# Detectron **Repository Path**: srwpf/Detectron ## Basic Information - **Project Name**: Detectron - **Description**: FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet. - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-09-19 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Detectron Detectron is Facebook AI Research's software system that implements state-of-the-art object detection algorithms, including [Mask R-CNN](https://arxiv.org/abs/1703.06870). It is written in Python and powered by the [Caffe2](https://github.com/caffe2/caffe2) deep learning framework. At FAIR, Detectron has enabled numerous research projects, including: [Feature Pyramid Networks for Object Detection](https://arxiv.org/abs/1612.03144), [Mask R-CNN](https://arxiv.org/abs/1703.06870), [Detecting and Recognizing Human-Object Interactions](https://arxiv.org/abs/1704.07333), [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002), [Non-local Neural Networks](https://arxiv.org/abs/1711.07971), [Learning to Segment Every Thing](https://arxiv.org/abs/1711.10370), [Data Distillation: Towards Omni-Supervised Learning](https://arxiv.org/abs/1712.04440), [DensePose: Dense Human Pose Estimation In The Wild](https://arxiv.org/abs/1802.00434), and [Group Normalization](https://arxiv.org/abs/1803.08494).

Example Mask R-CNN output.

## Introduction The goal of Detectron is to provide a high-quality, high-performance codebase for object detection *research*. It is designed to be flexible in order to support rapid implementation and evaluation of novel research. Detectron includes implementations of the following object detection algorithms: - [Mask R-CNN](https://arxiv.org/abs/1703.06870) -- *Marr Prize at ICCV 2017* - [RetinaNet](https://arxiv.org/abs/1708.02002) -- *Best Student Paper Award at ICCV 2017* - [Faster R-CNN](https://arxiv.org/abs/1506.01497) - [RPN](https://arxiv.org/abs/1506.01497) - [Fast R-CNN](https://arxiv.org/abs/1504.08083) - [R-FCN](https://arxiv.org/abs/1605.06409) using the following backbone network architectures: - [ResNeXt{50,101,152}](https://arxiv.org/abs/1611.05431) - [ResNet{50,101,152}](https://arxiv.org/abs/1512.03385) - [Feature Pyramid Networks](https://arxiv.org/abs/1612.03144) (with ResNet/ResNeXt) - [VGG16](https://arxiv.org/abs/1409.1556) Additional backbone architectures may be easily implemented. For more details about these models, please see [References](#references) below. ## Update - 4/2018: Support Group Normalization - see [`GN/README.md`](./projects/GN/README.md) ## License Detectron is released under the [Apache 2.0 license](https://github.com/facebookresearch/detectron/blob/master/LICENSE). See the [NOTICE](https://github.com/facebookresearch/detectron/blob/master/NOTICE) file for additional details. ## Citing Detectron If you use Detectron in your research or wish to refer to the baseline results published in the [Model Zoo](MODEL_ZOO.md), please use the following BibTeX entry. ``` @misc{Detectron2018, author = {Ross Girshick and Ilija Radosavovic and Georgia Gkioxari and Piotr Doll\'{a}r and Kaiming He}, title = {Detectron}, howpublished = {\url{https://github.com/facebookresearch/detectron}}, year = {2018} } ``` ## Model Zoo and Baselines We provide a large set of baseline results and trained models available for download in the [Detectron Model Zoo](MODEL_ZOO.md). ## Installation Please find installation instructions for Caffe2 and Detectron in [`INSTALL.md`](INSTALL.md). ## Quick Start: Using Detectron After installation, please see [`GETTING_STARTED.md`](GETTING_STARTED.md) for brief tutorials covering inference and training with Detectron. ## Getting Help To start, please check the [troubleshooting](INSTALL.md#troubleshooting) section of our installation instructions as well as our [FAQ](FAQ.md). If you couldn't find help there, try searching our GitHub issues. We intend the issues page to be a forum in which the community collectively troubleshoots problems. If bugs are found, **we appreciate pull requests** (including adding Q&A's to `FAQ.md` and improving our installation instructions and troubleshooting documents). Please see [CONTRIBUTING.md](CONTRIBUTING.md) for more information about contributing to Detectron. ## References - [Data Distillation: Towards Omni-Supervised Learning](https://arxiv.org/abs/1712.04440). Ilija Radosavovic, Piotr Dollár, Ross Girshick, Georgia Gkioxari, and Kaiming He. Tech report, arXiv, Dec. 2017. - [Learning to Segment Every Thing](https://arxiv.org/abs/1711.10370). Ronghang Hu, Piotr Dollár, Kaiming He, Trevor Darrell, and Ross Girshick. Tech report, arXiv, Nov. 2017. - [Non-Local Neural Networks](https://arxiv.org/abs/1711.07971). Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Tech report, arXiv, Nov. 2017. - [Mask R-CNN](https://arxiv.org/abs/1703.06870). Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. IEEE International Conference on Computer Vision (ICCV), 2017. - [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002). Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. IEEE International Conference on Computer Vision (ICCV), 2017. - [Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour](https://arxiv.org/abs/1706.02677). Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Tech report, arXiv, June 2017. - [Detecting and Recognizing Human-Object Interactions](https://arxiv.org/abs/1704.07333). Georgia Gkioxari, Ross Girshick, Piotr Dollár, and Kaiming He. Tech report, arXiv, Apr. 2017. - [Feature Pyramid Networks for Object Detection](https://arxiv.org/abs/1612.03144). Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. - [Aggregated Residual Transformations for Deep Neural Networks](https://arxiv.org/abs/1611.05431). Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. - [R-FCN: Object Detection via Region-based Fully Convolutional Networks](http://arxiv.org/abs/1605.06409). Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. Conference on Neural Information Processing Systems (NIPS), 2016. - [Deep Residual Learning for Image Recognition](http://arxiv.org/abs/1512.03385). Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. - [Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks](http://arxiv.org/abs/1506.01497) Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Conference on Neural Information Processing Systems (NIPS), 2015. - [Fast R-CNN](http://arxiv.org/abs/1504.08083). Ross Girshick. IEEE International Conference on Computer Vision (ICCV), 2015.