# 大数据离线电商数仓项目 **Repository Path**: sky_blue_gl/Data-Warehouse ## Basic Information - **Project Name**: 大数据离线电商数仓项目 - **Description**: 😃本仓库为尚硅谷电商离线数仓项目4.0,主要技术栈为Hadoop,Flume,Hbase,Kafka,zookeeper,Spark,Hive等相关技术栈,个人在学习过程中完成了笔记的编写,绘制了数仓分层的分层结构图,以及表关系的整理,可辅助学习者对项目进行更进一步的理解。 - **Primary Language**: Unknown - **License**: AFL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 21 - **Forks**: 19 - **Created**: 2022-10-03 - **Last Updated**: 2025-07-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: hadoop, hive ## README ## 💎💎💎

githubgithubgithubgithubgithubgithubgithubgithubgithubgithub

githubgithubgithub

>### **原创项目架构图:** [https://kdocs.cn/l/ccj89kGKAYFY](https://kdocs.cn/l/ccj89kGKAYFY) ## ✈️1.0 架构说明 ![image-20220831234500440](https://pic-1313413291.cos.ap-nanjing.myqcloud.com/image-20220831234500440.png) ![image-20220901111526317](https://pic-1313413291.cos.ap-nanjing.myqcloud.com/image-20220901111526317.png) ​ **技术选型主要考虑因素:数据量大小、业务需求、行业内经验、技术成熟度、开发维护成本、总成本预算。** >数据采集传输:Flume,.Kafka,Sqoop;Logstash,DataX > >数据存储:MySQL,HDFS,HBase,Redis,MongoDB > >数据计算:Hive,Tez,Spark,Flink,Storm > >数据查询:Presto,Kylin,Impala,Duid,ClickHouse,Doris > >数据可视化:Echats,Superset,QuickBI,DataV > >任务调度:Azkaban,Oozie,DolphinScheduler,Airflow > >集群监控:Zabbi,Prometheus > >元数据管理:Atlas > >权限管理:Ranger,Sentry ## 2.0 🚀数据说明 ![image-20221108154359536](https://pic-1313413291.cos.ap-nanjing.myqcloud.com/image-20221108154359536.png) ![image-20221108154430923](https://pic-1313413291.cos.ap-nanjing.myqcloud.com/image-20221108154430923.png) ![image-20221108154451158](https://pic-1313413291.cos.ap-nanjing.myqcloud.com/image-20221108154451158.png) ![image-20221108154507757](https://pic-1313413291.cos.ap-nanjing.myqcloud.com/image-20221108154507757.png) ![image-20221108154523990](https://pic-1313413291.cos.ap-nanjing.myqcloud.com/image-20221108154523990.png) ## 3.0🙂数据生成 ![image-20221108154703847](https://pic-1313413291.cos.ap-nanjing.myqcloud.com/image-20221108154703847.png) ![image-20221108154648900](https://pic-1313413291.cos.ap-nanjing.myqcloud.com/image-20221108154648900.png) ## 4.0🐘建模理论 ![image-20221108154722469](https://pic-1313413291.cos.ap-nanjing.myqcloud.com/image-20221108154722469.png) ## 5.0😎数仓建模 ![image-20221108154754349](https://pic-1313413291.cos.ap-nanjing.myqcloud.com/image-20221108154754349.png) ![image-20221108154813954](https://pic-1313413291.cos.ap-nanjing.myqcloud.com/image-20221108154813954.png) ![image-20221108154836124](https://pic-1313413291.cos.ap-nanjing.myqcloud.com/image-20221108154836124.png) ![image-20221108154852970](https://pic-1313413291.cos.ap-nanjing.myqcloud.com/image-20221108154852970.png) ## 6.0🍔数据流分析 ![image-20221108155009660](https://pic-1313413291.cos.ap-nanjing.myqcloud.com/image-20221108155009660.png) ![image-20221108155034840](https://pic-1313413291.cos.ap-nanjing.myqcloud.com/image-20221108155034840.png) ![image-20221108155055147](https://pic-1313413291.cos.ap-nanjing.myqcloud.com/image-20221108155055147.png) ![image-20221108155108915](https://pic-1313413291.cos.ap-nanjing.myqcloud.com/image-20221108155108915.png) ![image-20221108155123652](https://pic-1313413291.cos.ap-nanjing.myqcloud.com/image-20221108155123652.png)