# ERD **Repository Path**: srwpf/ERD ## Basic Information - **Project Name**: ERD - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2019-10-31 - **Last Updated**: 2022-03-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Early Rumour Detection Rumours can spread quickly through social media, and malicious ones can bring about significant economical and social impact. Motivated by this, our paper focuses on the task of rumour detection; particularly, we are interested in understanding how early we can detect them. To address this, we present a novel methodology for early rumour detection.Here is the code based on our approach. ### Requirement Python 3.6 TensorFlow 1.13 ### DataSet Two DataSets can be used to evaluate our model. Weibo DataSet: http://alt.qcri.org/~wgao/data/rumdect.zip Twitter DataSet: https://figshare.com/articles/PHEME_dataset_of_rumours_and_non-rumours/4010619 ### Usage 1. Download Twitter DataSet and extract, set the DataSet path to the `data_file_path` in `config.py`. 2. Download glove word vectors: http://nlp.stanford.edu/data/glove.840B.300d.zip, and set the `w2v_file_path` in `config.py`. 3. Run `python main.py` to train and evaluate the model.