# calc2.0 **Repository Path**: sdkmsdn_admin/calc2.0 ## Basic Information - **Project Name**: calc2.0 - **Description**: CALC2.0: Combining Appearance, Semantic and Geometric Information for Robust and Efficient Visual Loop Closure - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-03-27 - **Last Updated**: 2023-04-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## CALC2.0 Convolutional Autoencoder for Loop Closure 2.0. To get started, download the COCO dataset and the "stuff" annotations, then run `dataset/gen_tfrecords.py`. Make sure to unzip the tar in the dataset directory first. Doing this will generate the sharded tfrecord files as well as `loss_weights.txt`. After that you can train with `calc2.py`. Check the --mode options in calc2.py to see what else you can do, like PR curves and finding the best model in a directory. If you use this code for your research, please cite our paper: ``` @InProceedings{Merrill2019IROS, Title = {{CALC2.0}: Combining Appearance, Semantic and Geometric Information for Robust and Efficient Visual Loop Closure}, Author = {Nathaniel Merrill and Guoquan Huang}, Booktitle = {2019 International Conference on Intelligent Robots and Systems (IROS)}, Year = {2019}, Address = {Macau, China}, Month = nov, } ```