代码拉取完成,页面将自动刷新
<?php
require_once 'vendor/autoload.php';
use Phpml\Classification\KNearestNeighbors;
use Phpml\Dataset\CsvDataset;
use Phpml\Dataset\ArrayDataset;
use Phpml\FeatureExtraction\TokenCountVectorizer;
use Phpml\Tokenization\WordTokenizer;
use Phpml\CrossValidation\StratifiedRandomSplit;
use Phpml\FeatureExtraction\TfIdfTransformer;
use Phpml\Metric\Accuracy;
use Phpml\Classification\SVC;
use Phpml\Regression\SVR;
use Phpml\SupportVectorMachine\Kernel;
$dataset = new CsvDataset('languages.csv', 1);
$vectorizer = new TokenCountVectorizer(new WordTokenizer());
$tfIdfTransformer = new TfIdfTransformer();
$testample=['我是中国人'];
$samples = [];
foreach ($dataset->getSamples() as $sample) {
$samples[] = $sample[0];
}
$vectorizer->fit($samples);
$vectorizer->transform($samples);
$vectorizer->fit($testample);
$vectorizer->transform($testample);
$tfIdfTransformer->fit($samples);
$tfIdfTransformer->transform($samples);
// $tfIdfTransformer->fit($testample);
// print_r($testample);
// exit;
// $tfIdfTransformer->transform($testample);
$dataset = new ArrayDataset($samples, $dataset->getTargets());
$randomSplit = new StratifiedRandomSplit($dataset, 0.1);
$classifier = new SVC(Kernel::RBF, 10000);
$classifier->train($randomSplit->getTrainSamples(), $randomSplit->getTrainLabels());
$predictedLabels = $classifier->predict($randomSplit->getTestSamples());
$testpredictedLabels = $classifier->predict($testample);
print_r($testpredictedLabels);
exit;
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。