代码拉取完成,页面将自动刷新
import torch
import torch.nn.functional as F
from torchvision import transforms#是一个常用的图片变换类
from torchvision import datasets
from torch.utils.data import DataLoader
batch_size=64
transform=transforms.Compose(
[
transforms.ToTensor(),#把数据转换成张量
transforms.Normalize((0.1307,),(0.3081,))#0.1307是均值,0.3081是标准差
]
)
train_dataset=datasets.MNIST(root='../dataset/mnist',
train=True,
download=True,
transform=transform)
train_loader=DataLoader(train_dataset,
shuffle=True,
batch_size=batch_size)
test_dataset=datasets.MNIST(root='../dataset/mnist',
train=False,
download=True,
transform=transform)
test_loader=DataLoader(test_dataset,
shuffle=True,
batch_size=batch_size)
class InceptionA(torch.nn.Module):
def __init__(self,in_channels):
super(InceptionA, self).__init__()
self.branch1x1=torch.nn.Conv2d(in_channels,16,kernel_size=1)
self.branch5x5_1=torch.nn.Conv2d(in_channels,16,kernel_size=1)
self.branch5x5_2=torch.nn.Conv2d(16,24,kernel_size=5,padding=2)
self.branch3x3_1=torch.nn.Conv2d(in_channels,16,kernel_size=1)
self.branch3x3_2=torch.nn.Conv2d(16,24,kernel_size=3,padding=1)
self.branch3x3_3=torch.nn.Conv2d(24,24,kernel_size=3,padding=1)
self.branch_pool=torch.nn.Conv2d(in_channels,24,kernel_size=1)
def forward(self,x):
branch1x1=self.branch1x1(x)
branch5x5=self.branch5x5_1(x)
branch5x5=self.branch5x5_2(branch5x5)
branch3x3=self.branch3x3_1(x)
branch3x3=self.branch3x3_2(branch3x3)
branch3x3=self.branch3x3_3(branch3x3)
branch_pool=F.avg_pool2d(x,kernel_size=3,stride=1,padding=1)
branch_pool=self.branch_pool(branch_pool)
outputs=[branch1x1,branch5x5,branch3x3,branch_pool]
return torch.cat(outputs,dim=1)
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1=torch.nn.Conv2d(1,10,kernel_size=5)
self.conv2=torch.nn.Conv2d(88,20,kernel_size=5)
self.incep1=InceptionA(in_channels=10)
self.incep2=InceptionA(in_channels=20)
self.mp=torch.nn.MaxPool2d(2)
self.fc=torch.nn.Linear(1408,10)
def forward(self,x):
in_size=x.size(0)
x=F.relu(self.mp(self.conv1(x)))
x=self.incep1(x)
x=F.relu(self.mp(self.conv2(x)))
x=self.incep2(x)
x=x.view(in_size,-1)
x=self.fc(x)
return x
model=Net()
criterion=torch.nn.CrossEntropyLoss() #使用交叉熵损失
optimizer=torch.optim.SGD(model.parameters(),lr=0.1,momentum=0.5)#momentum表示冲量,冲出局部最小
def train(epochs):
running_loss=0.0
for batch_idx,data in enumerate(train_loader,0):
inputs,target=data
optimizer.zero_grad()
#前馈+反馈+更新
outputs=model(inputs)
loss=criterion(outputs,target)
loss.backward()
optimizer.step()
running_loss+=loss.item()
if batch_idx%300==299:#不让他每一次小的迭代就输出,而是300次小迭代再输出一次
print('[%d,%5d] loss:%.3f'%(epoch+1,batch_idx+1,running_loss/300))
running_loss=0.0
def test():
correct=0
total=0
with torch.no_grad():#下面的代码就不会再计算梯度
for data in test_loader:
images,labels=data
outputs=model(images)
_,predicted=torch.max(outputs.data,dim=1)#_为每一行的最大值,predicted表示每一行最大值的下标
total+=labels.size(0)
correct+=(predicted==labels).sum().item()
print('Accuracy on test set:%d %%'%(100*correct/total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。