):\n", + " \"\"\"对感知机模型进行训练\"\"\"\n", " weight = [0, 0] # 权重\n", " bias = 0 # 偏置量\n", " learning_rate = eta # 学习速率\n", @@ -331,6 +352,7 @@ " return weight, bias\n", "\n", "def perceptron_pred(data, w, b):\n", + " \"\"\"输入数据,模型,对数据进行分类\"\"\"\n", " y_pred = []\n", " for d in data:\n", " x1, x2, y = d\n", @@ -340,17 +362,24 @@ " return np.array(y_pred, dtype=float)\n", "\n", "\n", - "# do training\n", + "# 训练感知机\n", "w, b = perceptron_train(train_data)\n", "print(\"w = \", w)\n", "print(\"b = \", b)\n", "\n", - "# predict \n", + "# 预测 \n", "y_pred = perceptron_pred(train_data, w, b)\n", "\n", + "# 计算分类精度\n", + "c = y_pred == y\n", + "cn = np.sum(c == True)\n", + "acc = cn / len(y_pred)\n", + "print()\n", + "\n", "print(\"\\n\")\n", "print(\"ground_truth: \", train_data[:, 2])\n", - "print(\"predicted: \", y_pred)" + "print(\"predicted: \", y_pred)\n", + "print(\"accuracy: \", acc)" ] }, { @@ -380,7 +409,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.9" + "version": "3.5.4" } }, "nbformat": 4, diff --git a/5_nn/2-mlp_bp.ipynb b/5_nn/2-mlp_bp.ipynb index b7ef7996c0368e170d3a1f07d1ce74b887948cdd..7a79ea52389c94c42b478c570cd6242f651ea059 100644 --- a/5_nn/2-mlp_bp.ipynb +++ b/5_nn/2-mlp_bp.ipynb @@ -719,7 +719,9 @@ { "cell_type": "code", "execution_count": 9, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "import numpy as np\n", @@ -1024,7 +1026,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.9" + "version": "3.5.4" } }, "nbformat": 4, diff --git a/5_nn/3-softmax_ce.ipynb b/5_nn/3-softmax_ce.ipynb index 651302d04830087ebf7b3833a13e6e6938a5bd55..fe99c61cf9d2b552f864cc886293877dd34396c8 100644 --- a/5_nn/3-softmax_ce.ipynb +++ b/5_nn/3-softmax_ce.ipynb @@ -11,13 +11,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "softmax经常被添加在分类任务的神经网络中的输出层,神经网络的反向传播中关键的步骤就是求导,从这个过程也可以更深刻地理解反向传播的过程,还可以对梯度传播的问题有更多的思考。\n", + "`Softmax`经常被添加在分类任务的神经网络中的输出层,神经网络的反向传播中关键的步骤就是求导,从这个过程也可以更深刻地理解反向传播的过程,还可以对梯度传播的问题有更多的思考。\n", "\n", "## 1. softmax 函数\n", "\n", - "softmax(柔性最大值)函数,一般在神经网络中, softmax可以作为分类任务的输出层。其实可以认为softmax输出的是几个类别选择的概率,比如我有一个分类任务,要分为三个类,softmax函数可以根据它们相对的大小,输出三个类别选取的概率,并且概率和为1。\n", + "`softmax`(柔性最大值)函数,一般在神经网络中, `softmax`可以作为分类任务的输出层。其实可以认为`softmax`输出的是几个类别选择的概率,比如有一个分类任务,要分为三个类,softmax函数可以根据它们相对的大小,输出三个类别选取的概率,并且概率和为1。\n", "\n", - "Softmax从字面上来说,可以分成`soft`和`max`两个部分。`max`故名思议就是最大值的意思。Softmax的核心在于`soft`,而`soft`有软的含义,与之相对的是`hard`硬。很多场景中需要我们找出数组所有元素中值最大的元素,实质上都是求的`hardmax`。下面使用`Numpy`模块实现hardmax。" + "Softmax从字面上来说,可以分成`soft`和`max`两个部分。`max`故名思议就是最大值的意思。Softmax的核心在于`soft`,而`soft`有软的含义,与之相对的是`hard`硬。很多场景中需要找出数组所有元素中值最大的元素,实质上都是求的`hardmax`。