代码拉取完成,页面将自动刷新
import numpy as np
import matplotlib.pyplot as plt
import random
import pandas as pd
import copy
from multiprocessing import Pool
from ga import GA
from aco import ACO
from pso import PSO
class Env():
def __init__(self, vehicle_num, target_num, map_size, visualized=True, time_cost=None, repeat_cost=None):
self.vehicles_position = np.zeros(vehicle_num,dtype=np.int32)
self.vehicles_speed = np.zeros(vehicle_num,dtype=np.int32)
self.targets = np.zeros(shape=(target_num+1,4),dtype=np.int32)
if vehicle_num==5:
self.size='small'
if vehicle_num==10:
self.size='medium'
if vehicle_num==15:
self.size='large'
self.map_size = map_size
self.speed_range = [10, 15, 30]
#self.time_lim = 1e6
self.time_lim = self.map_size / self.speed_range[1]
self.vehicles_lefttime = np.ones(vehicle_num,dtype=np.float32) * self.time_lim
self.distant_mat = np.zeros((target_num+1,target_num+1),dtype=np.float32)
self.total_reward = 0
self.reward = 0
self.visualized = visualized
self.time = 0
self.time_cost = time_cost
self.repeat_cost = repeat_cost
self.end = False
self.assignment = [[] for i in range(vehicle_num)]
self.task_generator()
def task_generator(self):
for i in range(self.vehicles_speed.shape[0]):
choose = random.randint(0,2)
self.vehicles_speed[i] = self.speed_range[choose]
for i in range(self.targets.shape[0]-1):
self.targets[i+1,0] = random.randint(1,self.map_size) - 0.5*self.map_size # x position
self.targets[i+1,1] = random.randint(1,self.map_size) - 0.5*self.map_size # y position
self.targets[i+1,2] = random.randint(1,10) # reward
self.targets[i+1,3] = random.randint(5,30) # time consumption to finish the mission
for i in range(self.targets.shape[0]):
for j in range(self.targets.shape[0]):
self.distant_mat[i,j] = np.linalg.norm(self.targets[i,:2]-self.targets[j,:2])
self.targets_value = copy.deepcopy((self.targets[:,2]))
def step(self, action):
count = 0
for j in range(len(action)):
k = action[j]
delta_time = self.distant_mat[self.vehicles_position[j],k] / self.vehicles_speed[j] + self.targets[k,3]
self.vehicles_lefttime[j] = self.vehicles_lefttime[j] - delta_time
if self.vehicles_lefttime[j] < 0:
count = count + 1
continue
else:
if k == 0:
self.reward = - self.repeat_cost
else:
self.reward = self.targets[k,2] - delta_time * self.time_cost + self.targets[k,2]
if self.targets[k,2] == 0:
self.reward = self.reward - self.repeat_cost
self.vehicles_position[j] = k
self.targets[k,2] = 0
self.total_reward = self.total_reward + self.reward
self.assignment[j].append(action)
if count == len(action):
self.end = True
def run(self, assignment, algorithm, play, rond):
self.assignment = assignment
self.algorithm = algorithm
self.play = play
self.rond = rond
self.get_total_reward()
if self.visualized:
self.visualize()
def reset(self):
self.vehicles_position = np.zeros(self.vehicles_position.shape[0],dtype=np.int32)
self.vehicles_lefttime = np.ones(self.vehicles_position.shape[0],dtype=np.float32) * self.time_lim
self.targets[:,2] = self.targets_value
self.total_reward = 0
self.reward = 0
self.end = False
def get_total_reward(self):
for i in range(len(self.assignment)):
speed = self.vehicles_speed[i]
for j in range(len(self.assignment[i])):
position = self.targets[self.assignment[i][j],:4]
self.total_reward = self.total_reward + position[2]
if j == 0:
self.vehicles_lefttime[i] = self.vehicles_lefttime[i] - np.linalg.norm(position[:2]) / speed - position[3]
else:
self.vehicles_lefttime[i] = self.vehicles_lefttime[i] - np.linalg.norm(position[:2]-position_last[:2]) / speed - position[3]
position_last = position
if self.vehicles_lefttime[i] > self.time_lim:
self.end = True
break
if self.end:
self.total_reward = 0
break
def visualize(self):
if self.assignment == None:
plt.scatter(x=0,y=0,s=200,c='k')
plt.scatter(x=self.targets[1:,0],y=self.targets[1:,1],s=self.targets[1:,2]*10,c='r')
plt.title('Target distribution')
plt.savefig('task_pic/'+self.size+'/'+self.algorithm+ "-%d-%d.png" % (self.play,self.rond))
plt.cla()
else:
plt.title('Task assignment by '+self.algorithm +', total reward : '+str(self.total_reward))
plt.scatter(x=0,y=0,s=200,c='k')
plt.scatter(x=self.targets[1:,0],y=self.targets[1:,1],s=self.targets[1:,2]*10,c='r')
for i in range(len(self.assignment)):
trajectory = np.array([[0,0,20]])
for j in range(len(self.assignment[i])):
position = self.targets[self.assignment[i][j],:3]
