# GCN_predict-Pytorch **Repository Path**: shine2010/GCN_predict-Pytorch ## Basic Information - **Project Name**: GCN_predict-Pytorch - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-09-28 - **Last Updated**: 2021-09-28 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # GCN_predict-Pytorch Traffic flow predict. Implementation of graph convolutional network(GCN,GAT,Chebnet) with PyTorch Requirements: ​ - Pytorch ​ - Numpy ​ - Pandas ​ - Matplotlib Example Dataset: ​ The datasets are collected by the Caltrans Performance Measurement System (PEMS-04) ​ Numbers:307 detectors ​ Date:Jan to Feb in 2018 (2018.1.1——2018.2.28) ​ Features:flow, occupy, speed. Exploring data analysis: ​ 1.there is three features:flow,occupy and speed.First, we conduct a visual analysis of data distribution ​ 2.run code: python data_view.py ​ 3.Every node(detector) has three fetures,but two features data distribution are basically stationary, so we only take the first dimension features. Read dataset: ​ In the traffic_dataset.py file,the get_adjacent_matrix and get_flow_data functions are to read adjacent matrix and flow data. Model training: ​ In the traffic_preditcion.py,there are three graph convolution neural network models:GCN,ChenNET and GAT.Correspondingly, you only need to modify the 45th line of code in this file, and then observe the different results of model training. ​ python traffic_preditcion.py