登录
注册
开源
企业版
高校版
搜索
帮助中心
使用条款
关于我们
开源
企业版
高校版
私有云
模力方舟
AI 队友
登录
注册
「2025 Gitee 年度开源项目评选」投票最后一天,快为你的心仪项目助力!
代码拉取完成,页面将自动刷新
捐赠
捐赠前请先登录
取消
前往登录
扫描微信二维码支付
取消
支付完成
支付提示
将跳转至支付宝完成支付
确定
取消
Watch
不关注
关注所有动态
仅关注版本发行动态
关注但不提醒动态
1
Star
0
Fork
7
changjie.d
/
mmclassification
forked from
OpenMMLab
/
mmclassification
确定同步?
同步操作将从
OpenMMLab/mmclassification
强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
删除在远程仓库中不存在的分支和标签
同步 Wiki
(当前仓库的 wiki 将会被覆盖!)
取消
确定
代码
Issues
0
Pull Requests
0
Wiki
统计
流水线
服务
质量分析
Jenkins for Gitee
腾讯云托管
腾讯云 Serverless
悬镜安全
阿里云 SAE
Codeblitz
SBOM
我知道了,不再自动展开
标签
标签名
描述
提交信息
操作
v0.22.1
v0.22.1(15/4/2022) New Features - [Feature] Support resize relative position embedding in `SwinTransformer`. ([#749](https://github.com/open-mmlab/mmclassification/pull/749)) - [Feature] Add PoolFormer backbone and checkpoints. ([#746](https://github.com/open-mmlab/mmclassification/pull/746)) Improvements - [Enhance] Improve CPE performance by reduce memory copy. ([#762](https://github.com/open-mmlab/mmclassification/pull/762)) - [Enhance] Add extra dataloader settings in configs. ([#752](https://github.com/open-mmlab/mmclassification/pull/752))
29b882d
2022-04-15 20:10
下载
v0.22.0
v0.22.0(30/3/2022) Highlights - Support a series of CSP Network, such as CSP-ResNet, CSP-ResNeXt and CSP-DarkNet. - A new `CustomDataset` class to help you build dataset of yourself! - Support ConvMixer, RepMLP and new dataset - CUB dataset. New Features - [Feature] Add CSPNet and backbone and checkpoints ([#735](https://github.com/open-mmlab/mmclassification/pull/735)) - [Feature] Add `CustomDataset`. ([#738](https://github.com/open-mmlab/mmclassification/pull/738)) - [Feature] Add diff seeds to diff ranks. ([#744](https://github.com/open-mmlab/mmclassification/pull/744)) - [Feature] Support ConvMixer. ([#716](https://github.com/open-mmlab/mmclassification/pull/716)) - [Feature] Our `dist_train` & `dist_test` tools support distributed training on multiple machines. ([#734](https://github.com/open-mmlab/mmclassification/pull/734)) - [Feature] Add RepMLP backbone and checkpoints. ([#709](https://github.com/open-mmlab/mmclassification/pull/709)) - [Feature] Support CUB dataset. ([#703](https://github.com/open-mmlab/mmclassification/pull/703)) - [Feature] Support ResizeMix. ([#676](https://github.com/open-mmlab/mmclassification/pull/676)) Improvements - [Enhance] Use `--a-b` instead of `--a_b` in arguments. ([#754](https://github.com/open-mmlab/mmclassification/pull/754)) - [Enhance] Add `get_cat_ids` and `get_gt_labels` to KFoldDataset. ([#721](https://github.com/open-mmlab/mmclassification/pull/721)) - [Enhance] Set torch seed in `worker_init_fn`. ([#733](https://github.com/open-mmlab/mmclassification/pull/733)) Bug Fixes - [Fix] Fix the discontiguous output feature map of ConvNeXt. ([#743](https://github.com/open-mmlab/mmclassification/pull/743)) Docs Update - [Docs] Add brief installation steps in README for copy&paste. ([#755](https://github.com/open-mmlab/mmclassification/pull/755)) - [Docs] fix logo url link from mmocr to mmcls. ([#732](https://github.com/open-mmlab/mmclassification/pull/732))
