# espnet_model_zoo **Repository Path**: quminzi/espnet_model_zoo ## Basic Information - **Project Name**: espnet_model_zoo - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-04-01 - **Last Updated**: 2021-04-01 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ESPnet Model Zoo [![PyPI version](https://badge.fury.io/py/espnet-model-zoo.svg)](https://badge.fury.io/py/espnet-model-zoo) [![Python Versions](https://img.shields.io/pypi/pyversions/espnet_model_zoo.svg)](https://pypi.org/project/espnet_model_zoo/) [![Downloads](https://pepy.tech/badge/espnet_model_zoo)](https://pepy.tech/project/espnet_model_zoo) [![GitHub license](https://img.shields.io/github/license/espnet/espnet_model_zoo.svg)](https://github.com/espnet/espnet_model_zoo) [![Unitest](https://github.com/espnet/espnet_model_zoo/workflows/Unitest/badge.svg)](https://github.com/espnet/espnet_model_zoo/actions?query=workflow%3AUnitest) [![Model test](https://github.com/espnet/espnet_model_zoo/workflows/Model%20test/badge.svg)](https://github.com/espnet/espnet_model_zoo/actions?query=workflow%3A%22Model+test%22) [![codecov](https://codecov.io/gh/espnet/espnet_model_zoo/branch/master/graph/badge.svg)](https://codecov.io/gh/espnet/espnet_model_zoo) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) Utilities managing the pretrained models created by [ESPnet](https://github.com/espnet/espnet). This function is inspired by the [Asteroid pretrained model function](https://github.com/mpariente/asteroid/blob/master/docs/source/readmes/pretrained_models.md). - Zenodo community: https://zenodo.org/communities/espnet/ - Registered models: [table.csv](espnet_model_zoo/table.csv) ## Install ``` pip install torch pip install espnet_model_zoo ``` ## Python API for inference See the next section about `model_name` ### ASR ```python import soundfile from espnet_model_zoo.downloader import ModelDownloader from espnet2.bin.asr_inference import Speech2Text d = ModelDownloader() speech2text = Speech2Text( **d.download_and_unpack("model_name"), # Decoding parameters are not included in the model file maxlenratio=0.0, minlenratio=0.0, beam_size=20, ctc_weight=0.3, lm_weight=0.5, penalty=0.0, nbest=1 ) # Confirm the sampling rate is equal to that of the training corpus. # If not, you need to resample the audio data before inputting to speech2text speech, rate = soundfile.read("speech.wav") nbests = speech2text(speech) text, *_ = nbests[0] print(text) ``` ### TTS ```python import soundfile from espnet_model_zoo.downloader import ModelDownloader from espnet2.bin.tts_inference import Text2Speech d = ModelDownloader() text2speech = Text2Speech(**d.download_and_unpack("model_name")) speech, *_ = text2speech("foobar") soundfile.write("out.wav", speech.numpy(), text2speech.fs, "PCM_16") ``` ### Speech separation ```python import soundfile from espnet_model_zoo.downloader import ModelDownloader from espnet2.bin.enh_inference import SeparateSpeech d = ModelDownloader() separate_speech = SeparateSpeech( **d.download_and_unpack("model_name"), # for segment-wise process on long speech segment_size=2.4, hop_size=0.8, normalize_segment_scale=False, show_progressbar=True, ref_channel=None, normalize_output_wav=True, ) # Confirm the sampling rate is equal to that of the training corpus. # If not, you need to resample the audio data before inputting to speech2text speech, rate = soundfile.read("long_speech.wav") waves = separate_speech(speech[None, ...], fs=rate) ``` This API allows processing both short audio samples and long audio samples. For long audio samples, you can set the value of arguments segment_size, hop_size (optionally normalize_segment_scale and show_progressbar) to perform segment-wise speech enhancement/separation on the input speech. Note that the segment-wise processing is disabled by default. ## Instruction for ModelDownloader ```python from espnet_model_zoo.downloader import ModelDownloader d = ModelDownloader("~/.cache/espnet") # Specify cachedir d = ModelDownloader() # is used as cachedir by default ``` To obtain a model, you need to give a model name, which is listed in [table.csv](espnet_model_zoo/table.csv). ```python >>> d.download_and_unpack("kamo-naoyuki/mini_an4_asr_train_raw_bpe_valid.acc.best") {"asr_train_config": , "asr_model_file": , ...} ``` Note that if the model already exists, you can skip downloading and unpacking. You can also get a model with certain conditions. ```python d.download_and_unpack(task="asr", corpus="wsj") ``` If multiple models are found with the condition, the last model is selected. You can also specify the condition using "version" option. ```python d.download_and_unpack(task="asr", corpus="wsj", version=-1) # Get the last model d.download_and_unpack(task="asr", corpus="wsj", version=-2) # Get previous model ``` You can also obtain it from the URL directly. ```python d.download_and_unpack("https://zenodo.org/record/...") ``` If you need to use a local model file using this API, you can also give it. ```python d.download_and_unpack("./some/where/model.zip") ``` In this case, the contents are also expanded in the cache directory, but the model is identified by the file path, so if you move the model to somewhere and unpack again, it's treated as another model, thus the contents are expanded again at another place. ## Query model names You can view the model names from our Zenodo community, https://zenodo.org/communities/espnet/, or using `query()`. All information are written in [table.csv](espnet_model_zoo/table.csv). ```python d.query("name") ``` You can also show them with specifying certain conditions. ```python d.query("name", task="asr") ``` ## Command line tools - `espnet_model_zoo_query` ```sh # Query model name espnet_model_zoo_query task=asr corpus=wsj # Show all model name espnet_model_zoo_query # Query the other key espnet_model_zoo_query --key url task=asr corpus=wsj ``` - `espnet_model_zoo_download` ```sh espnet_model_zoo_download # Print the path of the downloaded file espnet_model_zoo_download --unpack true # Print the path of unpacked files ``` - `espnet_model_zoo_upload` ```sh export ACCESS_TOKEN= espnet_zenodo_upload \ --file \ --title \ --description <description> \ --creator_name <your-git-account> ``` ## Use pretrained model in ESPnet recipe ```sh # e.g. ASR WSJ task git clone https://github.com/espnet/espnet pip install -e . cd egs2/wsj/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model kamo-naoyuki/wsj ``` ## Register your model 1. Upload your model to Zenodo You need to [signup to Zenodo](https://zenodo.org/) and [create an access token](https://zenodo.org/account/settings/applications/tokens/new/) to upload models. You can upload your own model by using `espnet_model_zoo_upload` command freely, but we normally upload a model using [recipes](https://github.com/espnet/espnet/blob/master/egs2/TEMPLATE). 1. Create a Pull Request to modify [table.csv](espnet_model_zoo/table.csv) You need to append your record at the last line. 1. (Administrator does) Increment the third version number of [setup.py](setup.py), e.g. 0.0.3 -> 0.0.4 1. (Administrator does) Release new version ## Update your model If your model has some troubles, please modify the record at Zenodo directly or reupload a corrected file using `espnet_zenodo_upload` as another record.