下面使用`Numpy`模块实现hardmax。" ] }, { @@ -62,7 +62,7 @@ "\n", "![softmax_demo](images/softmax_demo.png)\n", "\n", - "softmax直白来说就是将原来输出是$[3,1,-3]$通过softmax函数作用,就映射成为(0,1)的值,而这些值的累和为1(满足概率的性质),那么我们就可以将它理解成概率,在最后选取输出结点的时候,我们就可以选取概率最大(也就是值对应最大的)结点,作为我们的预测目标!\n" + "softmax直白来说就是将原来输出是$[3,1,-3]$通过softmax函数作用,就映射成为(0,1)的值,而这些值的累和为1(满足概率的性质),那么我们就可以将它理解成概率,在最后选取输出结点的时候,选取概率最大(也就是值对应最大的)结点,作为预测目标!\n" ] }, { @@ -78,12 +78,12 @@ "神经元的输出设为:\n", "\n", "$$\n", - "z_i = sigmoid( \\sum_{j} w_{ij} x_{j} + b )\n", + "z_i = \\sum_{j} w_{ij} x_{j} + w_b\n", "$$\n", "\n", - "其中$W_{ij}$是第$i$个神经元的第$j$个权重,$b$是偏置。$z_i$表示该网络的第$i$个输出。\n", + "其中$W_{ij}$是第$i$个神经元的第$j$个权重,$w_b$是偏置。$z_i$表示该网络的第$i$个输出。**请注意这里没有使用sigmoid等激活函数。**\n", "\n", - "给这个输出加上一个softmax函数,那就变成了这样:\n", + "给这个网络输出加上一个softmax函数,那就变成了这样:\n", "\n", "$$\n", "a_i = \\frac{e^{z_i}}{\\sum_k e^{z_k}}\n", @@ -108,7 +108,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "以一个神经元的二类分类训练为例,进行两次实验(神经网络常用的激活函数为`sigmoid`函数,该实验也采用该函数):输入一个相同的样本数据x=1.0(该样本对应的实际分类y=0);两次实验各自随机初始化参数,从而在各自的第一次前向传播后得到不同的输出值,形成不同的代价(误差):\n", + "以一个神经元的二类分类训练为例,进行两次实验(神经网络常用的激活函数为`sigmoid`函数,该实验也采用该函数):输入一个相同的样本数据$x=1.0$(该样本对应的实际分类$y=0$);两次实验各自随机初始化参数,从而在各自的第一次前向传播后得到不同的输出值,形成不同的代价(误差):\n", "\n", "![cross_entropy_loss_1](images/cross_entropy_loss_1.png)\n", "实验1:第一次输出值为0.82\n", @@ -143,7 +143,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## 2. 推导过程\n", + "## 3. 推导过程\n", "\n", "首先,我们要明确一下我们要求什么,我们要求的是我们的$loss$对于神经元输出($z_i$)的梯度,即:\n", "\n", @@ -158,14 +158,26 @@ "$$\n", "\n", "有个人可能有疑问了,这里为什么是$a_j$而不是$a_i$,这里要看一下$softmax$的公式了,因为$softmax$公式的特性,它的分母包含了所有神经元的输出,所以,对于不等于$i$的其他输出里面,也包含着$z_i$,所有的$a$都要纳入到计算范围中,并且后面的计算可以看到需要分为$i = j$和$i \\ne j$两种情况求导。\n", - "\n", - "### 2.1 针对$a_j$的偏导\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.1 针对$a_j$的偏导\n", "\n", "$$\n", "\\frac{\\partial C}{\\partial a_j} = \\frac{(\\partial -\\sum_j y_j ln a_j)}{\\partial a_j} = -\\sum_j y_j \\frac{1}{a_j}\n", "$$\n", - "\n", - "### 2.2 针对$z_i$的偏导\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.2 针对$z_i$的偏导\n", "\n", "如果 $i=j$ :\n", "\n", @@ -188,8 +200,14 @@ "$$\n", "(\\frac{u}{v})' = \\frac{u'v - uv'}{v^2} \n", "$$\n", - "\n", - "### 2.3 整体的推导\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.3 整体的推导\n", "\n", "\\begin{eqnarray}\n", "\\frac{\\partial C}{\\partial z_i} & = & (-\\sum_j y_j \\frac{1}{a_j} ) \\frac{\\partial a_j}{\\partial z_i} \\\\\n", @@ -211,7 +229,7 @@ "\n", "其中\n", "$$\n", - "z_i = \\sum_{j} w_{ij} x_{j} + b\n", + "z_i = \\sum_{j} w_{ij} x_{j} + w_b\n", "$$\n" ] }, @@ -219,7 +237,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "对于使用二次代价函数的更新方程为:\n", + "最为对比,使用二次代价函数的更新方程为:\n", "\n", "$$\n", "\\delta_i = a_i (1-a_i) (y_i - a_i)\n", @@ -234,7 +252,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## 3. 