349ec86
2022-03-31 01:37
下载
v0.21.0
v0.21.0(04/03/2022) Highlights - Support ResNetV1c and Wide-ResNet, and provide pre-trained models. - Support dynamic input shape for ViT-based algorithms. Now our ViT, DeiT, Swin-Transformer and T2T-ViT support forwarding with any input shape. - Reproduce training results of DeiT. And our DeiT-T and DeiT-S have higher accuracy comparing with the official weights. New Features - Add ResNetV1c. ([#692](https://github.com/open-mmlab/mmclassification/pull/692)) - Support Wide-ResNet. ([#715](https://github.com/open-mmlab/mmclassification/pull/715)) - Support gem pooling ([#677](https://github.com/open-mmlab/mmclassification/pull/677)) Improvements - Reproduce training results of DeiT. ([#711](https://github.com/open-mmlab/mmclassification/pull/711)) - Add ConvNeXt pretrain models on ImageNet-1k. ([#707](https://github.com/open-mmlab/mmclassification/pull/707)) - Support dynamic input shape for ViT-based algorithms. ([#706](https://github.com/open-mmlab/mmclassification/pull/706)) - Add `evaluate` function for ConcatDataset. ([#650](https://github.com/open-mmlab/mmclassification/pull/650)) - Enhance vis-pipeline tool. ([#604](https://github.com/open-mmlab/mmclassification/pull/604)) - Return code 1 if scripts runs failed. ([#694](https://github.com/open-mmlab/mmclassification/pull/694)) - Use PyTorch official `one_hot` to implement `convert_to_one_hot`. ([#696](https://github.com/open-mmlab/mmclassification/pull/696)) - Add a new pre-commit-hook to automatically add a copyright. ([#710](https://github.com/open-mmlab/mmclassification/pull/710)) - Add deprecation message for deploy tools. ([#697](https://github.com/open-mmlab/mmclassification/pull/697)) - Upgrade isort pre-commit hooks. ([#687](https://github.com/open-mmlab/mmclassification/pull/687)) - Use `--gpu-id` instead of `--gpu-ids` in non-distributed multi-gpu training/testing. ([#688](https://github.com/open-mmlab/mmclassification/pull/688)) - Remove deprecation. ([#633](https://github.com/open-mmlab/mmclassification/pull/633)) Bug Fixes - Fix Conformer forward with irregular input size. ([#686](https://github.com/open-mmlab/mmclassification/pull/686)) - Add `dist.barrier` to fix a bug in directory checking. ([#666](https://github.com/open-mmlab/mmclassification/pull/666))
2037260
2022-03-04 16:13
下载
v0.20.1
v0.20.1(07/02/2022) Bug Fixes - Fix the MMCV dependency version.
