# PaintsChainer **Repository Path**: render3d/PaintsChainer ## Basic Information - **Project Name**: PaintsChainer - **Description**: No description available - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-05-16 - **Last Updated**: 2024-05-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Paints Chainer Paints Chainer is a line drawing colorizer using chainer. Using CNN, you can colorize your sketch semi-automatically . ![image](https://github.com/pfnet/PaintsChainer/blob/open/sample.png) ## DEMO http://paintschainer.preferred.tech/ ## Requirement If not specified, versions are assumed to be recent LTS version. - A Nvidia graphic card supporting cuDNN i.e. compute capability >= 3.0 (See https://developer.nvidia.com/cuda-gpus) - Linux: gcc/ g++ 4.8 - Windows: "Microsoft Visual C++ Build Tools 2015" (NOT "Microsoft Visual Studio Community 2015") - Python 3 (3.5 recommended) ( Python 2.7 needs modifying web host (at least) ) - Numpy - openCV "cv2" (Python 3 support possible, see installation guide) - Chainer 2.0.0 or later - CUDA / cuDNN (If you use GPU) ## Installation Guide check wiki page https://github.com/pfnet/PaintsChainer/wiki/Installation-Guide ## Starting web host UI is html based. using wPaint.js Server side is very basic python server boot local server `python server.py` access to localhost `localhost:8000/` ## Learning main code of colorization is in `cgi-bin/paint_x2_unet` to train 1st layer using GPU 0 `python train_128.py -g 0` to train 2nd layer using GPU 0 `python train_x2.py -g 0` ## License Source code : MIT License Pre-trained Model : All Rights Reserved ## Pre-Trained Models Download following model files to cgi-bin/paint_x2_unet/models/ http://paintschainer.preferred.tech/downloads/ (Copyright 2017 Taizan Yonetsuji All Rights Reserved.) ## Developer Community Feel free to request an invitation! https://paintschainerdev.slack.com/ ## Acknowledgements This project is powered by Preferred Networks. Thanks a lot for rezoolab, mattya, okuta, ofk . This project could not be achived without their great support. Line drawing of top image is by ioiori18.