# facenet-1 **Repository Path**: srwpf/facenet-1 ## Basic Information - **Project Name**: facenet-1 - **Description**: FaceNet for face recognition using pytorch - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-10-25 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Facenet for face recognition using pytorch - Pytorch implementation of the paper: "FaceNet: A Unified Embedding for Face Recognition and Clustering". - Training of network is done using triplet loss. # How to train/validate model - Download vggface2 (for training) and lfw (for validation) datasets. - https://www.robots.ox.ac.uk/%7Evgg/data/vgg_face2/ - http://vis-www.cs.umass.edu/lfw/lfw.tgz - Align face image files by following David Sandberg's instruction (part of "Face alignment"). - https://github.com/davidsandberg/facenet/wiki/Classifier-training-of-inception-resnet-v1 - Write list file of face images by running "datasets/write_csv_for_making_dataset.ipynb" - This is aready in the directory of datasets so that you don't need to do again if you are urgent. - To run this one need to modify paths in accordance with location of image dataset. - Train - Again, one need to modify paths in accordance with location of image dataset. - Also feel free to change some parameters. # Results - Accuracy on VGGFace2 and LFW datasets ![accuracy](./log/tmp/accuracy.jpg) - Triplet loss on VGGFace2 and LFW datasets ![loss](./log/tmp/loss.jpg) - ROC curve on LFW datasets for validation ![roc curve](./log/tmp/roc_valid_epoch_39.png) # References - https://github.com/liorshk/facenet_pytorch - https://github.com/davidsandberg/facenet - https://arxiv.org/abs/1503.03832