a7f8e96
2022-02-07 11:46
下载
v0.20.0
v0.20.0(30/01/2022) Highlights - Support K-fold cross-validation. The tutorial will be released later. - Support HRNet, ConvNeXt, Twins and EfficientNet. - Support model conversion from PyTorch to Core-ML by a tool. New Features - Support K-fold cross-validation. ([#563](https://github.com/open-mmlab/mmclassification/pull/563)) - Support HRNet and add pre-trained models. ([#660](https://github.com/open-mmlab/mmclassification/pull/660)) - Support ConvNeXt and add pre-trained models. ([#670](https://github.com/open-mmlab/mmclassification/pull/670)) - Support Twins and add pre-trained models. ([#642](https://github.com/open-mmlab/mmclassification/pull/642)) - Support EfficientNet and add pre-trained models.([#649](https://github.com/open-mmlab/mmclassification/pull/649)) - Support `features_only` option in `TIMMBackbone`. ([#668](https://github.com/open-mmlab/mmclassification/pull/668)) - Add conversion script from pytorch to Core-ML model. ([#597](https://github.com/open-mmlab/mmclassification/pull/597)) Improvements - New-style CPU training and inference. ([#674](https://github.com/open-mmlab/mmclassification/pull/674)) - Add setup multi-processing both in train and test. ([#671](https://github.com/open-mmlab/mmclassification/pull/671)) - Rewrite channel split operation in ShufflenetV2. ([#632](https://github.com/open-mmlab/mmclassification/pull/632)) - Deprecate the support for "python setup.py test". ([#646](https://github.com/open-mmlab/mmclassification/pull/646)) - Support single-label, softmax, custom eps by asymmetric loss. ([#609](https://github.com/open-mmlab/mmclassification/pull/609)) - Save class names in best checkpoint created by evaluation hook. ([#641](https://github.com/open-mmlab/mmclassification/pull/641)) Bug Fixes - Fix potential unexcepted behaviors if `metric_options` is not specified in multi-label evaluation. ([#647](https://github.com/open-mmlab/mmclassification/pull/647)) - Fix API changes in `pytorch-grad-cam>=1.3.7`. ([#656](https://github.com/open-mmlab/mmclassification/pull/656)) - Fix bug which breaks `cal_train_time` in `analyze_logs.py`. ([#662](https://github.com/open-mmlab/mmclassification/pull/662)) Docs Update - Update README in configs according to OpenMMLab standard. ([#672](https://github.com/open-mmlab/mmclassification/pull/672)) - Update installation guide and README. ([#624](https://github.com/open-mmlab/mmclassification/pull/624))
e0edffb
2022-01-31 12:00
下载
v0.19.0
v0.19.0(31/12/2021) Highlights - The feature extraction function has been enhanced. See [#593](https://github.com/open-mmlab/mmclassification/pull/593) for more details. - Provide the high-acc ResNet-50 training settings from [*ResNet strikes back*](https://arxiv.org/abs/2110.00476). - Reproduce the training accuracy of T2T-ViT & RegNetX, and provide self-training checkpoints. - Support DeiT & Conformer backbone and checkpoints. - Provide a CAM visualization tool based on [pytorch-grad-cam](https://github.com/jacobgil/pytorch-grad-cam), and detailed [user guide](https://mmclassification.readthedocs.io/en/latest/tools/visualization.html#class-activation-map-visualization)! New Features - Support Precise BN. ([#401](https://github.com/open-mmlab/mmclassification/pull/401)) - Add CAM visualization tool. ([#577](https://github.com/open-mmlab/mmclassification/pull/577)) - Repeated Aug and Sampler Registry. ([#588](https://github.com/open-mmlab/mmclassification/pull/588)) - Add DeiT backbone and checkpoints. ([#576](https://github.com/open-mmlab/mmclassification/pull/576)) - Support LAMB optimizer. ([#591](https://github.com/open-mmlab/mmclassification/pull/591)) - Implement the conformer backbone. ([#494](https://github.com/open-mmlab/mmclassification/pull/494)) - Add