# DDColor **Repository Path**: pplus_open_source/DDColor ## Basic Information - **Project Name**: DDColor - **Description**: DDColor 是最新的 SOTA 图像上色算法,能够对输入的黑白图像生成自然生动的彩色结果。 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-11-04 - **Last Updated**: 2023-11-04 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 🎨 DDColor Official PyTorch implementation of ICCV 2023 Paper "DDColor: Towards Photo-Realistic Image Colorization via Dual Decoders". [![arXiv](https://img.shields.io/badge/arXiv-2212.11613-b31b1b.svg)](https://arxiv.org/abs/2212.11613) [![ModelScope demo](https://img.shields.io/badge/ModelScope-Demo-blue)](https://www.modelscope.cn/models/damo/cv_ddcolor_image-colorization/summary) ![visitors](https://visitor-badge.laobi.icu/badge?page_id=piddnad/DDColor) > Xiaoyang Kang, Tao Yang, Wenqi Ouyang, Peiran Ren, Lingzhi Li, Xuansong Xie > > *DAMO Academy, Alibaba Group* 🪄 DDColor can provide vivid and natural colorization for historical black and white old photos.

🎲 It can even colorize/recolor landscapes from anime games, transforming your animated scenery into a realistic real-life style! (Image source: Genshin Impact)

## 🔥 News * [2023-09-07] Update model zoo. * [2023-05-15] Code release for training and testing. * [2023-05-05] The online demo is available. ## Online Demo We provide [online demo](https://modelscope.cn/models/damo/cv_ddcolor_image-colorization/summary) via ModelScope. Feel free to try it out! ## Methods *In short:* DDColor uses multi-scale visual features to optimize **learnable color tokens** (i.e. color queries) and achieves state-of-the-art performance on automatic image colorization.

## Installation ### Requirements - Python >= 3.7 - PyTorch >= 1.7 ### Install with conda (Recommend) ``` conda create -n ddcolor python=3.8 conda activate ddcolor pip install -r requirements.txt python3 setup.py develop # install basicsr ``` ## Quick Start ### Inference with modelscope library 1. Install modelscope: ``` pip install "modelscope[cv]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html ``` 2. Run the following codes: ``` import cv2 from modelscope.outputs import OutputKeys from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks img_colorization = pipeline(Tasks.image_colorization, model='damo/cv_ddcolor_image-colorization') result = img_colorization('https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/audrey_hepburn.jpg') cv2.imwrite('result.png', result[OutputKeys.OUTPUT_IMG]) ``` It will automatically download the DDColor models. You can find the model file `pytorch_model.pt` in the local path ~/.cache/modelscope/hub/damo. ### Inference from local script 1. Download the pretrained model file by simply running: ``` from modelscope.hub.snapshot_download import snapshot_download model_dir = snapshot_download('damo/cv_ddcolor_image-colorization', cache_dir='./modelscope') print('model assets saved to %s'%model_dir) ``` then the weights will be `modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt`. 2. Run ``` sh scripts/inference.sh ``` ## Model Zoo We provide several different versions of pretrained models, please check out [Model Zoo](MODEL_ZOO.md). ## Train 1. Dataset preparation: download [ImageNet](https://www.image-net.org/) dataset, or prepare any custom dataset of your own. Use the following script to get the dataset list file: ``` python data_list/get_meta_file.py ``` 2. Download pretrained weights for [ConvNeXt](https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth) and [InceptionV3](https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth) and put it into `pretrain` folder. 3. Specify 'meta_info_file' and other options in `options/train/train_ddcolor.yml`. 4. Run ``` sh scripts/train.sh ``` ## Citation If our work is helpful for your research, please consider citing: ``` @article{kang2022ddcolor, title={DDColor: Towards Photo-Realistic Image Colorization via Dual Decoders}, author={Kang, Xiaoyang and Yang, Tao and Ouyang, Wenqi and Ren, Peiran and Li, Lingzhi and Xie, Xuansong}, journal={arXiv preprint arXiv:2212.11613}, year={2022} } ``` ## License © Alibaba, 2023. For academic and non-commercial use only. ## Acknowledgments We thank the authors of BasicSR for the awesome training pipeline. > Xintao Wang, Ke Yu, Kelvin C.K. Chan, Chao Dong and Chen Change Loy. BasicSR: Open Source Image and Video Restoration Toolbox. https://github.com/xinntao/BasicSR, 2020. Some codes are adapted from [ColorFormer](https://github.com/jixiaozhong/ColorFormer), [BigColor](https://github.com/KIMGEONUNG/BigColor), [ConvNeXt](https://github.com/facebookresearch/ConvNeXt), [Mask2Former](https://github.com/facebookresearch/Mask2Former), and [DETR](https://github.com/facebookresearch/detr). Thanks for their excellent work!