# Semantic-Segmantation-based-Dynamic-Robust-SLAM **Repository Path**: sdkmsdn_admin/Semantic-Segmantation-based-Dynamic-Robust-SLAM ## Basic Information - **Project Name**: Semantic-Segmantation-based-Dynamic-Robust-SLAM - **Description**: Semantic-Segmantation-based-Dynamic-Robust-SLAM - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2020-03-29 - **Last Updated**: 2023-10-31 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Semantic-Segmantation-based-Dynamic-Robust-SLAM Semantic-Segmantation-based-Dynamic-Robust-SLAM 1. Compiling the ORB_SLAM2 follow the README.md, and start a RGBD node. 2. Putting the semantic_slam in ROS workspace, then use roslaunch to launch the semantic segmentation node. Download the model in [model trained on ade20k](https://drive.google.com/file/d/1u_BEWdVIYiDnpVmAxwME1z3rnWWkjxm5/view?usp=sharing) / [model trained on sunrgbd](https://drive.google.com/file/d/1t26t2VHNOzmjH-0lDTdYzXBACOV_4-eL/view?usp=sharing) / and put them in models. 3. Running a .bag file in TUM database to publish rgb and depth images. ## Acknowledgement This work cannot be done without many open source projets. Special thanks to
[semantic_slam](https://github.com/floatlazer/semantic_slam)
[ORB_SLAM2](https://github.com/raulmur/ORB_SLAM2)
[ORB_SLAM2_SSD_Semantic](https://github.com/Ewenwan/ORB_SLAM2_SSD_Semantic) ## License This project is released under a GPLv3 license.