the frozen function for Swin Transformer model. ([#574](https://github.com/open-mmlab/mmclassification/pull/574)) - Support using checkpoint in Swin Transformer to save memory. ([#557](https://github.com/open-mmlab/mmclassification/pull/557)) Improvements - [Reproduction] Reproduce RegNetX training accuracy. ([#587](https://github.com/open-mmlab/mmclassification/pull/587)) - [Reproduction] Reproduce training results of T2T-ViT. ([#610](https://github.com/open-mmlab/mmclassification/pull/610)) - [Enhance] Provide high-acc training settings of ResNet. ([#572](https://github.com/open-mmlab/mmclassification/pull/572)) - [Enhance] Set a random seed when the user does not set a seed. ([#554](https://github.com/open-mmlab/mmclassification/pull/554)) - [Enhance] Added `NumClassCheckHook` and unit tests. ([#559](https://github.com/open-mmlab/mmclassification/pull/559)) - [Enhance] Enhance feature extraction function. ([#593](https://github.com/open-mmlab/mmclassification/pull/593)) - [Enhance] Improve efficiency of precision, recall, f1_score and support. ([#595](https://github.com/open-mmlab/mmclassification/pull/595)) - [Enhance] Improve accuracy calculation performance. ([#592](https://github.com/open-mmlab/mmclassification/pull/592)) - [Refactor] Refactor `analysis_log.py`. ([#529](https://github.com/open-mmlab/mmclassification/pull/529)) - [Refactor] Use new API of matplotlib to handle blocking input in visualization. ([#568](https://github.com/open-mmlab/mmclassification/pull/568)) - [CI] Cancel previous runs that are not completed. ([#583](https://github.com/open-mmlab/mmclassification/pull/583)) - [CI] Skip build CI if only configs or docs modification. ([#575](https://github.com/open-mmlab/mmclassification/pull/575)) Bug Fixes - Fix test sampler bug. ([#611](https://github.com/open-mmlab/mmclassification/pull/611)) - Try to create a symbolic link, otherwise copy. ([#580](https://github.com/open-mmlab/mmclassification/pull/580)) - Fix a bug for multiple output in swin transformer. ([#571](https://github.com/open-mmlab/mmclassification/pull/571)) Docs Update - Update mmcv, torch, cuda version in Dockerfile and docs. ([#594](https://github.com/open-mmlab/mmclassification/pull/594)) - Add analysis&misc docs. ([#525](https://github.com/open-mmlab/mmclassification/pull/525)) - Fix docs build dependency. ([#584](https://github.com/open-mmlab/mmclassification/pull/584))
7dfc9e4
2021-12-31 12:55
下载
v0.18.0
Highlights - Support MLP-Mixer backbone and provide pre-trained checkpoints. - Add a tool to visualize the learning rate curve of the training phase. Welcome to use with the [tutorial](https://mmclassification.readthedocs.io/en/latest/tools/visualization.html#learning-rate-schedule-visualization)! New Features - Add MLP Mixer Backbone. ([#528](https://github.com/open-mmlab/mmclassification/pull/528), [#539](https://github.com/open-mmlab/mmclassification/pull/539)) - Support positive weights in BCE. ([#516](https://github.com/open-mmlab/mmclassification/pull/516)) - Add a tool to visualize learning rate in each iterations. ([#498](https://github.com/open-mmlab/mmclassification/pull/498)) Improvements - Use CircleCI to do unit tests. ([#567](https://github.com/open-mmlab/mmclassification/pull/567)) - Focal loss for single label tasks. ([#548](https://github.com/open-mmlab/mmclassification/pull/548)) - Remove useless `import_modules_from_string`. ([#544](https://github.com/open-mmlab/mmclassification/pull/544)) - Rename config files according to the config name standard. ([#508](https://github.com/open-mmlab/mmclassification/pull/508)) - Use `reset_classifier` to remove head of timm backbones. ([#534](https://github.com/open-mmlab/mmclassification/pull/534)) - Support