代码拉取完成,页面将自动刷新
from utils import *
sys_p = """
Assess the similarity of the two provided summaries and return a rating from these options: 'very similar', 'similar', 'general', 'not similar', 'totally not similar'. Provide only the rating.
"""
def seq_ret(n4j, sumq):
rating_list = []
sumk = []
gids = []
sum_query = """
MATCH (s:Summary)
RETURN s.content, s.gid
"""
res = n4j.query(sum_query)
for r in res:
sumk.append(r['s.content'])
gids.append(r['s.gid'])
for sk in sumk:
sk = sk[0]
rate = call_llm(sys_p, "The two summaries for comparison are: \n Summary 1: " + sk + "\n Summary 2: " + sumq[0])
if "totally not similar" in rate:
rating_list.append(0)
elif "not similar" in rate:
rating_list.append(1)
elif "general" in rate:
rating_list.append(2)
elif "very similar" in rate:
rating_list.append(4)
elif "similar" in rate:
rating_list.append(3)
else:
print("llm returns no relevant rate")
rating_list.append(-1)
ind = find_index_of_largest(rating_list)
# print('ind is', ind)
gid = gids[ind]
return gid
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。