# vggt **Repository Path**: pkcodenet/vggt ## Basic Information - **Project Name**: vggt - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: eval_wip - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-07-10 - **Last Updated**: 2025-07-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # VGGT Evaluation This repository contains code to reproduce the evaluation results of VGGT. ## Table of Contents - [Camera Pose Estimation on Co3D](#camera-pose-estimation-on-co3d) - [Dataset Preparation](#dataset-preparation) - [Running the Evaluation](#running-the-evaluation) - [Expected Results](#expected-results) - [Checklist](#checklist) ## Camera Pose Estimation on Co3D ### Dataset Preparation 1. Download the Co3D dataset from the [official repository](https://github.com/facebookresearch/co3d) 2. Preprocess the Co3D dataset (takes approximately 5 minutes): ```bash python preprocess_co3d.py --category all --co3d_v2_dir /YOUR/CO3D/PATH --output_dir /YOUR/CO3D/ANNO/PATH ``` Replace `/YOUR/CO3D/PATH` with the path to your downloaded Co3D dataset, and `/YOUR/CO3D/ANNO/PATH` with the desired output directory for the processed annotations. ### Running the Evaluation 0. Install additional dependencies: ```bash pip install pycolmap==3.10.0 pyceres==2.3 git clone https://github.com/cvg/LightGlue.git cd LightGlue python -m pip install -e . cd .. ``` 1. Run the evaluation script: ```bash # Run standard VGGT evaluation python test_co3d.py --co3d_dir /YOUR/CO3D/PATH --co3d_anno_dir /YOUR/CO3D/ANNO/PATH # Run VGGT with Bundle Adjustment python test_co3d.py --co3d_dir /YOUR/CO3D/PATH --co3d_anno_dir /YOUR/CO3D/ANNO/PATH --use_ba ``` > **Note:** For simplicity, this script did not optimize the inference speed, so timing results may differ from those reported in the paper. For example, keypoint extractor models are re-initialized for each sequence rather than being loaded once. ### Expected Results After the evaluation completes, you should see the results without BA similar to: ``` AUC of apple test set: 0.910711111111111 AUC of backpack test set: 0.9273721340388009 AUC of banana test set: 0.877037037037037 AUC of baseballbat test set: 0.8273544973544971 AUC of baseballglove test set: 0.860888888888889 AUC of bench test set: 0.9729037037037036 AUC of bicycle test set: 0.9424296296296296 AUC of bottle test set: 0.9137925925925926 AUC of bowl test set: 0.8927635327635328 AUC of broccoli test set: 0.8995987654320988 AUC of cake test set: 0.8799012345679013 AUC of car test set: 0.9006042884990255 AUC of carrot test set: 0.8702495974235104 AUC of cellphone test set: 0.7632740740740741 AUC of chair test set: 0.9613963388676036 AUC of cup test set: 0.8436296296296296 AUC of donut test set: 0.9254222222222225 AUC of hairdryer test set: 0.9327739984882844 AUC of handbag test set: 0.9097470641373081 AUC of hydrant test set: 0.9602814814814816 AUC of keyboard test set: 0.8423816221284578 AUC of laptop test set: 0.8724400871459694 AUC of microwave test set: 0.8678814814814813 AUC of motorcycle test set: 0.9686074074074076 AUC of mouse test set: 0.9119727891156462 AUC of orange test set: 0.8842222222222224 AUC of parkingmeter test set: 0.9535802469135802 AUC of pizza test set: 0.8480776014109348 AUC of plant test set: 0.9539009139009138 AUC of stopsign test set: 0.8870445956160243 AUC of teddybear test set: 0.9355314009661838 AUC of toaster test set: 0.9593037037037035 AUC of toilet test set: 0.8095785440613028 AUC of toybus test set: 0.9063247863247862 AUC of toyplane test set: 0.8142260208926876 AUC of toytrain test set: 0.8369444444444443 AUC of toytruck test set: 0.8628368794326243 AUC of tv test set: 0.9395061728395063 AUC of umbrella test set: 0.9398666666666665 AUC of vase test set: 0.9519400352733683 AUC of wineglass test set: 0.8819363222871994 **************************************************************************************************** Mean AUC: 0.8975667260043426 ``` Note that this evaluation implementation may differ slightly from the internal one used for the paper, while our reported AUC@30 value is 89.8%, which is slightly better than the value of 88.2% reported in the paper. ## Checklist The following features are planned for future releases: - [x] Camera pose estimation code on Co3D - [x] VGGT+BA (Bundle Adjustment) on Co3D - [ ] Evaluation on Re10K dataset - [ ] Evaluation on IMC dataset - [ ] Evaluation of multi-view depth estimation ---