passing arguments to loss from head. ([#523](https://github.com/open-mmlab/mmclassification/pull/523)) - Refactor `Resize` transform and add `Pad` transform. ([#506](https://github.com/open-mmlab/mmclassification/pull/506)) - Update mmcv dependency version. ([#509](https://github.com/open-mmlab/mmclassification/pull/509)) Bug Fixes - Fix bug when using `ClassBalancedDataset`. ([#555](https://github.com/open-mmlab/mmclassification/pull/555)) - Fix a bug when using iter-based runner with 'val' workflow. ([#542](https://github.com/open-mmlab/mmclassification/pull/542)) - Fix interpolation method checking in `Resize`. ([#547](https://github.com/open-mmlab/mmclassification/pull/547)) - Fix a bug when load checkpoints in mulit-GPUs environment. ([#527](https://github.com/open-mmlab/mmclassification/pull/527)) - Fix an error on indexing scalar metrics in `analyze_result.py`. ([#518](https://github.com/open-mmlab/mmclassification/pull/518)) - Fix wrong condition judgment in `analyze_logs.py` and prevent empty curve. ([#510](https://github.com/open-mmlab/mmclassification/pull/510)) Docs Update - Fix vit config and model broken links. ([#564](https://github.com/open-mmlab/mmclassification/pull/564)) - Add abstract and image for every paper. ([#546](https://github.com/open-mmlab/mmclassification/pull/546)) - Add mmflow and mim in banner and readme. ([#543](https://github.com/open-mmlab/mmclassification/pull/543)) - Add schedule and runtime tutorial docs. ([#499](https://github.com/open-mmlab/mmclassification/pull/499)) - Add the top-5 acc in ResNet-CIFAR README. ([#531](https://github.com/open-mmlab/mmclassification/pull/531)) - Fix TOC of `visualization.md` and add example images. ([#513](https://github.com/open-mmlab/mmclassification/pull/513)) - Use docs link of other projects and add MMCV docs. ([#511](https://github.com/open-mmlab/mmclassification/pull/511))
f6076bf
2021-11-30 19:04
下载
v0.17.0
Highlights - Support Tokens-to-Token ViT backbone and Res2Net backbone. Welcome to use! - Support ImageNet21k dataset. - Add pipeline visualization tools. Try it with the [tutorials](https://mmclassification.readthedocs.io/en/latest/tools/visualization.html#pipeline-visualization)! New Features - Add Tokens-to-Token ViT backbone and converted checkpoints. ([#467](https://github.com/open-mmlab/mmclassification/pull/467)) - Add Res2Net backbone and converted weights. ([#465](https://github.com/open-mmlab/mmclassification/pull/465)) - Support ImageNet21k dataset. ([#461](https://github.com/open-mmlab/mmclassification/pull/461)) - Support seesaw loss. ([#500](https://github.com/open-mmlab/mmclassification/pull/500)) - Add pipeline visualization tools. ([#406](https://github.com/open-mmlab/mmclassification/pull/406)) - Add a tool to find broken files. ([#482](https://github.com/open-mmlab/mmclassification/pull/482)) - Add a tool to test TorchServe. ([#468](https://github.com/open-mmlab/mmclassification/pull/468)) Improvements - Refator Vision Transformer. ([#395](https://github.com/open-mmlab/mmclassification/pull/395)) - Use context manager to reuse matplotlib figures. ([#432](https://github.com/open-mmlab/mmclassification/pull/432)) Bug Fixes - Remove `DistSamplerSeedHook` if use `IterBasedRunner`. ([#501](https://github.com/open-mmlab/mmclassification/pull/501)) - Set the priority of `EvalHook` to "LOW" to avoid a bug of `IterBasedRunner`. ([#488](https://github.com/open-mmlab/mmclassification/pull/488)) - Fix a wrong parameter of `get_root_logger` in `apis/train.py`. ([#486](https://github.com/open-mmlab/mmclassification/pull/486)) - Fix version check in dataset builder. ([#474](https://github.com/open-mmlab/mmclassification/pull/474)) Docs Update - Add English Colab tutorials and update Chinese Colab tutorials. ([#483](https://github.com/open-mmlab/mmclassification/pull/483), [#497](https://github.com/open-mmlab/mmclassification/pull/497)) - Add tutuorial for config files. ([#487](https://github.com/open-mmlab/mmclassification/pull/487)) - Add model-pages in Model Zoo. ([#480](https://github.com/open-mmlab/mmclassification/pull/480)) - Add code-spell pre-commit hook and fix a large mount of typos. ([#470](https://github.com/open-mmlab/mmclassification/pull/470))
