代码拉取完成,页面将自动刷新
import tensorflow as tf
from tensorflow import keras
import pickle
model=tf.keras.models.Sequential([tf.keras.layers.Conv2D(16,(3,3),activation='relu',input_shape=(200,200,3)),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Conv2D(16,(3,3),activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Conv2D(16,(3,3),activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512,activation='relu'),
tf.keras.layers.Dense(1,activation="sigmoid")
])
model.summary()
from tensorflow.keras.optimizers import RMSprop
model.compile(optimizer=RMSprop(lr=0.001),loss='binary_crossentropy',metrics=['acc'])
from tensorflow.keras.preprocessing.image import ImageDataGenerator
train_datagen=ImageDataGenerator(rescale=1/255)
train_generator=train_datagen.flow_from_directory('E:/ARYAN/Desktop/python_tensorflow/Classification_human-or-horse',
target_size=(200,200),
batch_size=222,
class_mode='binary')
model.fit_generator(train_generator,steps_per_epoch=6,epochs=1,verbose=1)
filename="myTf1.sav"
pickle.dump(model,open(filename,'wb'))
from tkinter import Tk
from tkinter.filedialog import askopenfilename
from keras.preprocessing import image
import numpy as np
import cv2
Tk().withdraw()
filename = askopenfilename()
print(filename)
img = image.load_img(filename, target_size=(200, 200))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
images = np.vstack([x])
classes = model.predict(images, batch_size=10)
print(classes[0])
if classes[0]>0.5:
print(filename + " is a human")
else:
print(filename + " is a horse")
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。