# FAST_LIO_LC **Repository Path**: primer007/FAST_LIO_LC ## Basic Information - **Project Name**: FAST_LIO_LC - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-03-28 - **Last Updated**: 2025-03-28 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # FAST_LIO_LC The **tight** integration of [FAST-LIO](https://github.com/hku-mars/FAST_LIO) with Radius-Search-based loop closure module. **FAST-LIO** (Fast LiDAR-Inertial Odometry) is a computationally efficient and robust LiDAR-inertial odometry package. It fuses LiDAR feature points with IMU data using a tightly-coupled iterated extended Kalman filter. But it doesn't have a loop closure module to eliminate the accumulated drift. Therefore, this project implements the pose graph optimization with a radius-search-based loop closure module which refers to [FAST_LIO_SLAM](https://github.com/gisbi-kim/FAST_LIO_SLAM). And the pose and map in the iterated extended Kalman filter of FAST-LIO will be updated according to the optimization which is a key difference with [FAST_LIO_SLAM](https://github.com/gisbi-kim/FAST_LIO_SLAM). - [FAST_LIO_LC](#fast_lio_lc) - [1. Prerequisites](#1-prerequisites) - [2. Build](#2-build) - [3. Quick test](#3-quick-test) - [3.1 For Velodyne 16](#31-for-velodyne-16) - [4. Example results](#4-example-results) - [Acknowledgements](#acknowledgements) ## 1. Prerequisites - Ubuntu 18.04 and ROS Melodic - PCL >= 1.8 (default for Ubuntu 18.04) - Eigen >= 3.3.4 (default for Ubuntu 18.04) - GTSAM >= 4.0.0(tested on 4.0.0-alpha2) ## 2. Build ```bash cd YOUR_WORKSPACE/src git clone https://github.com/yanliang-wang/FAST_LIO_LC.git cd .. catkin_make ``` ## 3. Quick test ### 3.1 For Velodyne 16 You can test this project with [our data](https://drive.google.com/file/d/1NGTN3aULoTMp3raF75LwMu-OUtzUx-zX/view?usp=sharing) which includes `/velodyne_points`(10Hz) and `/imu/data`(400Hz). ```bash roslaunch fast_lio mapping_velodyne.launch roslaunch aloam_velodyne fastlio_velodyne_VLP_16.launch rosbag play T3F2-2021-08-02-15-00-12.bag -r 2 ``` > If you want to test the original FAST LIO (i.e. without the loop closure module), you can set `lc_enable` in the `mapping_velodyne.launch` to `false` and run following commands. > > ```bash > roslaunch fast_lio mapping_velodyne.launch > rosbag play T3F2-2021-08-02-15-00-12.bag -r 2 > ``` ## 4. Example results video: [Youtube link](https://youtu.be/W5HYYPYBrn8) , [Bilibili link](https://www.bilibili.com/video/BV1sT4y1D7DC/) ![example_results](doc/fast-lio-lc-output.gif) ## Acknowledgements In this project, the LIO module refers to [FAST-LIO](https://github.com/hku-mars/FAST_LIO) and the pose graph optimization refers to [FAST_LIO_SLAM](https://github.com/gisbi-kim/FAST_LIO_SLAM). Many thanks for their work.