72cffac
2021-10-29 14:04
下载
v0.16.0
Release v0.16.0(30/9/2021) Highlights - We have improved compatibility with downstream repositories like MMDetection and MMSegmentation. We will add some examples about how to use our backbones in MMDetection. - Add RepVGG backbone and checkpoints. Welcome to use it! - Add timm backbones wrapper, now you can simply use backbones of pytorch-image-models in MMClassification! New Features - Add RepVGG backbone and checkpoints. ([#414](https://github.com/open-mmlab/mmclassification/pull/414)) - Add timm backbones wrapper. ([#427](https://github.com/open-mmlab/mmclassification/pull/427)) Improvements - Fix TnT compatibility and verbose warning. ([#436](https://github.com/open-mmlab/mmclassification/pull/436)) - Support setting `--out-items` in `tools/test.py`. ([#437](https://github.com/open-mmlab/mmclassification/pull/437)) - Add datetime info and saving model using torch<1.6 format. ([#439](https://github.com/open-mmlab/mmclassification/pull/439)) - Improve downstream repositories compatibility. ([#421](https://github.com/open-mmlab/mmclassification/pull/421)) - Rename the option `--options` to `--cfg-options` in some tools. ([#425](https://github.com/open-mmlab/mmclassification/pull/425)) - Add PyTorch 1.9 and Python 3.9 build workflow, and remove some CI. ([#422](https://github.com/open-mmlab/mmclassification/pull/422)) Bug Fixes - Fix format error in `test.py` when metric returns `np.ndarray`. ([#441](https://github.com/open-mmlab/mmclassification/pull/441)) - Fix `publish_model` bug if no parent of `out_file`. ([#463](https://github.com/open-mmlab/mmclassification/pull/463)) - Fix num_classes bug in pytorch2onnx.py. ([#458](https://github.com/open-mmlab/mmclassification/pull/458)) - Fix missing runtime requirement `packaging`. ([#459](https://github.com/open-mmlab/mmclassification/pull/459)) - Fix saving simplified model bug in ONNX export tool. ([#438](https://github.com/open-mmlab/mmclassification/pull/438)) Docs Update - Update `getting_started.md` and `install.md`. And rewrite `finetune.md`. ([#466](https://github.com/open-mmlab/mmclassification/pull/466)) - Use PyTorch style docs theme. ([#457](https://github.com/open-mmlab/mmclassification/pull/457)) - Update metafile and Readme. ([#435](https://github.com/open-mmlab/mmclassification/pull/435)) - Add `CITATION.cff`. ([#428](https://github.com/open-mmlab/mmclassification/pull/428))
8308636
2021-09-30 13:12
下载
v0.15.0
a41cb2f
2021-08-31 14:33
下载
v0.14.0
ade7b80
2021-08-04 13:25
下载
v0.13.0
2ccc55c
2021-07-05 10:19
下载
v0.12.0
27a49a9
2021-06-03 11:42
下载
v0.11.1
dac0901
2021-05-21 16:36
下载
v0.11.0
3716715
2021-05-01 22:26
下载
v0.10.0
1f6549e
2021-04-01 10:39
下载
v0.9.0
7ca0ca2
2021-03-01 20:14
下载
v0.8.0
7f49632
2021-01-31 17:50
下载
v0.7.0
d835cd0
2020-12-31 16:41
下载
v0.6.0
f7a916f
2020-10-11 00:26
下载
下载
请输入验证码,防止盗链导致资源被占用
取消
下载
1
https://gitee.com/projects-CN/mmclassification.git
git@gitee.com:projects-CN/mmclassification.git
projects-CN
mmclassification
mmclassification
点此查找更多帮助
搜索帮助
Git 命令在线学习
如何在 Gitee 导入 GitHub 仓库
Git 仓库基础操作
企业版和社区版功能对比
SSH 公钥设置
如何处理代码冲突
仓库体积过大,如何减小?
如何找回被删除的仓库数据
Gitee 产品配额说明
GitHub仓库快速导入Gitee及同步更新
什么是 Release(发行版)
将 PHP 项目自动发布到 packagist.org
评论
仓库举报
回到顶部
登录提示
该操作需登录 Gitee 帐号,请先登录后再操作。
立即登录
没有帐号,去注册