# APTOS2019 **Repository Path**: publiagent123/APTOS2019 ## Basic Information - **Project Name**: APTOS2019 - **Description**: 43th place (top2%) Solution for Kaggle APTOS 2019 Blindness Detection - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-02-11 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # APTOS2019 43th place (top2%) Solution for Kaggle APTOS 2019 Blindness Detection - [inference code](https://www.kaggle.com/mikelkl/no-47-top2-solution-stacking-inference) - [detailed summary](https://zhuanlan.zhihu.com/p/81695773) # General This is a not bad solution to get top2% without TTA or coefficient optimization. # Our Solution ## Data Augumentation - Introduce [2015 Diabetic Retinopathy competition data](https://www.kaggle.com/tanlikesmath/diabetic-retinopathy-resized) - Conduct regular transformations that create less black padding - do_flip - flip_vert - max_zoom ## Preprocessing - Thanks to the [@Neuron Engineer](https://www.kaggle.com/ratthachat), we refer to his [APTOS [UpdatedV14] Preprocessing- Ben's & Cropping](https://www.kaggle.com/ratthachat/aptos-updatedv14-preprocessing-ben-s-cropping), and set `sigmaX=10` ## Pretrained Model - We choose [EfficientNet-PyTorch](https://github.com/lukemelas/EfficientNet-PyTorch) as our base model, this series model are quite accurate and fast to train. ## Training - Because this is a ordinal classification task, we train it as regression problem. - We first pretrain model on 2015 data, then finetune on 2019 data ## Ensemble ### Stage 1 - Train `efficientnet-b3, efficientnet-b4, efficientnet-b5` models on splitted 5-fold data resulting in 15 base models. ### Stage 2 - Train [xgboost](https://github.com/dmlc/xgboost), [svr](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html), [catboost](https://github.com/catboost/catboost) models on logits output of stage 1 base model. ### Stage 3 - Bagging from stage 2 models