问题\n", + "## 4. 问题\n", "如何将本节所讲的softmax,交叉熵代价函数应用到上节所讲的BP方法中?" ] }, @@ -267,7 +285,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.9" + "version": "3.5.4" } }, "nbformat": 4, diff --git a/5_nn/images/figures.pptx b/5_nn/images/figures.pptx new file mode 100644 index 0000000000000000000000000000000000000000..a16b029a147968fc53538993156731a8ceabf53c Binary files /dev/null and b/5_nn/images/figures.pptx differ diff --git a/5_nn/images/softmax_neuron.0.png b/5_nn/images/softmax_neuron.0.png new file mode 100644 index 0000000000000000000000000000000000000000..f7eca53472111d345c825d21ec0289292c3ca3d3 Binary files /dev/null and b/5_nn/images/softmax_neuron.0.png differ diff --git a/5_nn/images/softmax_neuron.png b/5_nn/images/softmax_neuron.png index f7eca53472111d345c825d21ec0289292c3ca3d3..da10ee4ca592693cf3d8a08188ff9446d60da90e 100644 Binary files a/5_nn/images/softmax_neuron.png and b/5_nn/images/softmax_neuron.png differ diff --git a/5_nn/perceptron_sample_data.pdf b/5_nn/perceptron_sample_data.pdf new file mode 100644 index 0000000000000000000000000000000000000000..d3a801dd4283f2f22aa277a4cd48cf5a4e00b063 Binary files /dev/null and b/5_nn/perceptron_sample_data.pdf differ diff --git a/7_deep_learning/1_CNN/8-regularization.ipynb b/7_deep_learning/1_CNN/8-regularization.ipynb index 7644fcd70af0ff958eda9706c3d5928d9592e9e7..d116bc8bb00f6d4a55fa6fc368359fd4c7df8fef 100644 --- a/7_deep_learning/1_CNN/8-regularization.ipynb +++ b/7_deep_learning/1_CNN/8-regularization.ipynb @@ -20,7 +20,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "如果我们对新的损失函数 f 求导进行梯度下降,就有\n", + "如果对新的损失函数 $f$ 求导进行梯度下降,就有\n", "\n", "$$\n", "\\frac{\\partial f}{\\partial p_j} = \\frac{\\partial loss}{\\partial p_j} + 2 \\lambda p_j\n", @@ -37,9 +37,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "可以看到 $p_j - \\eta \\frac{\\partial loss}{\\partial p_j}$ 和没加正则项要更新的部分一样,而后面的 $2\\eta \\lambda p_j$ 就是正则项的影响,可以看到加完正则项之后会对参数做更大程度的更新,这也被称为权重衰减(weight decay),在 pytorch 中正则项就是通过这种方式来加入的,比如想在随机梯度下降法中使用正则项,或者说权重衰减,`torch.optim.SGD(net.parameters(), lr=0.1, weight_decay=1e-4)` 就可以了,这个 `weight_decay` 系数就是上面公式中的 $\\lambda$,非常方便\n", + "可以看到 $p_j - \\eta \\frac{\\partial loss}{\\partial p_j}$ 和没加正则项要更新的部分一样,而后面的 $2\\eta \\lambda p_j$ 就是正则项的影响,可以看到加完正则项之后会对参数做更大程度的更新,这也被称为权重衰减(weight decay)。