# nlp-tutorial **Repository Path**: robertoding/nlp-tutorial ## Basic Information - **Project Name**: nlp-tutorial - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-01-04 - **Last Updated**: 2021-01-04 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## nlp-tutorial

`nlp-tutorial` is a tutorial for who is studying NLP(Natural Language Processing) using **Pytorch**. Most of the models in NLP were implemented with less than **100 lines** of code.(except comments or blank lines) - [08-14-2020] Old TensorFlow v1 code is archived in [the archive folder](archive). For beginner readability, only pytorch version 1.0 or higher is supported. ## Curriculum - (Example Purpose) #### 1. Basic Embedding Model - 1-1. [NNLM(Neural Network Language Model)](1-1.NNLM) - **Predict Next Word** - Paper - [A Neural Probabilistic Language Model(2003)](http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf) - Colab - [NNLM.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/1-1.NNLM/NNLM.ipynb) - 1-2. [Word2Vec(Skip-gram)](1-2.Word2Vec) - **Embedding Words and Show Graph** - Paper - [Distributed Representations of Words and Phrases and their Compositionality(2013)](https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf) - Colab - [Word2Vec.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/1-2.Word2Vec/Word2Vec_Skipgram(Softmax).ipynb) - 1-3. [FastText(Application Level)](1-3.FastText) - **Sentence Classification** - Paper - [Bag of Tricks for Efficient Text Classification(2016)](https://arxiv.org/pdf/1607.01759.pdf) - Colab - [FastText.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/1-3.FastText/FastText.ipynb) #### 2. CNN(Convolutional Neural Network) - 2-1. [TextCNN](2-1.TextCNN) - **Binary Sentiment Classification** - Paper - [Convolutional Neural Networks for Sentence Classification(2014)](http://www.aclweb.org/anthology/D14-1181) - [TextCNN.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/2-1.TextCNN/TextCNN.ipynb) #### 3. RNN(Recurrent Neural Network) - 3-1. [TextRNN](3-1.TextRNN) - **Predict Next Step** - Paper - [Finding Structure in Time(1990)](http://psych.colorado.edu/~kimlab/Elman1990.pdf) - Colab - [TextRNN.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/3-1.TextRNN/TextRNN.ipynb) - 3-2. [TextLSTM](https://github.com/graykode/nlp-tutorial/tree/master/3-2.TextLSTM) - **Autocomplete** - Paper - [LONG SHORT-TERM MEMORY(1997)](https://www.bioinf.jku.at/publications/older/2604.pdf) - Colab - [TextLSTM.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/3-2.TextLSTM/TextLSTM.ipynb) - 3-3. [Bi-LSTM](3-3.Bi-LSTM) - **Predict Next Word in Long Sentence** - Colab - [Bi_LSTM.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/3-3.Bi-LSTM/Bi_LSTM.ipynb) #### 4. Attention Mechanism - 4-1. [Seq2Seq](4-1.Seq2Seq) - **Change Word** - Paper - [Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation(2014)](https://arxiv.org/pdf/1406.1078.pdf) - Colab - [Seq2Seq.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/4-1.Seq2Seq/Seq2Seq.ipynb) - 4-2. [Seq2Seq with Attention](4-2.Seq2Seq(Attention)) - **Translate** - Paper - [Neural Machine Translation by Jointly Learning to Align and Translate(2014)](https://arxiv.org/abs/1409.0473) - Colab - [Seq2Seq(Attention).ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/4-2.Seq2Seq(Attention)/Seq2Seq(Attention).ipynb) - 4-3. [Bi-LSTM with Attention](4-3.Bi-LSTM(Attention)) - **Binary Sentiment Classification** - Colab - [Bi_LSTM(Attention).ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/4-3.Bi-LSTM(Attention)/Bi_LSTM(Attention).ipynb) #### 5. Model based on Transformer - 5-1. [The Transformer](5-1.Transformer) - **Translate** - Paper - [Attention Is All You Need(2017)](https://arxiv.org/abs/1706.03762) - Colab - [Transformer.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/5-1.Transformer/Transformer.ipynb), [Transformer(Greedy_decoder).ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/5-1.Transformer/Transformer(Greedy_decoder).ipynb) - 5-2. [BERT](5-2.BERT) - **Classification Next Sentence & Predict Masked Tokens** - Paper - [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding(2018)](https://arxiv.org/abs/1810.04805) - Colab - [BERT.ipynb](https://colab.research.google.com/github/graykode/nlp-tutorial/blob/master/5-2.BERT/BERT.ipynb) ## Dependencies - Python 3.5+ - Pytorch 1.0.0+ ## Author - Tae Hwan Jung(Jeff Jung) @graykode - Author Email : nlkey2022@gmail.com - Acknowledgements to [mojitok](http://mojitok.com/) as NLP Research Internship.