# keras-js
**Repository Path**: studvc/keras-js
## Basic Information
- **Project Name**: keras-js
- **Description**: Run Keras models in the browser, with GPU support using WebGL
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2021-01-05
- **Last Updated**: 2021-01-05
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
**This project is no longer active. Please check out TensorFlow.js.**
The Keras.js demos still work but is no longer updated.
Run Keras models in the browser, with GPU support using WebGL
---
Run [Keras](https://github.com/keras-team/keras) models in the browser, with GPU support provided by WebGL 2. Models can be run in Node.js as well, but only in CPU mode. Because Keras abstracts away a number of frameworks as backends, the models can be trained in any backend, including TensorFlow, CNTK, etc.
Library version compatibility: Keras 2.1.2
## [Interactive Demos](https://transcranial.github.io/keras-js)
Check out the `demos/` directory for real examples running Keras.js in VueJS.
- Basic Convnet for MNIST
- Convolutional Variational Autoencoder, trained on MNIST
- Auxiliary Classifier Generative Adversarial Networks (AC-GAN) on MNIST
- 50-layer Residual Network, trained on ImageNet
- Inception v3, trained on ImageNet
- DenseNet-121, trained on ImageNet
- SqueezeNet v1.1, trained on ImageNet
- Bidirectional LSTM for IMDB sentiment classification
## [Documentation](https://transcranial.github.io/keras-js-docs)
[MIT License](https://github.com/transcranial/keras-js/blob/master/LICENSE)