在 PyTorch 中正则项就是通过这种方式来加入的,比如想在随机梯度下降法中使用正则项,或者说权重衰减,`torch.optim.SGD(net.parameters(), lr=0.1, weight_decay=1e-4)` 就可以了,这个 `weight_decay` 系数就是上面公式中的 $\\lambda$,非常方便\n", "\n", - "注意正则项的系数的大小非常重要,如果太大,会极大的抑制参数的更新,导致欠拟合,如果太小,那么正则项这个部分基本没有贡献,所以选择一个合适的权重衰减系数非常重要,这个需要根据具体的情况去尝试,初步尝试可以使用 `1e-4` 或者 `1e-3` \n", + "注意正则项的系数的大小非常重要,如果太大,会极大的抑制参数的更新,导致欠拟合;如果太小,那么正则项这个部分基本没有贡献。所以选择一个合适的权重衰减系数非常重要,这个需要根据具体的情况去尝试,初步尝试可以使用 `1e-4` 或者 `1e-3` \n", "\n", "下面我们在训练 cifar 10 中添加正则项" ] @@ -159,7 +159,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.4" + "version": "3.7.9" } }, "nbformat": 4, diff --git a/7_deep_learning/1_CNN/CNN_Introduction.pptx b/7_deep_learning/1_CNN/CNN_Introduction.pptx index 635260c74a554cff838da7857b513ced41974a3c..843c6503118238793186ba3619dc1410d5617916 100644 Binary files a/7_deep_learning/1_CNN/CNN_Introduction.pptx and b/7_deep_learning/1_CNN/CNN_Introduction.pptx differ diff --git a/7_deep_learning/README.md b/7_deep_learning/README.md index 3e52f0fd98eb810c825bf12540d47115ed9eb3a3..de1e96aec90a454a9ae9c9db9b6b1df10e5ab1f1 100644 --- a/7_deep_learning/README.md +++ b/7_deep_learning/README.md @@ -11,6 +11,14 @@ 典型的深度学习模型有[卷积神经网络(convolutional neural network)](1_CNN)、深度置信网络(Deep Belief Network, DBN)、堆栈自编码网络(stacked auto-encoder network)、循环神经网络(Recurrent Neural Network)、对抗生成网络(Generative Adversarial Networks,GAN)等。 + +## 深度学习的发展历程 + +下图展示了深度学习常见网络的发展历程 + +![resnet-development.png](imgs/resnet-development.png) + + ## 参考资料 * [深度学习 – Deep learning](https://easyai.tech/ai-definition/deep-learning/) * [深度学习](https://www.jiqizhixin.com/graph/technologies/01946acc-d031-4c0e-909c-f062643b7273) diff --git a/7_deep_learning/imgs/resnet-development.png b/7_deep_learning/imgs/resnet-development.png new file mode 100644 index 0000000000000000000000000000000000000000..ff42f489aba448f13353d87a1e241474c2d96220 Binary files /dev/null and b/7_deep_learning/imgs/resnet-development.png differ diff --git a/README.md b/README.md index 096f4ba153f21a60e3372d9d789d62b11d014610..06ce30d36107e90f3033a3c5a4a8e9cfed8feb10 100644 --- a/README.md +++ b/README.md @@ -52,14 +52,15 @@ - CNN - [CNN Introduction](7_deep_learning/1_CNN/CNN_Introduction.pptx) - [CNN simple demo](demo_code/3_CNN_MNIST.py) - - [cnn/basic_conv](7_deep_learning/1_CNN/1-basic_conv.ipynb) - - [cnn/batch-normalization](7_deep_learning/1_CNN/2-batch-normalization.ipynb) - - [cnn/lr-decay](7_deep_learning/2_CNN/1-lr-decay.ipynb) - - [cnn/regularization](7_deep_learning/1_CNN/4-regularization.ipynb) - - [cnn/vgg](7_deep_learning/1_CNN/6-vgg.ipynb) - - [cnn/googlenet](7_deep_learning/1_CNN/7-googlenet.ipynb) - - [cnn/resnet](7_deep_learning/1_CNN/8-resnet.ipynb) - - [cnn/densenet](7_deep_learning/1_CNN/9-densenet.ipynb) + - [Basic of Conv](7_deep_learning/1_CNN/1-basic_conv.ipynb) + - [VGG