trajectory = np.insert(trajectory,j+1,values=position,axis=0)
plt.scatter(x=trajectory[1:,0],y=trajectory[1:,1],s=trajectory[1:,2]*10,c='b')
plt.plot(trajectory[:,0], trajectory[:,1])
plt.savefig('task_pic/'+self.size+'/'+self.algorithm+ "-%d-%d.png" % (self.play,self.rond))
plt.cla()
def evaluate(vehicle_num, target_num, map_size):
if vehicle_num==5:
size='small'
if vehicle_num==10:
size='medium'
if vehicle_num==15:
size='large'
re_ga=[[] for i in range(10)]
re_aco=[[] for i in range(10)]
re_pso=[[] for i in range(10)]
for i in range(10):
env = Env(vehicle_num,target_num,map_size,visualized=True)
for j in range(10):
p=Pool(3)
ga = GA(vehicle_num,env.vehicles_speed,target_num,env.targets,env.time_lim)
aco = ACO(vehicle_num,target_num,env.vehicles_speed,env.targets,env.time_lim)
pso = PSO(vehicle_num,target_num ,env.targets,env.vehicles_speed,env.time_lim)
ga_result=p.apply_async(ga.run)
aco_result=p.apply_async(aco.run)
pso_result=p.apply_async(pso.run)
p.close()
p.join()
ga_task_assignmet = ga_result.get()[0]
env.run(ga_task_assignmet,'GA',i+1,j+1)
re_ga[i].append((env.total_reward,ga_result.get()[1]))
env.reset()
aco_task_assignmet = aco_result.get()[0]
env.run(aco_task_assignmet,'ACO',i+1,j+1)
re_aco[i].append((env.total_reward,aco_result.get()[1]))
env.reset()
pso_task_assignmet = pso_result.get()[0]
env.run(pso_task_assignmet,'PSO',i+1,j+1)
re_pso[i].append((env.total_reward,pso_result.get()[1]))
env.reset()
x_index=np.arange(10)
ymax11=[]
ymax12=[]
ymax21=[]
ymax22=[]
ymax31=[]
ymax32=[]
ymean11=[]
ymean12=[]
ymean21=[]
ymean22=[]
ymean31=[]
ymean32=[]
for i in range(10):
tmp1=[re_ga[i][j][0] for j in range(10)]
tmp2=[re_ga[i][j][1] for j in range(10)]
ymax11.append(np.amax(tmp1))
ymax12.append(np.amax(tmp2))
ymean11.append(np.mean(tmp1))
ymean12.append(np.mean(tmp2))
tmp1=[re_aco[i][j][0] for j in range(10)]
tmp2=[re_aco[i][j][1] for j in range(10)]
ymax21.append(np.amax(tmp1))
ymax22.append(np.amax(tmp2))
ymean21.append(np.mean(tmp1))
ymean22.append(np.mean(tmp2))
tmp1=[re_pso[i][j][0] for j in range(10)]
tmp2=[re_pso[i][j][1] for j in range(10)]
ymax31.append(np.amax(tmp1))
ymax32.append(np.amax(tmp2))
ymean31.append(np.mean(tmp1))
ymean32.append(np.mean(tmp2))
rects1=plt.bar(x_index,ymax11,width=0.1,color='b',label='ga_max_reward')
rects2=plt.bar(x_index+0.1,ymax21,width=0.1,color='r',label='aco_max_reward')
rects3=plt.bar(x_index+0.2,ymax31,width=0.1,color='g',label='pso_max_reward')
plt.xticks(x_index+0.1,x_index)
plt.legend()
plt.title('max_reward_for_'+size+'_size')
plt.savefig('max_reward_'+size+'.png')
plt.cla()
rects1=plt.bar(x_index,ymax12,width=0.1,color='b',label='ga_max_time')
rects2=plt.bar(x_index+0.1,ymax22,width=0.1,color='r',label='aco_max_time')
rects3=plt.bar(x_index+0.2,ymax32,width=0.1,color='g',label='pso_max_time')
plt.xticks(x_index+0.1,x_index)
plt.legend()
plt.title('max_time_for_'+size+'_size')
plt.savefig('max_time_'+size+'.png')
plt.cla()
rects1=plt.bar(x_index,ymean11,width=0.1,color='b',label='ga_mean_reward')
rects2=plt.bar(x_index+0.1,ymean21,width=0.1,color='r',label='aco_mean_reward')
rects3=plt.bar(x_index+0.2,ymean31,width=0.1,color='g',label='pso_mean_reward')
plt.xticks(x_index+0.1,x_index)
plt.legend()
plt.title('mean_reward_for_'+size+'_size')
plt.savefig('mean_reward_'+size+'.png')
plt.cla()
rects1=plt.bar(x_index,ymean12,width=0.1,color='b',label='ga_mean_time')
rects2=plt.bar(x_index+0.1,ymean22,width=0.1,color='r',label='aco_mean_time')
rects3=plt.bar(x_index+0.2,ymean32,width=0.1,color='g',label='pso_mean_time')
plt.xticks(x_index+0.1,x_index)
plt.legend()
plt.title('mean_time_for_'+size+'_size')
plt.savefig('mean_time_'+size+'.png')
plt.cla()
t_ga=[]
r_ga=[]
t_aco=[]
r_aco=[]
t_pso=[]
r_pso=[]
for i in range(10):
for j in range(10):
t_ga.append(re_ga[i][j][1])
r_ga.append(re_ga[i][j][0])
t_aco.append(re_aco[i][j][1])
r_aco.append(re_aco[i][j][0])
t_pso.append(re_pso[i][j][1])
r_pso.append(re_pso[i][j][0])
dataframe = pd.DataFrame({'ga_time':t_ga,'ga_reward':r_ga,'aco_time':t_aco,'aco_reward':r_aco,'pso_time':t_pso,'pso_reward':r_pso})
dataframe.to_csv(size+'_size_result.csv',sep=',')
if __name__=='__main__':
# small scale
evaluate(5,30,5e3)
# medium scale
evaluate(10,60,1e4)
# large scale
evaluate(15,90,1.5e4)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。