# videoanalyzer **Repository Path**: ramonly/videoanalyzer ## Basic Information - **Project Name**: videoanalyzer - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 2 - **Forks**: 0 - **Created**: 2025-01-10 - **Last Updated**: 2025-12-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Video Analysis using vision models like Llama3.2 Vision and OpenAI's Whisper Models A video analysis tool that combines vision models like Llama's 11B vision model and Whisper to create a description by taking key frames, feeding them to the vision model to get details. It uses the details from each frame and the transcript, if available, to describe what's happening in the video. ## Features - 💻 Can run completely locally - no cloud services or API keys needed - ☁️ Or, leverage any OpenAI API compatible LLM service (openrouter, openai, etc) for speed and scale - 🎬 Intelligent key frame extraction from videos - 🔊 High-quality audio transcription using OpenAI's Whisper - 👁️ Frame analysis using Ollama and Llama3.2 11B Vision Model - 📝 Natural language descriptions of video content - 🔄 Automatic handling of poor quality audio - 📊 Detailed JSON output of analysis results - ⚙️ Highly configurable through command line arguments or config file ## Design The system operates in three stages: 1. Frame Extraction & Audio Processing - Uses OpenCV to extract key frames - Processes audio using Whisper for transcription - Handles poor quality audio with confidence checks 2. Frame Analysis - Analyzes each frame using vision LLM - Each analysis includes context from previous frames - Maintains chronological progression - Uses frame_analysis.txt prompt template 3. Video Reconstruction - Combines frame analyses chronologically - Integrates audio transcript - Uses first frame to set the scene - Creates comprehensive video description ![Design](docs/design.png) ## Requirements ### System Requirements - Python 3.11 or higher - FFmpeg (required for audio processing) - When running LLMs locally (not necessary when using openrouter) - At least 16GB RAM (32GB recommended) - GPU at least 12GB of VRAM or Apple M Series with at least 32GB ### Installation 1. Clone the repository: ```bash git clone https://github.com/byjlw/video-analyzer.git cd video-analyzer ``` 2. Create and activate a virtual environment: ```bash python3 -m venv .venv source .venv/bin/activate # On Windows: .venv\Scripts\activate ``` 3. Install the package: ```bash pip install . # For regular installation # OR pip install -e . # For development installation ``` 4. Install FFmpeg: - Ubuntu/Debian: ```bash sudo apt-get update && sudo apt-get install -y ffmpeg ``` - macOS: ```bash brew install ffmpeg ``` - Windows: ```bash choco install ffmpeg ``` ### Ollama Setup 1. Install Ollama following the instructions at [ollama.ai](https://ollama.ai) 2. Pull the default vision model: ```bash ollama pull llama3.2-vision ``` 3. Start the Ollama service: ```bash ollama serve ``` ### OpenAI-compatible API Setup (Optional) If you want to use OpenAI-compatible APIs (like OpenRouter or OpenAI) instead of Ollama: 1. Get an API key from your provider: - [OpenRouter](https://openrouter.ai) - [OpenAI](https://platform.openai.com) 2. Configure via command line: ```bash # For OpenRouter video-analyzer video.mp4 --client openai_api --api-key your-key --api-url https://openrouter.ai/api/v1 --model gpt-4o-mini # For OpenAI video-analyzer video.mp4 --client openai_api --api-key your-key --api-url https://api.openai.com/v1 --model meta-llama/llama-3.2-11b-vision-instruct ``` Or add to config/config.json: ```json { "clients": { "default": "openai_api", "openai_api": { "api_key": "your-api-key", "api_url": "https://openrouter.ai/api/v1" # or https://api.openai.com/v1 } } } ``` Note: With OpenRouter, you can use llama 3.2 11b vision for free by adding :free to the model name ## Project Structure ``` video-analyzer/ ├── config/ │ └── default_config.json ├── prompts/ │ └── frame_analysis/ │ ├── frame_analysis.txt │ └── describe.txt ├── output/ # Generated during runtime ├── video_analyzer/ # Package source code └── setup.py # Package installation configuration ``` ## Usage ### Basic Usage Using Ollama (default): ```bash video-analyzer path/to/video.mp4 ``` Using OpenAI-compatible API: ```bash video-analyzer path/to/video.mp4 --client openai_api --api-key your-key --api-url https://openrouter.ai/api/v1 ``` #### Sample Output ``` Video Summary**\n\nDuration: 5 minutes and 67 seconds\n\nThe video begins with a person with long blonde hair, wearing a pink t-shirt and yellow shorts, standing in front of a black plastic tub or container on wheels. The ground appears to be covered in wood chips.\n\nAs the video progresses, the person remains facing away from the camera, looking down at something inside the tub. Their left hand is resting on their hip, while their right arm hangs loosely by their side. There are no new objects or people visible in this frame, but there appears to be some greenery and possibly fruit scattered around the ground behind the person.