Network](7_deep_learning/1_CNN/2-vgg.ipynb) + - [GoogleNet](7_deep_learning/1_CNN/3-googlenet.ipynb) + - [ResNet](7_deep_learning/1_CNN/4-resnet.ipynb) + - [DenseNet](7_deep_learning/1_CNN/5-densenet.ipynb) + - [Batch Normalization](7_deep_learning/1_CNN/6-batch-normalization.ipynb) + - [Learning Rate Decay](7_deep_learning/2_CNN/7-lr-decay.ipynb) + - [Regularization](7_deep_learning/1_CNN/8-regularization.ipynb) + - [Data Augumentation](7_deep_learning/1_CNN/9-data-augumentation.ipynb) - RNN - [rnn/pytorch-rnn](7_deep_learning/2_RNN/pytorch-rnn.ipynb) - [rnn/rnn-for-image](7_deep_learning/2_RNN/rnn-for-image.ipynb) @@ -72,7 +73,7 @@ ## 2. 学习的建议 -1. 为了更好的学习本课程,需要大家把Python编程能力培养好,通过一定数量的练习题、小项目培养Python编程思维,为后续的机器学习理论与实践打好坚实的基础。 +1. 为了更好的学习本课程,需要大家把[Python编程](0_python)能力培养好,通过一定数量的练习题、小项目培养Python编程思维,为后续的机器学习理论与实践打好坚实的基础。 2. 每个课程前半部分是理论基础,后半部分是代码实现。如果想学的更扎实,可以自己把各个方法的代码亲自实现一下。做的过程如果遇到问题尽可能自己想解决办法,因为最重要的目标不是代码本身,而是学会分析问题、解决问题的能力。 3. **不能直接抄已有的程序,或者抄别人的程序**,如果自己不会要自己去想,去找解决方法,或者去问。如果直接抄别人的代码,这样的练习一点意义都没有。**如果感觉太难,可以做的慢一些,但是坚持自己思考、自己编写练习代码**。。 4. **请先遍历一遍所有的文件夹,了解有什么内容,资料**。各个目录里有很多说明文档,如果不会先找找有没有文档,如果找不到合适的文档就去网上找找。通过这个过程锻炼自己搜索文献、资料的能力。 @@ -80,21 +81,19 @@ -## 3. 参考资料 +## 3. [参考资料](References.md) +* [教程、代码](References.md) * 资料速查 * [相关学习参考资料汇总](References.md) * [一些速查手册](references_tips/cheatsheet) - * 机器学习方面技巧等 * [Confusion Matrix](references_tips/confusion_matrix.ipynb) * [Datasets](references_tips/datasets.ipynb) * [构建深度神经网络的一些实战建议](references_tips/构建深度神经网络的一些实战建议.md) * [Intro to Deep Learning](references_tips/Intro_to_Deep_Learning.pdf) - * Python技巧等 * [安装Python环境](references_tips/InstallPython.md) * [Python tips](references_tips/python) - * [Git教程](https://gitee.com/pi-lab/learn_programming/blob/master/6_tools/git/README.md) * [Markdown教程](https://gitee.com/pi-lab/learn_programming/blob/master/6_tools/markdown/README.md) diff --git a/References.md b/References.md index 679455dfc148a0b342abbd6ab35946129ffd13f7..e72bac6d2bb4c4d8e9ba5b3d5ea9b8066b76c47d 100644 --- a/References.md +++ b/References.md @@ -1,11 +1,27 @@ -# References +# 参考资料 可以自行在下属列表找找到适合自己的学习资料,虽然罗列的比较多,但是个人最好选择一个深入阅读、练习。当练习到一定程度,可以再看看其他的资料,这样弥补单一学习资料可能存在的欠缺。 列表等在 https://gitee.com/pi-lab/pilab_research_fields/blob/master/references/ML_References.md +## 1. 