# wide-resnet.pytorch **Repository Path**: qiluo22/wide-resnet.pytorch ## Basic Information - **Project Name**: wide-resnet.pytorch - **Description**: Best CIFAR-10, CIFAR-100 results with wide-residual networks using PyTorch - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2024-12-05 - **Last Updated**: 2024-12-05 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

Best CIFAR-10, CIFAR-100 results with wide-residual networks using PyTorch Pytorch Implementation of Sergey Zagoruyko's [Wide Residual Networks](https://arxiv.org/pdf/1605.07146v2.pdf) For Torch implementations, see [here](https://github.com/meliketoy/wide-residual-network). ## Requirements See the [installation instruction](INSTALL.md) for a step-by-step installation guide. See the [server instruction](SERVER.md) for server settup. - Install [cuda-8.0](https://developer.nvidia.com/cuda-downloads) - Install [cudnn v5.1](https://developer.nvidia.com/cudnn) - Download [Pytorch 2.7](https://pytorch.org) and clone the repository. ```bash pip install http://download.pytorch.org/whl/cu80/torch-0.1.12.post2-cp27-none-linux_x86_64.whl pip install torchvision git clone https://github.com/meliketoy/wide-resnet.pytorch ``` ## How to run After you have cloned the repository, you can train each dataset of either cifar10, cifar100 by running the script below. ```bash python main --lr 0.1 resume false --net_type [lenet/vggnet/resnet/wide-resnet] --depth 28 --widen_factor 10 --dropout_rate 0.3 --dataset [cifar10/cifar100] ``` ## Implementation Details | epoch | learning rate | weight decay | Optimizer | Momentum | Nesterov | |:---------:|:-------------:|:-------------:|:---------:|:--------:|:--------:| | 0 ~ 60 | 0.1 | 0.0005 | Momentum | 0.9 | true | | 61 ~ 120 | 0.02 | 0.0005 | Momentum | 0.9 | true | | 121 ~ 160 | 0.004 | 0.0005 | Momentum | 0.9 | true | | 161 ~ 200 | 0.0008 | 0.0005 | Momentum | 0.9 | true | ## CIFAR-10 Results ![alt tag](imgs/cifar10_image.png) Below is the result of the test set accuracy for **CIFAR-10 dataset** training. **Accuracy is the average of 5 runs** | network | dropout | preprocess | GPU:0 | GPU:1 | per epoch | accuracy(%) | |:-----------------:|:-------:|:----------:|:-----:|:-----:|:------------:|:-----------:| | wide-resnet 28x10 | 0 | ZCA | 5.90G | - | 2 min 03 sec | 95.83 | | wide-resnet 28x10 | 0 | meanstd | 5.90G | - | 2 min 03 sec | 96.21 | | wide-resnet 28x10 | 0.3 | meanstd | 5.90G | - | 2 min 03 sec | 96.27 | | wide-resnet 28x20 | 0.3 | meanstd | 8.13G | 6.93G | 4 min 10 sec | **96.55** | | wide-resnet 40x10 | 0.3 | meanstd | 8.08G | - | 3 min 13 sec | 96.31 | | wide-resnet 40x14 | 0.3 | meanstd | 7.37G | 6.46G | 3 min 23 sec | 96.34 | ## CIFAR-100 Results ![alt tag](imgs/cifar100_image.png) Below is the result of the test set accuracy for **CIFAR-100 dataset** training. **Accuracy is the average of 5 runs** | network | dropout | preprocess | GPU:0 | GPU:1 | per epoch | Top1 acc(%)| Top5 acc(%) | |:-----------------:|:-------:|:-----------:|:-----:|:-----:|:------------:|:----------:|:-----------:| | wide-resnet 28x10 | 0 | ZCA | 5.90G | - | 2 min 03 sec | 80.07 | 95.02 | | wide-resnet 28x10 | 0 | meanstd | 5.90G | - | 2 min 03 sec | 81.02 | 95.41 | | wide-resnet 28x10 | 0.3 | meanstd | 5.90G | - | 2 min 03 sec | 81.49 | 95.62 | | wide-resnet 28x20 | 0.3 | meanstd | 8.13G | 6.93G | 4 min 05 sec | **82.45** | **96.11** | | wide-resnet 40x10 | 0.3 | meanstd | 8.93G | - | 3 min 06 sec | 81.42 | 95.63 | | wide-resnet 40x14 | 0.3 | meanstd | 7.39G | 6.46G | 3 min 23 sec | 81.87 | 95.51 |