\n\nThe black plastic tub on wheels is present throughout the video, and the wood chips covering the ground remain consistent with those seen in Frame 0. The person's pink t-shirt matches the color of the shirt worn by the person in Frame 0.\n\nAs the video continues, the person remains stationary, looking down at something inside the tub. There are no significant changes or developments in this frame.\n\nThe key continuation point is to watch for the person to pick up an object from the tub and examine it more closely.\n\n**Key Continuation Points:**\n\n* The person's pink t-shirt matches the color of the shirt worn by the person in Frame 0.\n* The black plastic tub on wheels is also present in Frame 0.\n* The wood chips covering the ground are consistent with those seen in Frame 0. ``` ### Advanced Usage ```bash video-analyzer path/to/video.mp4 \ --config custom_config.json \ --output ./custom_output \ --client openai_api \ --api-key your-key \ --api-url https://openrouter.ai/api/v1 \ --model llama3.2-vision \ --frames-per-minute 15 \ --duration 60 \ --whisper-model medium \ --keep-frames ``` ### Command Line Arguments | Argument | Description | Default | |----------|-------------|---------| | `video_path` | Path to the input video file | (Required) | | `--config` | Path to configuration directory | config/ | | `--output` | Output directory for analysis results | output/ | | `--client` | Client to use (ollama or openai_api) | ollama | | `--ollama-url` | URL for the Ollama service | http://localhost:11434 | | `--api-key` | API key for OpenAI-compatible service | None | | `--api-url` | API URL for OpenAI-compatible API | None | | `--model` | Name of the vision model to use | llama3.2-vision | | `--frames-per-minute` | Target number of frames to extract | 10 | | `--duration` | Duration in seconds to process | None (full video) | | `--whisper-model` | Whisper model size or model path| medium | | `--keep-frames` | Keep extracted frames after analysis | False | | `--log-level` | Set logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL) | INFO | | `--language` | Set language for transcription (if set as None, the language will be recognized) | None | | `--device` | Select device to run Whisper model (cpu, cuda) | cpu | ## Configuration The tool uses a cascading configuration system: 1. Command line arguments (highest priority) 2. User config (config/config.json) 3. Default config [config/default_config.json](config/default_config.json) ### Configuration Options #### General Settings - `clients.default`: Default client to use (ollama or openai_api) - `clients.ollama.url`: URL for the Ollama service - `clients.ollama.model`: Vision model to use with Ollama - `clients.openai_api.api_key`: API key for OpenAI-compatible service - `clients.openai_api.api_url`: API URL for OpenAI-compatible API - `clients.openai_api.model`: Vision model to use with OpenAI-compatible API - `prompt_dir`: Directory containing prompt files - `output_dir`: Directory for output files - `frames.per_minute`: Target number of frames to extract per minute - `whisper_model`: Whisper model size (tiny, base, small, medium, large) or Whisper model path. (For example, if using Windows, you can use **E:\\stt\\models\\models--Systran--faster-whisper-large-v3\\snapshots\\{UUID}** to load your local model, or you can use relative path of folder **{repo_path}\\video_analyzer\\video_analyzer**) - `keep_frames`: Whether to keep extracted frames after analysis - `prompt`: Question to ask about the video #### Frame Analysis Settings - `frames.analysis_threshold`: Threshold for key frame detection - `frames.min_difference`: Minimum difference between frames - `frames.max_count`: Maximum number of frames to extract #### Response Length Settings - `response_length.frame`: Maximum length for frame analysis - `response_length.reconstruction`: Maximum length for video reconstruction - `response_length.narrative`: Maximum length for enhanced narrative #### Audio Settings - `audio.sample_rate`: Audio sample rate - `audio.channels`: Number of audio channels - `audio.quality_threshold`: Minimum quality threshold for transcription - `audio.chunk_length`: Length of audio chunks for processing - `audio.language_confidence_threshold`: Confidence threshold for language detection (the language will be detected in the first 30 seconds of audio.) - `audio.language`: Set language for for transcription, default is None (If set, the language_confidence_threshold will not be used) ## Output The tool generates a JSON file (`analysis.json`) containing: - Metadata about the analysis - Audio transcript (if available) - Frame-by-frame analysis - Final video description ### Example Output Structure ## Uninstallation To uninstall the package: ```bash pip uninstall video-analyzer ``` ## License MIT License ## Contributing Contributions are welcome! Please feel free to submit a Pull Request.