教程、代码 -## References +### 1.1 教程 + +* [《动手学深度学习》 — 动手学深度学习 2.0.0-alpha2 documentation](https://zh-v2.d2l.ai/index.html) +* [Introduction — Neuromatch Academy: Deep Learning](https://deeplearning.neuromatch.io/tutorials/intro.html) + + +### 1.2 代码 + +* [《统计学习方法》的代码](https://gitee.com/afishoutis/MachineLearning) +* [《统计学习方法》pytorch实现](https://github.com/fengdu78/lihang-code) +* [pytorch-cifar100](https://github.com/weiaicunzai/pytorch-cifar100) 实现ResNet, DenseNet, VGG, GoogleNet, InceptionV3, InceptionV4, Inception-ResNetv2, Xception, Resnet In Resnet, ResNext,ShuffleNet, ShuffleNetv2, MobileNet, MobileNetv2, SqueezeNet, NasNet, Residual Attention Network, SENet, WideResNet +* [Attention: xmu-xiaoma666/External-Attention-pytorch: Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐ (github.com)](https://github.com/xmu-xiaoma666/External-Attention-pytorch) 注意力机制,多层神经网络,重参数。 +* [Python TheAlgorithms/Python: All Algorithms implemented in Python (github.com)](https://github.com/TheAlgorithms/Python) +* PytTorch 训练手册 https://github.com/zergtant/pytorch-handbook + +## 2. 工具、技巧 * [形象直观了解谷歌大脑新型优化器LAMB](https://www.toutiao.com/i6687162064395305475/) * [梯度下降方法的视觉解释(动量,AdaGrad,RMSProp,Adam)](https://www.toutiao.com/i6836422484028293640/) @@ -35,10 +51,8 @@ -## Course & Code -* [《统计学习方法》的代码](https://gitee.com/afishoutis/MachineLearning) -## Exercise +## 3. 练习 * http://sofasofa.io/competitions.php?type=practice * https://www.kaggle.com/competitions * Machine learning project ideas @@ -50,10 +64,12 @@ * Titanic: notebooks/data-science-ipython-notebooks/kaggle/titanic.ipynb * 使用神经网络解决拼图游戏 https://www.toutiao.com/a6855437347463365133/ * [Sudoku-Solver](https://github.com/shivaverma/Sudoku-Solver) +* Python 小项目 https://github.com/kyclark/tiny_python_projects -## Method +## 4. 机器学习方法 +### 4.1 经典机器学习方法 * Programming Multiclass Logistic Regression notebooks/MachineLearningNotebooks/05.%20Logistic%20Regression.ipynb @@ -74,7 +90,7 @@ http://localhost:8889/notebooks/machineLearning/10_digits_classification.ipynb http://localhost:8889/notebooks/machineLearning/notebooks/01%20-%20Model%20Selection%20and%20Assessment.ipynb -## NN +### 4.2 NN * 神经网络——梯度下降&反向传播 https://blog.csdn.net/skullfang/article/details/78634317 * 零基础入门深度学习(3) - 神经网络和反向传播算法 https://www.zybuluo.com/hanbingtao/note/476663 * 如何直观地解释 backpropagation 算法? https://www.zhihu.com/question/27239198 @@ -85,10 +101,10 @@ http://localhost:8889/notebooks/machineLearning/notebooks/01%20-%20Model%20Selec * https://www.python-course.eu/neural_networks_with_python_numpy.php -## k-Means +### 4.3 k-Means * [如何使用 Keras 实现无监督聚类](http://m.sohu.com/a/236221126_717210) -## AutoEncoder (自编码/非监督学习) +### 4.4 AutoEncoder (自编码/非监督学习) * https://morvanzhou.github.io/tutorials/machine-learning/torch/4-04-autoencoder/ * https://github.com/MorvanZhou/PyTorch-Tutorial/blob/master/tutorial-contents/404_autoencoder.py * pytorch AutoEncoder 自编码 https://www.jianshu.com/p/f0929f427d03